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Abstract

We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD)
for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary
size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in
pedigrees of potentially large size and eliminates the difficulty of accommodating the background
linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is
much more accurate at estimating the true IBD sharing than methods that remove LD by pruning
SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The
method is fast and can be used to estimate the probability for each possible IBD sharing state at
every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals.
We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects
all of whom are related through a single, large and complex 13-generation pedigree and genotyped
with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship
for individuals who were misidentified in the collected data and estimate empirical kinship
coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an
open source software package and is freely available.
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INTRODUCTION

The potential for novel genetic insights afforded by high-density genotyping arrays has
spurred a renewed interest in methods for estimating identity by descent (IBD) between
pairs of individuals. Estimates of IBD have allowed for the discovery of large scale
chromosomal and genomic sharing [Visscher et al., 2006], refined estimates of heritability
and genomic partitioning of genetic variance [Visscher et al., 2007], discovery of deletions
[Gusev et al., 2009], and, of particular recent interest, the identification and use of short
shared segments between distant relatives [Purcell et al., 2007; Browning, 2008; Browning
and Browning, 2011, 2010; Huff et al., 2011].

More traditionally, IBD estimates have been used for linkage analysis in families where the
IBD estimates have assumed independence between markers [Lander and Green, 1987;
Kruglyak et al., 1996; Abecasis et al., 2002; Abecasis and Wigginton, 2005]. This
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assumption, however, no longer holds with modern genotyping arrays where there may be
extensive linkage disequilibrium (LD) between markers. Recent methods that incorporate
LD in their estimates of IBD within families are designed for pedigrees of small size Keith
et al. [2008]; Kurbasic and Hossjer [2008]. Other approaches that have been used include
clustering of tightly linked markers [Abecasis and Wigginton, 2005] or to filter out markers
in LD leaving a set of SNPs that can be used in standard software packages, e.g. Bellenguez
et al. [2009a]. The first of these approaches can dramatically increase the computational
effort while the latter results in large amounts of potentially informative genotype data being
discarded.

Loss of information may also happen when large pedigrees are used. Extended pedigrees,
though known to have higher power for linkage mapping than small pedigrees [Chapman
and Wijsman, 2001], present challenging computational problems [Bellenguez et al.,
2009b]. When the pedigrees are too large for exact computation of IBD, one typical strategy
is to split the pedigree into multiple smaller subpedigrees [Falchi et al., 2004; Brocklebank
et al., 2007; Liu et al., 2008; Bellenguez et al., 2009b]. Treating these subpedigrees as
independent may result in a loss of power from ignoring the information that exists between
subpedigrees [Dyer et al., 2001]. In some circumstances Markov chain Monte Carlo
methods [Sobel and Lange, 1996; Heath, 1997; George and Thompson, 2003; Sung et al.,
2007] and approximate IBD estimation algorithms [Almasy and Blangero, 1998] have
proven useful, though the effectiveness and properties of these approaches will need further
exploration when marker data are extremely dense or pedigrees are very large or complex.
Two issues, then, have limited the utility of pedigrees, particularly extended pedigrees, for
IBD-based mapping, (1) the challenges of doing computations with high degree or
complexly related relatives, and (2) the difficulties of using dense marker data with high LD
between markers. Here, we present a computationally efficient method that overcomes both
of these problems, allowing estimation of multipoint IBD between pairs of arbitrarily related
individuals using high-density genetic markers.

The method we present, referred to as IBDLD, is based on a hidden Markov model (HMM)
of IBD between pairs of individuals but with modifications to incorporate LD in the
observed genotype probabilities. IBDLD can build a background LD model based on a panel
of either phased haplotypes or unphased genotypes and is fast enough to estimate IBD at
hundreds of thousands of SNPs for hundreds of thousands of pairs. We consider two models
for background LD. The first model requires individuals in the panel be phased, with the
background LD modeling based on two-locus haplotype frequencies. This approach was
recently used by Albrechtsen et al. [2009]. The second model requires only unphased
genotypes in the panel and uses a multilocus model of LD. Below, we demonstrate the
accuracy of IBDLD using simulations in both sibling pairs and pairs of individuals related
through a large, complex genealogy. We also analyze a real data set consisting of 185,745
pairs (609 individuals) all of whom were typed with the Affymetrix 500 k chip and are
related through a 13 generation, 3,555 person pedigree. Finally, we discuss the utility of the
method and implications for complex trait mapping.

