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Abstract

We have used cDNA microarrays to compare gene expression profiles in brains from normal mice
to those infected with the ANKA strain of Plasmodium berghei, a model of cerebral malaria. For
each of three brains in each group, we computed ratios of all quantifiable genes with a composite
reference sample and then computed ratios of gene expression in infected brains compared to
untreated controls. Of the almost 12,000 unigenes adequately quantified in all arrays,
approximately 3% were significantly downregulated (P <0.05, = 50% fold change) and about 7%
were upregulated. Upon inspection of the lists of regulated genes, we identified a high number
encoding proteins of importance to normal brain function or associated with neuropathology,
including genes that encode for synaptic proteins or genes involved in cerebellar function as well
as genes important in certain neurological diseases such as Alzheimer’s disease or autism. These
results emphasize the important impact of malarial infection on gene expression in the brain and
provide potential biomarkers that may provide novel therapeutic targets to ameliorate the
neurological sequelae of this infection.
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1 Introduction

A large study in sub-Saharan Africa reported that almost 50% of malarial patients exhibited
neurological deficits [15] encompassing a number of symptoms, including ataxia, seizures,
hemiplegia, and eventually coma and death [13, 15,16]. In addition, greater than 20% of
children who survive an episode of cerebral malaria sustain persistent cognitive deficits,
which can include memory impairment, visuospatial deficits, and psychiatric disorders as
well as motor coordination dysfunction [2,3,6,12,20]. While the precise etiology of cerebral
malaria has not fully been elucidated, recently vasculopathy has been recognized as
contributory to mortality during cerebral malaria [5]. We and others previously
demonstrated that experimental cerebral malaria is associated with impairment of blood flow
to the cerebral microvasculature, and that this directly correlated with neuronal and axonal
damage [18,31]. Impairment of the cerebral blood flow and associated axonal damage has
also been observed in children with cerebral malaria [1,35]. In addition, although cerebral
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malaria affects the vasculature, extensive immunological and inflammatory effects occur
within the nervous system [4]. In fact, recent studies intimate that the development of
deficits in human cerebral malaria is a complex issue which involves the progression of
metabolic and physiologic processes in several regions of the brain [19].

Microarray analysis of differentially expressed genes offers the possibility to search for
pathways responsible for disease in a broad, unbiased approach. Using such a strategy, a
number of authors have previously identified interferon-regulated genes as prominently
altered in brains of mice that are susceptible to cerebral malaria [33], with differential
expression in mouse strains that are either susceptible or resistant to cerebral malaria [9,25].
Most recently, Lovegrove et al. [24] identified neuronal apoptosis as another pathway that
was differentially regulated. Although many genes show strain-specific expression and there
are numerous differences between mouse models and human disease, the utility of this novel
approach for appreciating alterations in expression of neural genes was highlighted in the
accompanying commentary by John [17].

We have recently obtained evidence for cognitive deficits in mice infected with the ANKA
strain of Plasmodium berghei, a well-studied mouse model of cerebral malaria [8,10].
Because previous studies had observed such small numbers of altered genes in brain or had
been focused on changes occurring in other tissues, we undertook the experiments described
here, in which multiple biological replicas were used to provide statistically meaningful
datasets of up- and downregulated genes. Our findings indicate profound changes in gene
expression in the brains of infected animals, both with regard to total number of affected
genes and the multiple signaling pathways that they encompass. Particularly surprising was
the extraordinarily high number of affected genes that are associated with neurological
disease. We conclude from this study that infection of mice with a Plasmodium strain which
causes cerebral malaria leads to large-scale gene expression changes in the brain,
emphasizing that the resulting disease is fundamentally neurological and identifying putative
neural targets toward which therapy might be directed.

2 Materials and methods

2.1 Infection of mice

Experiments were performed with the approval of the Institutional Animal Care and Use
Committee of the Albert Einstein College of Medicine. Four- to five-week old C57BL/6
female mice (Jackson laboratory, Bar harbor, ME) were either infected with Plasmodium
berghei ANKA (PbA) or left uninfected for comparison. Blood containing either 5 x 10° red
blood cells (RBCs) parasitized with PbA or uninfected blood was diluted in PBS, and 200
microliters were injected via the intraperitoneal route. The mice were then separated into
two groups of infected or uninfected mice. Parasitemia, or the percentage of parasitized
RBCs, was evaluated by examining Giemsa stained blood smears on day 6 postinfection
(PI). On day 6 PI, mice were rapidly euthanized using carbon dioxide and the brains were
harvested, frozen in liquid nitrogen, and then stored at —80°C for future analysis.

