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Objectives: Motion in images potentially compromises the evaluation of temporally
acquired CT perfusion (CTp) data; image registration should mitigate this, but first
requires validation. Our objective was to compare the relative performance of manual,
rigid and non-rigid registration techniques to correct anatomical misalignment in
acquired liver CTp data sets.
Methods: 17 data sets in patients with liver tumours who had undergone a CTp
protocol were evaluated. Each data set consisted of a cine acquisition during a breath-
hold (Phase 1), followed by six further sets of cine scans (each containing 11 images)
acquired during free breathing (Phase 2). Phase 2 images were registered to a reference
image from Phase 1 cine using two semi-automated intensity-based registration
techniques (rigid and non-rigid) and a manual technique (the only option available in
the relevant vendor CTp software). The performance of each technique to align liver
anatomy was assessed by four observers, independently and blindly, on two separate
occasions, using a semi-quantitative visual validation study (employing a six-point
score). The registration techniques were statistically compared using an ordinal probit
regression model.
Results: 306 registrations (2448 observer scores) were evaluated. The three
registration techniques were significantly different from each other (p50.03). On
pairwise comparison, the semi-automated techniques were significantly superior to the
manual technique, with non-rigid significantly superior to rigid (p,0.0001), which in
turn was significantly superior to manual registration (p50.04).
Conclusion: Semi-automated registration techniques achieved superior alignment of
liver anatomy compared with the manual technique. We hope this will translate into
more reliable CTp analyses.
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Image registration and motion correction constitute a
general class of challenges that impact on many areas of
imaging and radiology. One specific area in which they
may have a potential impact is in CT perfusion (CTp).

There is increasing interest in the ability of CT to
evaluate perfusion of tumours and to better understand
the behaviour of tumours and the effects of treatments
and therapies on tumours [1, 2]. CTp is an evolving
technique with potentially wide-ranging applications in
oncology, including diagnosis, treatment evaluation and
prognostication [3]. The technique relies on the acquisition
of time–intensity plots from tissues of interest and
vascular supply(s), following intravenous administration
of a tracer (iodinated CT contrast medium). The incor-
poration of this information into appropriate physiologi-
cal models allows computation of tissue perfusion
parameters [4]. Parameters that can be derived include
tissue blood flow, blood volume and permeability.

CTp data are typically acquired with cine CT of rela-
tively narrow collimation (2–4 cm) performed through
the tissue/lesion of interest. A major challenge for CTp is
the acquisition of reliable pixel-level time–intensity plots
that extend for a sufficient length of time to adequately
characterise the perfusion of tissues under consideration.
This effectively requires adequate anatomical alignment,
or motion correction, of the relevant tissues/lesions of
interest. This is particularly problematic in body appli-
cations such as the upper abdomen, compared with
stationary tissues such as the brain [5, 6] and pelvis [7],
as movement is inevitable, particularly if acquisitions
beyond a single breath-hold are required. The need for
prolonged data acquisition is suggested in the literature
[8].

One approach to acquiring the prolonged data for
implementation in CTp is to obtain the necessary length
of data during free breathing, which would then be un-
constrained by the requirements and rigours of breath-
holding. However, in order to maintain spatial fidelity,
adequate registration algorithms need to be available.

The motivation for this work was that there is, unfor-
tunately, no specific registration software/functionality
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within the vendor environment of the particular CTp
software package being used in our work (CT Perfusion
4; GE Healthcare, Waukesha, WI) to perform registra-
tions of the kind described above. The only technique
currently available in this application is manual selection
of images. This is clearly extremely time-consuming, and
furthermore is prone to errors. Availability of an auto-
mated or semi-automated registration algorithm would
be advantageous; however, it is clearly a prerequisite
that the methodology should first be validated before
incorporation into CTp analyses.

In this work, we investigate the performance of rigid
and non-rigid intensity-based registration techniques to
recover liver misregistration in data acquired from liver
CTp data sets, as well as comparing the results with
those obtained from the currently available manual re-
gistration technique.

Methods and materials

Data for this study were obtained from a prospective
institutional review board-approved CT perfusion study
in which patients with liver tumours had been enrolled.
17 data sets from 9 patients were available for analysis (8
patients had undergone CTp on 2 occasions). The mean
age of the 9 patients (5 men and 4 women) was 58.6 years
(range 47.9–78.4 years). All the liver tumours were
metastases.