MATERIAL AND METHODS

HMMs are effective tools for estimating IBD in small to medium-sized families [Lander and
Green, 1987; Kruglyak et al., 1996; Abecasis et al., 2002], as well as providing a useful
approximation in larger pedigrees [Thompson, 1994; McPeek and Sun, 2000; Abney et al.,
2002], but their continuing utility in the era of dense marker data will necessarily rely on a
computationally efficient method that incorporates LD that may extend over a distance that
encompasses many markers. Below we briefly review the standard HMM before describing
our extensions to include LD.
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STANDARD HMM

The model described here is essentially identical to the HMM used in the PLINK [Purcell et
al., 2007] software package to identify IBD segments in pairs of individuals. Because we
wish to estimate IBD between pairs of individuals joined by a known pedigree while
allowing for inbreeding, we define the hidden state variable S;at marker /to take on values
1,...,9 according to which of the condensed identity states [Jacquard, 1974] describes the
IBD sharing between the pair (see Fig. 1). Computation in the HMM depends on three
probabilities (1) the condensed identity state probability at the first marker, (2) the transition
probabilities between states and (3) the probabilities of the observations given the
underlying state. The condensed identity state probability at the first marker A S, = 1) is
equal to the prior probabilities for each condensed identity state (i.e. depending only on the
known pedigree) given by quantities Ay,...,Aq. We model the sequence of IBD states at L
markers Si,...,S; with a Markov chain with the resultant property that conditional on S, the
distribution of the state at marker A1 depends only on the transition probability matrix 7=
A(Si1 = 4S;= ). Though the IBD states are not, in fact, Markov, this approximation has
proven effective in previous studies [Thompson, 1994; McPeek and Sun, 2000; Abney et al.,
2002]. The final element of the HMM are the emission probabilities which give the
probabilities of the genotypes of the pair given their underlying condensed identity state
AG}S)). With these probabilities specified it is straightforward to use the forward—backward
algorithm [Baum, 1972] to estimate the probabilities of each condensed identity state at an
arbitrary point of the chromosome given all the observed genotype data for that pair.

The transition probabilities depend on both the genetic distance between the markers as well
as the pedigree connecting the pair under consideration. We propose estimating the

transition probabilities in the following way. Let SiT= (1s,.=| yeees 13,:9) be a vector whose
elements are indicator functions of the IBD state at position / Then the probability

distribution at marker /1 is P (SiTH) =P (ST) T (xis1 — xi), where T(x) is the transition
probability matrix for genetic distance x. Because we assume the hidden states form a
Markov chain, the transition matrix can be written T(x) = eQ¥ where Q is the infinitesimal
rate matrix. Note that T(x) = UD(X) U1, where U is a matrix whose columns are the
eigenvectors of Q and D(x) = diage(e1X,...,eM1% ... e49%) where eigenvalue A4 is the Ah
eigenvalue of Q and 0 = 14 = ... = Ag. Hence, 7,(X), the probability of transitioning from
state rto fover distance x, can be written in the form

9
T, (x) :Zal,rtebx- 1)
=1

The elements of the transition matrix, 7,are subject to the following boundary conditions:

0 r#t

Tn<0>={1 2 and IimT,(=A. @

We approximate the transition probabilities in Equation (1) with a single exponential term,
Ty (x) ~ ayj+azze™, (3)

which, combined with the boundary conditions (Equation (2)), gives a; = Ajand B,ij =
—Ajfor #jor ay; =Ajand & ;; = 1 — A;for /= j. Note that the parameters g and A are
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specific to the pair of individuals. This model is equivalent to one where the next state
entered is drawn from the stationary distribution.

The emission probabilities are the probabilities of the true genotypes for the pair of
individuals given their underlying condensed identity state at locus 7, AG}S,), where

Gi= (G,l , G,z) are the true genotypes for the pair. Here we assume that all markers are

biallelic SNPs with allelic types 0 and 1, and denote the genotype of person p, G, as 0, 1, or
2. These emission probabilities depend on the allele frequency at the locus and are readily
computed for each condensed identity state and are given in Supplementary Table S1
[Abney, 2008]. Actual observations of the genotypes, however, may differ from the true
underlying genotypes due to errors or missing data. We, therefore, include an additional set

of probabilities allowing us to model these effects. We let Oi= (0,71, 0,2) be the observed
genotypes at marker /for the two individuals and M= (M, AMP) to be the set of missing
genotypes for that pair. We condition all observations on the set of missing genotypes,
which amounts to assuming that the missing value mechanism is independent of the

underlying genotype, resulting in P(0f= - IMP) =1 where “~” represents a missing
genotype. To allow for genotyping error we introduce the parameter e and use the
probabilities as shown in Supplementary Table S2.