2.2 RNA extraction and hybridization

We used a previously published protocol [14] and a composite reference RNA sample (R)
prepared in sufficient quantity for the entire experiment from ten adult mouse tissues (aorta,
brain, heart, kidney, liver, lung, ovary/testicles, spleen, and stomach—equal amounts from
males and females). This combination of source tissues provided a high diversity of genes
expressed in the midrange of the detection system for the AECOM mouse cDNA
microarrays. Briefly, 60 ug total RNA, extracted in Trizol® (Invitrogen, Carlsbad, CA) from
brains of three infected (1) and three control (C) mice, purified with RNeasy® mini kit
(Qiagen, Valencia, CA), were reverse transcribed into cONA incorporating fluorescent Cy3-
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dUTP. The composite reference was reverse transcribed to incorporate Cy5-dUTP. Each of
the six Cy3-labeled brain extracts was cohybridized overnight at 50°C against the Cy5-
labeled reference with 32 k 70-mer oligonucleotide mouse microarrays produced by the
Microarray Facility of the Albert Einstein College of Medicine (platform described in http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL5371). After hybridization, the slides
were washed at room temperature, using solutions containing 0.1% sodium dodecyl sulfate
(SDS) and 1% SSC (3M NaCl + 0.3M sodium citrate) to remove the nonhybridized cDNAs.

2.3 Acquisition, filtering, and normalization

All microarrays were scanned with an Axon GenePix® 4000B scanner! and data acquired
through GenePixTM Pro 6.0 software?. Spots with substantial local imperfections
(customarily flagged by the acquisition program), those for which the medians of the
foreground signals were not at least twice as high as the medians of the background signals
in both channels, and those with saturated pixels were eliminated from the analysis to avoid
inadequate quantification. Background-subtracted signals were normalized through an
iterative algorithm, alternating within-array normalization with interarray normalization
until the average corrected ratio differed by less than 5% in subsequent steps. Normalized
relative expression levels were then organized into redundancy groups, each composed of all
spots probing the same gene and each group then represented by the weighted average of the
individual spot values.

2.4 Detection of differentially expressed genes

Detection of differentially expressed genes relied on both absolute >1.5x fold-change and <
0.05 AP-value of the heteroscedastic #test applied to the means of the background subtracted
normalized fluorescence values in the four biological replicas of the compared
transcriptomes. The P-values (two samples, unequal variance) were computed with a
Bonferroni-type correction applied to the redundancy groups [14].

3 Result and discussion

Data complying with the “Minimum Information About Microarray Experiments”
(MIAMEs) were deposited in the National Center for Biotechnology Information Gene
Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE?24086). Of the 11,669 genes whose expression was adequately quantified on all
arrays, 335 (2.87%) were significantly downregulated and 793 (6.90%) upregulated in
infected mouse brain. These differentially expressed genes, along with their expression
ratios and P-values are listed in Table 1.

When pathways of regulated genes were analyzed using GenMapp software, the most
prominent pathways of upregulated genes (Table 1A) were those related to rhodopsin like
receptors and related categories of olfactory, G-protein coupled, hormone and
transmembrane receptors, and perception of smell, including the beta adrenergic receptor
(Adrb3), muscarinic receptors ChrmZ2and Chrm3, the orexin receptor Hetrl, the H1
histamine receptors Hrh1 and Htrlal, the prostaglandin receptor Ptgfr, and the vomeronasal
receptors V1rc20, V1rc8, V1rel18, and v1rd13. Other GO terms with disproportionately
high number of regulated genes were cytokine production (7nfs15, Inhbb, Cdlbl, 1117F,
Cdld1, Nod1, and Spin), voltage gated chloride channels (Clic2, Clic4, Clic5), chromatin
remodeling (Mta2, Smarccl, Suv39h2, Suv39hi, Nasp), and genes related to defense and
acute phase response (Fnlm Pxp, Serpna3n).

1For more information visit http://www.moleculardevices.com/pages/instruments/gngenepix4000.html
For more information visit http://www.moleculardevices.com/pages/software/gngenepixpro.html
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Pathways with substantially higher expression in the malarial brain were chromatin
remodeling genes (Htaitip, Nptxs, Mbd3, HZctx, Hist 11h2b, Myst3, Nap1/3), cell
development, chiefly genes related to negative regulation of apoptosis (Pten, Rblccl, Statsb,
EefkZ, Polb, Nsh2), lipid metabolism (Adiporl, Fads2, Lyslal, Psap, Scd2), hydrolase
activity (specifically, notrophenylphospatase), magnesium ion binding (Arsa, Atplal,
Atp2aZ, Brsk1, Cnol6l), adult walking behavior (Cacnb4, GIrb), axon (Alcam, DpyslZ,
Pacbl), and regulation of muscle contraction (Afp2aZ, Afplal). Interestingly, both neuronal
and vascular endothelial cell apoptosis have been described in human and experimental
cerebral malaria, in association with glial cell damage and dysfunction [22,29,36]
demonstrating that protein regulation occurs both at the transcription and the translation
levels. The finding that substantial numbers of genes involved in chromatin remodeling are
regulated in the infected brain raises the possibility that, in addition to involvement of
epigenetic factors in the parasite itself [30], a major consequence of infection may be the
epigenetic reprogramming of host nervous tissue.