The CTp data sets consisted of cine images, of 2 cm
collimation, obtained in two phases: Phase 1 was con-
tinuous cine acquisition obtained during a single breath-
hold; followed by Phase 2, which was six intermittent
sets of cine images obtained during free breathing. Phase
1 acquisition allowed high-temporal-resolution images
that were inherently aligned, while Phase 2 allowed data
acquisition to continue beyond a single breath-hold, but
the intermittent images obtained during free breathing
necessarily contained misaligned images.

The goal of the current study was to evaluate tech-
niques to align (register) images from the Phase 1 and 2
cine acquisitions.

CT perfusion acquisition technique

Images were obtained using a 16-row multide-
tector CT scanner (LightSpeed; GE Medical Systems,
Milwaukee, WI) with patients in the supine position. The
CTp scans were preceded by localisation scans during an
expiratory breath-hold and during free breathing to
identify the CT co-ordinates of the target lesion for the
Phase 1 and 2 components of the CTp acquisition,
respectively. For the breath-hold images, expiratory
scans were used because they have been reported to be
more reproducible for localisation than inspiratory
breath-holds [9, 10].

After the localisation images, Phase 1 scans were
performed using a single level of 2 cm thickness (0.5 cm
contiguous slice thickness for four slices, 4i mode) at
the mid-point of the target lesion, 30 s breath-hold in
expiration. CT data were collected at that single loca-
tion using the cine mode, with the following settings:
tube voltage, 120 kV; tube current, 90 mA; field of view,
32–40 cm; matrix, 5126512. Data acquisition started 5 s
after intravenous injection of 70 ml of a non-ionic
contrast agent (ioversol; OptirayTM; Mallinckrodt, Inc.,
St Louis, MO; 320 mg of iodine 100 ml21) using an auto-
matic injector (MCT/MCT Plus; Medrad, Pittsburgh, PA)
and an injection rate of 7 ml s21. Images were recon-
structed every 0.5 s, resulting in 59 images for Phase 1.

Phase 2 scans were six further 6-s cine sets, obtained
during free breathing, centred according to the localisa-
tion scans obtained during free breathing, and with
scanner settings identical to those used in Phase 1. The
temporal spacing of the six intermittent scan sets is
outlined in Figure 1. Intermittent scans were utilised to
limit radiation exposure. A specific part of the respira-
tory cycle was not mandated for the start of Phase 2
acquisitions; patients were permitted to breathe freely.
However, the acquisition protocol was designed so that
the scan duration of each set (6 s) was sufficiently long
to encompass at least 1 complete respiratory cycle,
resulting in at least 1 of the 11 images being at the
same (or similar) respiratory phase as that of the Phase 1
data. As was the case for the Phase 1 scans, the images
were reconstructed every 0.5 s, resulting in 11 images for

Figure 1. Schematic of CT perfusion protocol and imaging time points. The curved dotted line represents a patient’s breathing
cycle, and the blue blocks represent times at which cine CT data are being acquired. The Phase 1 cine block consists of 59 cine
images reconstructed at 0.5 s. Each of the Phase 2 cine blocks contain 11 cine images reconstructed at 0.5 s (totalling 66 Phase 2
cine images). Note that within each Phase 2 cine block there is a time where the phase of the breathing cycle matches that of the
Phase 1 breath-hold.
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each of the 6 cine sets (totaling 66 images in Phase 2). The
estimated effective dose for the complete CTp protocol
(localisation scans, Phases 1 and 2) was 29 mSv.

Image registration

The overall goal of image registration was to select a
single image from each of the six free-breathing cine sets
(i.e. from Phase 2) that aligned with a given reference
image from the breath-hold cine acquisition (i.e. from
Phase 1), for each data set obtained.

Three registration techniques were developed and
assessed: manual, rigid and non-rigid. A manual tech-
nique is the only registration method available to users
intending to utilise the currently available CT perfusion
software within the GE environment. The other two
techniques represent semi-automated intensity-based
registration techniques. Because registration of the liver
was the primary interest in this work, alignment was
based on correspondence of liver anatomy, and not on
the whole axial CT section.

Manual registration: to aid in manual registration of ima-
ges, subtraction images of each Phase 2 image compared

with the reference Phase 1 image of each data set were
produced (see Figure 2). This process resulted in 6 sets of
11 subtraction images for each patient data set. For each of
the six sets, two observers in consensus (EFA and DHH)
selected the single subtraction image that showed the least
mismatch in the liver boundary.