MODELING LD

The standard HMM ignores the dependence between genotypes that exists in the presence of
LD. Below, we modify the HMM so that the emission probabilities A G}S,) at SNP /depend
on the genotypes at previous loci. Extending the HMM to use conditional emission
probabilities can greatly add to the computational burden, if one were to attempt to exactly
model the LD in the entire set of SNPs. Our focus is to model the LD as completely as
possible while still keeping the computations tractable. In general, modeling LD requires a
large enough set of individuals from the population from which the pattern of dependence
between loci can be estimated. We term this set of individuals the “training” sample, and
they are used to obtain estimates of the parameters in our LD model. Below, we describe
two LD models that we have implemented. The first can be used when the training sample
has completely phased genotypes, while the second can be used even when phase is
unknown. In both cases, as in the standard HMM, the sample of individuals within whom
we wish to estimate IBD need not be phased.

Modeling LD: conditioning on a single SNP genotype—We modify the emission
probabilities using an approach developed by Albrechtsen et al. [2009]. In this model we
condition the current genotype probability on the genotype and condensed identity state at a
single previous marker, A G|Gp, S;j= Sp=5), where 7is the current marker, /7is a previous
marker and sis the current condensed identity state. We obtain the joint probability of the
genotypes at the two loci given a condensed identity state A Gj, G{S;= Sp= 5) by summing
over all possible phasings of the genotypes using Supplementary Table S1 for the genotype
probabilities given a particular phasing. In this case, the allele frequencies in Supplementary
Table S1 should be interpreted as haplotype frequencies. For instance, if two individuals
were both heterozygote (0,1) at both loci #and / conditional on condensed identity state 7,
we would obtain the joint probability A Gy, GiSp= Sj=T7) = 2fpoh1+2hH1fio, Where fyis the
frequency of haplotype x. The final emission probabilities for the observed genotype at
locus 7are
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P (0|0, S =S y=r,&)
_ P(0i,04lS i=Sy=1,8)
= P(OulSy=r.e)
S 00 PUGLGHIS.=S =11, P(OUGL)) (I, P(0}GLe))

%, PGS n=n(TI P0G} .2))

It is possible that between loci /#and 7the Markov process has made a transition to a
different state. In this case we now assume that the emission probability at locus 7is
conditionally independent of the genotype and state at locus 4,

P (Oith,Si ‘_'tS/’hSi:rag)

=P (0/lS;=r,&)=Y,P(G{|S;=r) (ﬁp (0§|Gf, g)) .
G; =1

We note that, as in Albrechtsen et al. [2009], we do not necessarily choose locus /to be the
marker immediately preceding /. Below, we consider the two cases where it is either the
immediately preceding marker or the marker with highest correlation, in the training sample,
to marker 7/among the L previous markers within a specified distance.

Modeling LD: conditioning on multiple SNP genotypes—The above procedure for
modeling LD should be effective when the allele at SNP 7on a given haplotype is
conditionally independent of the other markers on that haplotype given the allele at SNP /.
This may often be approximately true when the LD between the two SNPs is sufficiently
large, but may be less accurate when pairwise LD is small yet there is strong dependence
given the alleles at multiple loci. Extending the above model to include L rather than one
previous marker would require summation over 2-+1 possible haplotype phases to get the
joint genotype probability for the L markers for the two individuals. Doing this across the
genome can quickly become computationally intractable as L increases above one. Instead,
we propose a novel method that approximates the LD structure through a linear model. This
has the advantage of maintaining computational efficiency in spite of the underlying
complexity, allows the use of unphased data—a particular advantage when obtaining fully
phased data may be either difficult or impractical, in pedigrees for instance—and, as we
show in the Results, accurately corrects the HMM in the presence of LD.