These analyses of pathways affected by infection revealed that genes expected to be
important in cerebral function (receptors cytokines, apoptosis, lipid metabolism, walking,
axon, and muscle contraction) were disproportionately affected in these brains. As an
additional method to mine the data corresponding to gene alteration in the brains of infected
mice, we determined whether genes whose expression was altered were known to be
associated with human neurological disease.

As can be seen from Table 2, the major subcategories of genes linked to neurological
diseases that are up- and downregulated in malaria brain are channels/receptors/transporters
and components of the synapse including cytoskeletal linkages to vesicles. Channel genes
with altered expression include G/rb (the beta subunit of the glycine receptor), Scnib (the
beta subunit of the voltage gated sodium channel), Cacnb4 (a beta subunit of voltage-
dependent calcium channel), Cabp1 (a neuron-specific regulator of calcium channel
activation), Accn2 (the neuronal amiloride sensitive cation channel2), Slc33al (the acetyl
co-A transporter involved in gangliosides), and Vaac3 (the mitochondrial voltage-dependent
anion channel). Genes whose encoded proteins are involved in synaptic or other contact
between cells include Adam23 (which mediates integrin cell adhesion in brain), ApZal
(calcium Huntington interacting protein that links clathrin to receptors in vesicles [34],
Akap8land Akap9 (the latter of which also known as Yotaio, anchor protein kinase A and
binds the A/rZ subunit to the cytoskeleton to the vesicle fusion protein Snap29[23]), Scrib (a
presynaptic scaffolding molecule), Pcdha6 and Pcdh9 (proto cadherins that link neural
cells), Nign3 (neuroligin3, a neuron cell surface protein involved in formation of remodeling
of CNS synapses), Nrnx2 (neurexin2, a neuron cell surface protein required for normal
transmitter release), Rims3 (which enhances neurotransmitter release [21]), Cntnabl (a
contactin associated protein important for neurite outgrowth and differentiation), Gabarap
(which links the Gabaa receptor with cytoskeleton), GripapI (a neuron-specific guanine
release factor associated with the AMPA complex), /tsni (intersection 1, which associates
with EAbZtyrosine kinase and the cytoskeletal protein Wasp to mediate dendritic spine
morphogenesis). Several mitochondrial genes are regulated in the malaria brain whose
dysfunction is associated with neurological disorders [7], including Vdac3 as mentioned
above, 7Tmem?70, SncoaZ, and Acads.

Our study of transcriptomic regulation in the setting of cerebral malaria identified numerous
genes whose altered expression or mutation has been associated with disorders of brain.
Many of these regulated genes are associated with ataxia or altered cerebellum development
or function (e.g.: Camkk2, A2bp1, Ubqgin4, Canx, Cacnb4, Psap, CCG1), consistent with a
common neurological consequence of the disease [32]. It is also noteworthy that several of
the encoded proteins (Fxr2h, Pip5kZc, Pcdh9) have been associated with autism [27], which
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in a small study of 20 children in Tanzania was diagnosed in a significant fraction of CM
patients [26]. Another neurological overlap is with Alzheimer’s disease. Delahaye et al. [9]
reported overexpression of beta amyloid only in a mouse strain susceptible to cerebral
malaria. In addition, axonal damage has been demonstrated as a feature of cerebral malaria
with increased immunoreactivity of the amyloid precursor protein (APP) in the white matter
adjacent to areas of vascular damage and of hemorrhage [28]. In Table 2, we demonstrate
that ApbbZ mRNA is significantly upregulated in infected brain.

4 Conclusion

The classification of cerebral malaria as a vascular disease [5,11] emphasizes the therapeutic
potential of agents directed toward increasing brain perfusion. Long-term cognitive and
motor deficits correspond with the geographical distribution of vascular damage in
experimental cerebral malaria [8]. Likewise, decreased cerebral blood flow has been
demonstrated to contribute to mortality in cerebral malaria, and vasodilitory agents increase
survival in the experimental model [5]. However, focusing exclusively on microvascular
damage presents an incomplete approach to a complex disease process, as cerebral malaria
is also unquestionably a disease that affects neural components of the brain, resulting in
impaired gait, cognition and neural processing, as well as cognitive and motor impairment
[8,10]. The identification of altered genes encoding proteins within pathways prominently
associated with neurologic disease in the present study provides alternative or adjunctive
disease targets to improve treatment outcomes for the vast number of individuals who have
recovered from acute parasitic infection but for whom there is neural damage that extends
beyond impaired brain microcirculation.
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