Rigid registration: A semi-automated technique was
developed to rigidly register each of the Phase 2 cine
images to the reference image from Phase 1. Prior to
registration, the liver boundary was segmented from the
reference image. A tool was written in MATLAB (Math-
Works, Natick, OH) that allowed a user to manually
define a region of interest (ROI) around the liver (on a
slice-by-slice basis) and segment out the rest of the
anatomy. Only intensity values within the ROI were
used in this registration algorithm (Figure 3). This
ensured that the rigid registration technique focused on
aligning only the liver tissue in each case. Each of the
Phase 2 images was rigidly registered to the segmented
reference image. The three-dimensional (3D) transforma-
tion model of the technique was constrained to allow
only translational corrections in the x, y, and z directions,
and rotational corrections around the z-axis. The other
rigid degrees of freedom (rotations around the x- and

Figure 2. Top row shows three
examples of Phase 2 cine images (ac-
quired at different positions in the
breathing cycle). The bottom row
shows the subtraction image pro-
duced by subtracting the Phase 2
cine images from the reference cine
image from Phase 1 (middle row).
The subtraction images were pre-
sented to the observers to aid in
performing manual registrations.
Arrows highlight areas of difference
between the reference image and
the Phase 2 cine images, which can
clearly be seen in the subtraction
images. In this example, it is clear
that the Phase 2 cine in column 1
(bottom left-hand corner) was
most similar (or least misregistered)
to the reference image.

Figure 3. Examples of slices from
Phase 1 cine reference images from
two separate patient data sets. The
green line in each image shows the
rough liver region of interest used to
segment the cine reference image
before registration. Only intensity
values within the region of interest
were used during the rigid registration.
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y-axis) were omitted to help improve the robustness
of the registration algorithm. The similarity measure
utilised was normalised mutual information [11], which
assumes a statistical relationship between the intensities
in the images to be registered, and is ideally suited in
the current application as liver intensity changes can be
expected over the time course of the data acquisition
because of intravenous contrast administration. All regis-
trations were performed using the freeware vtkCISG
registration toolkit, developed at King’s College London,
UK [12]. The resulting registration for each case was
used to transform the Phase 2 images into the image
space of the reference image to show anatomical
correspondence between the two images.

The squared sum of intensity differences (SSD) between
the segmented reference image and each registered Phase
2 image were calculated:

SSD ~
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x [VA,B

A xð Þ{B xð Þj j2
r

ð1Þ

where VA,B is the overlapping domain of the segmented
reference image (A) and the registered Phase 2 image (B).
A(x) and B(x) are the intensity at location x in image A
and image B, respectively. N is the total number of voxels
in the overlapping region of the images.

For each group of 11 registered Phase 2 images, the
‘‘best’’ registered Phase 2 image was selected, which was
considered to be the one with the smallest SSD. Visual
inspection of the best registered Phase 2 images was
then performed to confirm good anatomical alignment
between the reference image and the six chosen re-
gistered Phase 2 images.

Non-rigid registration: A semi-automated technique
was developed to non-rigidly register Phase 2 images
to Phase 1 reference images. The six best transformations
of the rigid registration described above were used as an
initial alignment estimate for the non-rigid registration
task. The non-rigid registrations were performed using
an algorithm based on free-form deformations (FFDs)
using B-splines [13]. FFDs can model local deformations
by deforming an object through manipulating a mesh of
landmarks, known as control points. The non-rigid
registrations were performed using a 2262269 control
point grid with 22.31622.3163.75 mm control point
spacing. These registration parameters were used to
allow sufficient control points to retrieve the expected
deformation of soft tissue/tumour in the liver, and
constrain computation to a manageable time frame. The
resultant non-rigid registration transformations were
then used to transform the Phase 2 images, using 3D B-
spline interpolation, into the image space of the reference
image. Like the rigid registrations, all non-rigid regis-
trations were performed using the freeware vtkCISG
registration toolkit.

Visual validation

The ability of the three registration techniques to align
images was assessed by a semi-quantitative visual
validation study.

Four observers—two CT radiologists (CSN and ZY)
and two CT technologists (EFA and DHH)—indepen-
dently scored the visual alignment of the liver for each of
the six registered images, selected by each of the three
techniques as described above, compared with their
corresponding reference image. All three registration
techniques, for all 17 patient data sets, were evaluated in
a blinded fashion on two separate occasions (‘‘rounds’’).
Each scoring round was separated by 1 month to reduce
recall bias. Scoring by each observer, in each round, was
undertaken in a continuous session, which typically took
2–3 h.