To motivate our approach consider the conditional probability of individual 1 having
genotype 0 at marker /given the genotype at locus ~1,

Gl =0
i

P(G!=0iGL,) =P(G!=0|G}_=0)1 |
+P(G3=O|Gg—1=1)1c1 =1
+P(GI=01G! =1)1, =2

i-1

=Yi01Yi-1.00 161_171 o TYic120 161!71 o

where 1, is the indicator function equaling one when event x s true and is zero otherwise. In
this case we have

¥i0=P (G!=01GL,=1).¥i-100=P (G} =0|G|_=0)-P (G!=0IG}_;=1) . yi-120=P (G!=0IG|_;=2)-P (G} =0G]_;=1)

. We propose extending this linear model as an approximate way to include the effects of LD
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across L loci. We first define a representation for the genotype of individual pat a locus 7in

t
P _
terms of indicator functions, ¥ _(165’:0’ 10{3:2) . We then have

) _[ P(GP=0/G .....G,) ]

P(GNGL,.....6T)) = P(G"=2G" ,,...,G",)

i-L
-1

:( 10 )( Yi0 )+( Yi-1.00 Yi-120 )Glp_] @
0 1)\ 72 Yic1,02 Yi-122
Yicroo  Yier20 é[’

+ot L
/yifL.OZ ’yifL,ZZ

We additionally impose lower and upper bounds of 0.01 and 0.99, respectively, on the

predicted probabilities P (G!1GY_,.....G ). From the above we can readily compute the
probability of the heterozygote from

P(GP=11G" |.....G" )=1-P(GI=0/G |.....GP )-P(G? | =2|G |.....G”,). It should be

noted that in this multilocus linear model the ) parameters no longer have the simple
probability interpretation they do in the two locus case.

Equation (4) provides an efficient framework for determining the genotype frequencies at a
locus given the genotypes at previous loci in an individual. The emission probabilities
require the joint genotype probabilities of two individuals at a locus given the underlying
condensed identity state. Supplementary Table S1 provides these probabilities given the
allele probabilities at a locus. To use these probabilities we have to convert the genotype
probabilities obtained from Equation (4) for each subject into an equivalent, subject-specific
allele probability. A difficulty with this approximation, however, is that the joint genotype
probabilities in Supplementary Table S1 assume a common allele probability for both
individuals, which is not the case here. For example consider two individuals both
homozygous for allele 0. Conditional on the individuals being in condensed identity state S
=1 at that locus the probability AG! = 0; G? = 0|S= 1) = £, where £ is the probability of
allele 0. In our treatment, these individuals may have different genotypes at previous loci
and, hence, different probabilities for allele 0, leaving it unclear what value to use for f. We
formulate our solution to this in the following way. Define the quantities p;and g, as the
probability of genotype g= 0,1 or 2 for the two individuals A and B, respectively, where the
genotype probabilities are computed conditional on the genotypes at previous loci, as
described above. The allele probabilities in person A are gy = py+(1/2)p, for allele 0 and ¢
= p+(1/2)p; for allele 1, and similarly for person B with allele probabilities f and 7. For an
allele athat is shared IBD between the two individuals, the joint genotype probabilities
conditional on the genotypes at previous loci is given by a function M/ (&), /(£,)] of the
frequencies in the two individuals for the allele that is IBD. The functions /,/» are
determined from conditional probability arguments and are derived explicitly in the
Supplementary Text. For the function M(,), we considered min(,), max(,), and mean(,) and,
based on simulations (data not shown) we found that the highest accuracy was achieved with
min(,). The complete set of joint genotype probabilities is given in Supplementary Table S3.
For instance, in the above example, where A and Bare in condensed identity state S= 1, we
obtain the joint conditional probability at locus 7

error we assume the observed genotype at marker 7 depends on the true genotype and use the
same error model described above. For simplicity, we assume that the genotypes at the
previous markers we condition on are observed without error. The final emission
probability, including the genotyping error rate, is
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Using this emission probability, it is straightforward to use Baum’ forward-backward
algorithm [Baum, 1972] to estimate the probabilities for each condensed identity state at a
locus.

ESTIMATING PARAMETERS

Implementation of the HMM to estimate IBD probabilities conditional on multilocus
genotype information requires, for each pair, estimates of the unconditional condensed
identity state probabilities A ; transition rate parameter A and background LD parameters y
or two-locus haplotype frequencies. The condensed identity state probabilities are computed
from a pedigree using known algorithms [Karigl, 1981; Lange and Sinsheimer, 1992;
Abney, 2009].