Alignment of liver anatomy between registered and
reference images was judged solely on the liver boun-
dary, and did not include considerations of internal liver
structure, which would be very challenging given the
relative homogeneity of liver parenchyma. To aid
the observers in determining the differences between
the liver boundaries of the registered and reference
images, subtraction images were produced by subtract-
ing the reference image from the registered images, as
described in the manual registration technique above.

A graphical user interface was developed in MATLAB,
which displayed the subtraction images for each of the
three registration techniques (Figure 4). The three regis-
tration techniques were presented in random order in the
viewer windows to remove any bias due to sequencing. A
six-point scoring system was used to assess the degree of
alignment by assessing the amount of structure in the
subtraction image at the liver boundary. The visual scores
ranged from 1 to 6, with 1 being the best (no structure in
the subtraction image) and 6 the worst (major structure
around the boundary of the liver in the subtraction
image). Figure 5 shows a visual representation of the
alignment criteria for the scoring system, which was given
to each observer before scoring took place.

Statistical methods

A multivariate ordinal probit model with generalised
estimating equation method [14] was used to assess
the effect of registration technique, observer and round
on the probability of obtaining a better image score.
A random effect of patient was fitted in the model to
account for the correlation of scores from the same
patient. The effect of the registration technique was
adjusted for observer and round in the model. A
significant likelihood ratio test was established prior to
pairwise comparisons. All tests were two-sided and
p-values of 0.05 or less were considered statistically
significant. Statistical analysis was carried out using SAS
v. 9 (SAS Institute, Cary, NC).

Results

The mean (standard deviation) imaging scores in our
validation study, averaged over all scores given for a
particular technique, for the manual, rigid and non-
rigid techniques were 3.4 (1.3), 3.3 (1.2) and 2.5 (0.8),
respectively. These are the average scores derived from
306 registrations (17 CTp data sets, each with six
registered images, and three registration techniques),
four observers and four rounds of observation, totalling
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2448 observer scores. Summary results for the visual
scores for the three registration techniques are presented
in Table 1, and graphically in Figure 6.

There was a significant difference in the visual scores
when comparing all three registration techniques as a
whole (p50.03). Pairwise comparisons indicated that the
semi-automated techniques were significantly superior
to the manual technique, with the non-rigid registration
technique significantly superior to the rigid registration
technique (p,0.0001), which in turn was significantly
superior to the manual registration technique (p50.04;
Table 2).

There were no significant differences between obser-
vers (p50.06). Although the absolute scores assigned by
observers between rounds differed significantly, the
relative ranking of the registration techniques assigned
by observers in both rounds was the same.

As a supplementary assessment of our registrations,
we generated and compared positive enhancement
integral images before and after registration (Figure 7).

Discussion

Our results indicate that the two semi-automated
registration techniques described above achieved sig-
nificantly better liver alignment than the (currently
available) manual registration technique. Although this
might seem anticipated, there has been relatively limited
work on describing registration techniques to cope
with the specific challenges of CTp data sets, and on
validating their techniques.

Two previous reports have described approaches to
register liver CTp data; they have been based solely on
rigid registration algorithms [15, 16]. Cao et al [15]
used an intensity-based, limited-degree-of-freedom, auto-
mated-alignment methodology, and Jensen et al [16]
used a combination of semi-automated one-dimensional
box registration using cross-correlation followed by a
3D liver surface registration. Unlike our current work,
these reports have only provided limited validations of
their alignments achieved, namely reporting qualitative

Figure 4. A snapshot of the graphical user interface developed for the visual validation experiment of the three registration
techniques. Top row shows a transverse slice of the reference image from Phase 1. Bottom row shows the subtraction image
produced by subtracting the reference image from one of the six registered images for each of the three registration techniques.
The three registration techniques were presented to the observer in a random way (‘‘Method 1, 2, 3’’). Observers were asked to
score the degree of alignment of the liver outline within the green box, using the scoring scale presented in Figure 5. In this
example, the registration techniques were non-rigid (left), rigid (middle) and manual (right).
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Figure 5. A visual representation of
the alignment criteria for the scoring
system. This figure was given to each
observer for each scoring session.

Table 1. Summary of the visual scores (mean ¡ standard deviation), by observer and round of observation, and registration
technique

Observer 1 Observer 2 Observer 3 Observer 4

Registration
technique Round 1 Round 2 Round 1 Round 2 Round 1 Round 2 Round 1 Round 2

Average of all
observers and rounds

Manual 3.3¡1.1 3.2¡1.2 3.4¡0.8 4.3¡0.9 2.8¡1.2 3.6¡1.6 3.1¡1.3 3.6¡1.2 3.4¡1.3
Rigid 3.2¡1.2 3.2¡1.3 3.3¡0.8 4.2¡0.7 2.6¡0.9 3.5¡1.6 2.9¡1.1 3.3¡0.9 3.3¡1.2
Non-rigid 2.5¡0.6 2.5¡0.5 2.8¡0.7 3.7¡0.6 2.0¡0.1 2.3¡0.6 1.9¡0.7 2.5¡0.7 2.5¡0.8

Figure 6. Summary of the visual
scores for each of the three registra-
tion techniques: manual, rigid and
non-rigid registration techniques,
averaged over all observers, data
sets and rounds. Each coloured
block represents the percentage of
total number of images evaluated
with a given score. 100%5816 total
observations per registration techni-
que (4 observers617 data sets66
registrations62 rounds). Scores are
as in Figure 5 (15best, 65worst,
registration).
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reductions visually in misalignment artefacts [15] and
presenting contrast concentration–time curves before and
after registration [16].

Unlike the two previous studies, the current work
evaluates a rigid registration technique relative to
techniques with both more simplistic (manual) and more
complex (non-rigid) transformation models, which in
turn incorporate different levels of automation/human
interaction. Such comparisons are important to deter-
mine the level of complexity that might be required by a
registration algorithm for the alignment of liver CTp data
in a clinical setting.

Although our results suggest that the semi-automated
techniques were significantly superior to the manual
registration technique, all three techniques arguably
achieved good alignments. Indeed, observers required
the assistance of subtracted images to score the frequently
very subtle misalignments. This suggests that manual
registration may be a reasonable technique to use in a
clinical setting. However, such a technique requires post-
processing, intense observer interaction and concentra-
tion, and is inevitably prone to human errors. Simply from
the perspective of processing time, we found that our
trained observers took about 1 h to manually select the
closest matching images from each of the six Phase 2 cine
groups. The semi-automated techniques would seem
advantageous as they reduce the potential for human
errors, and indeed they achieve superior alignment
compared with the manual technique.

As regards to the semi-automated registration techni-
ques, our results suggest that the non-rigid registration
technique yielded improved alignment compared with
the rigid registration technique. Non-rigid techniques
provide the option for more complex transformations
and the opportunity to recover misalignments beyond
those of rigid techniques. However, the added computa-
tional complexity of the non-rigid algorithm described is

a disadvantage: 1–2 h per registration, totalling 6–12 h
per data set, compared with 2–3 min for the rigid
technique. Increasing the number of degrees of freedom
for the rigid algorithm by including combinations of
rotations, scaling and skewing may improve alignments
without extending its computational time to those of the
non-rigid algorithm, which might offer a reasonable
compromise. We intend to explore these options more
fully in future work.

One other potential drawback with the specific non-
rigid registration technique used in this work is that it
does not guarantee conservation of tissue/lesion volume.
This could potentially be a problem for the registration
of perfusion data as signal intensities vary in the
tissue/lesion following the intravenous contrast medium
administration. The rigid registration technique does not
suffer from the limitation. In future work, we intend to
investigate the implementation of volume-conserving
non-rigid methodologies [17] for this application and
validate how their performance compares with the
current algorithm.

Another potential for future work would be to
investigate optimisation of the non-rigid registration
technique to run in a more clinically viable time frame.
One technique to investigate would be to utilise the
current advances in graphics processing unit technology,
which have shown some promise in improving the
computational efficiency of such non-rigid registration
algorithms [18].

This study focused on techniques to register Phase 2
images to a given Phase 1 reference image, but the
principles are not restricted to this narrow task. It should
be recognised that Phase 1 data may contain misaligned
images because of motion or breathing during this
acquisition; the registration concepts utilised can, and
should, be applied to motion correction of these data as
well.

Table 2. Pairwise comparisons between image registration techniques based on ordinal model estimates

95% confidence limits of odds ratio

Comparison Odds ratio Standard error Lower Upper p-value

Rigid vs manual 1.14 0.07 1.00 1.29 0.04
Non-rigid vs manual 2.73 0.42 2.02 3.69 ,0.0001
Non-rigid vs rigid 2.40 0.33 1.83 3.15 ,0.0001

The overall significance was established first by likelihood ratio test (p50.03). Higher odds ratio means higher probability of
obtaining better alignment scores, e.g. non-rigid vs manual has an odd ratio of 2.73 (95% confidence interval: 2.02–3.69),
indicating that using non-rigid registration increased 2.73 times by the odds of obtaining higher alignment scores.

Figure 7. Positive enhancement
integral images before and after
rigid registration. Note artefacts
along liver margin on the image
before registration (arrows). Purple
line represents the liver boundary.
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We acknowledge several limitations in our study. In
our rigid registration process, there was no specific way
to identify and reject free-breathing images that may
have had tissue displacements greater than the z-axis
coverage of the reference Phase 1 image (2 cm). Such an
image would contain little to no corresponding informa-
tion with the reference image, which in turn would lead
to issues for the registration algorithm. The protocol was
designed to reduce the risk of this occurring by centring
the Phase 2 image acquisitions according to the free-
breathing localisation scan. However, if the patient
happened to breathe more deeply/shallowly during
the Phase 2 acquisition than during the localisation scan,
it is conceivable that such data may be obtained. Unless
all 11 images of a Phase 2 set were acquired with
displacements of more than 2 cm (for example, if a
patient breathed particularly deeply/shallowly for an
entire breathing cycle), such images are unlikey to affect
the selection of the best registered Phase 2 image. If this
were the case, these images would be easily identified
during the visual inspection of the best registered images
from each of the six Phase 2 data sets. In future work we
will investigate potential methods to identify and reject
such images during the registration process to mitigate
this specific risk.

The validation component of our study did not
employ a fully quantitative assessment of alignment
involving objective metrics, such as percentage overlap
and distance of centre of mass, as described in previous
work [19]. However, application of such quantitative
measures first requires segmentations of the structures of
interest, in our case the liver. CT liver segmentation
techniques [20] have their own limitations, which could
introduce errors in the subsequent quantitative evalua-
tions if not performed accurately and robustly. CT liver
segmentation is still a challenging area of research, and
robust and accurate segmentation techniques that could
cope with the poor contrast resolution of the liver in
relation to surrounding tissues, and the limited z-axis
coverage (2 cm) of the liver, in the data sets in this study
are still under investigation and have yet to be validated.

There are inherent limitations of a visual validation
technique, largely due to inconsistencies between and
within observers, and bias. We attempted to mitigate
these deficiencies by using multiple observers, blinding,
randomisation and repeated observations performed
with a prolonged time interval. Although there were
no significant differences between observers, our results
indicated differences in the absolute scores assigned
between the rounds of observations; nevertheless, the
relative ranking of scores of the three registration
techniques within rounds was consistent.

Another limitation is that our work has focused solely
on the alignment of the liver, whereas for the underlying
clinical application of assessing tumour perfusion, the
primary goal would be to align the tumour(s) contained
within the liver. This would be very challenging as there
is typically very little contrast (intensity) differential
between tumours and surrounding liver parenchyma.
Furthermore, differential contrast between these struc-
tures varies continuously during the course of data
acquisition according to the intravenous contrast me-
dium kinetics of the respective tissues. Nevertheless, it
might be anticipated that in general one would expect

embedded tumours to move in concert with the liver
parenchyma as a whole, but this requires validation.

The registration of liver motion/deformation from
free-breathing liver CTp data has clear clinical advan-
tages for CTp measurements. It allows for reliable
pixel-level intensity information to be obtained from
prolonged (beyond a single breath-hold) CTp acquisi-
tions so that the perfusion of tissues can be adequately
characterised. Our supplementary assessment using posi-
tive enhancement integral images suggests that our rigid
registration technique improved anatomical alignment of
the liver boundary. Obtaining well-registered images
from such data has challenges. In the currently available
commercial software in which this CTp data would be
processed, registration of such data sets can only be
undertaken manually, which has considerable limitations.
We have developed semi-automated techniques to
accomplish this task and validated them semi-quantita-
tively. Our work suggests that rigid and non-rigid
registration techniques can achieve significantly superior
alignment compared with the currently available manual
technique. Future work is planned to evaluate whether
the incorporation of such registration techniques into CTp
analyses has any impact on resulting CTp estimates.
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