Estimates of the transition rate A can also be computed from the known pedigree. Although
an exact computation is, in principle, possible for arbitrary pedigrees we use a simpler
Monte Carlo approach. To estimate A in Equation (3) we assign every founder a pair of
unique chromosomes and allow the chromosomes to segregate through the pedigree,
repeating this procedure 100,000 times. For a given pair in the pedigree, we are then able to
estimate the transition probability for the pair being in condensed identity states rand #at
loci separated by a genetic distance x. We determine these probabilities for distances from 0
to 1.0 cM in increments of 0.0001 cM. We then find the value 7 that minimizes the residual
sum of squares between the expected and observed transition probabilities.

In our modified HMMs that model LD, we require either haplotype frequencies, for the LD
model that conditions on the genotype of a single SNP, or estimates of the coefficients y in
the linear model of Equation (4) when conditioning on multiple SNP genotypes. To estimate
haplotype frequencies, we assume a training data set consisting of phased genotype data
across all markers of interest. From this sample, we compute the correlation between all
pairs of SNPs on each chromosome. Beginning with the second SNP on a chromosome, for
each SNP we select the single SNP, from among the L previous SNPs within the genetic
distance of D cM, with highest correlation to the current SNP. For this pair of SNPs we
compute the haplotype frequencies from the training sample.

Given a linear model, estimating the y parameters can readily be done using standard linear
regression on the training sample. In the context of the HMM, however, the purpose of the
linear model is to predict the genotype probabilities at a locus given the genotypes at L
previous loci. A difficulty with linear regression in this case is that it is susceptible to
overfitting, leading to poor predictions. Shrinkage methods, such as ridge regression, often
show superior performance for this type of problem [Hastie et al., 2009]. We use ridge
regression with the bivariate linear model of Equation (4) to obtain estimates 7. We choose
the ridge penalty for each marker by doing five-fold cross-validation using the “one-
standard-error” rule (i.e. we pick the most parsimonious model within one standard error of
the minimum prediction error).

SIMULATIONS

We performed simulations to assess the performance of our methods. We considered two
pedigree types. The first was a nuclear family with a sibling pair, and the second was a
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large, complex 13-generation pedigree, with 70 founders, comprising 3,555 individuals from
the Hutterite population (this is an updated version of the pedigree described in Abney et al.
[2000]). In the large pedigree the results were evaluated in three pairs of individuals with
three different kinship coefficients of 0.051, 0.275 and 0.518, with the last of these being a
pair consisting of a person with himself.

To generate genotype data with a realistic LD structure we used the CEU haplotypes from
the HapMap project [International Hapmap Consortium et al., 2007]. We created a
population of phased chromosomes from the CEU HapMap data by removing haplotypes
that were from non-founder individuals, resulting in 234 phased haplotypes, and only using
markers that were also present on the 500 k Affymetrix gene chip. We only used SNPs from
chromosome 8 that had minor allele frequency greater than 0.05, resulting in 11,643 total
SNPs with inter-marker genetic map distances as provided by the HapMap project. For each
pedigree we simulated genotypes in the study sample by assigning each founder of the
pedigree a pair of randomly selected phased chromosomes from the population. Note that
chromosomes were drawn without replacement to reduce the possibility of IBD sharing in
the founders. Any relatedness between founders in the CEU population was small and
infrequent enough to not noticeably impact our results. The founder chromosomes were
allowed to segregate through the pedigree until all individuals in the study sample had
genotype data. Phase information in the study sample was ignored. This procedure was
repeated 1,000 times for both the sibling and large pedigree pairs. In addition, for each of
these 1,000 replicates, we considered two genotype data sets with the first being the
simulated genotypes at all markers (i.e. no genotyping error or missing data) and another
where each genotype was assigned an incorrect value with 2% probability and a missing
value with 5% probability.

HUTTERITE DATA

RESULTS

In addition to our simulation studies, we also used real genotype data from a collection of
609 Hutterite individuals, all of whom are related through a complex 13 generation, 3,555
person pedigree. This population has been described previously [Hostetler, 1974; Abney et
al., 2000; Ober et al., 2001]. These individuals were genotyped with the Affymetrix 500 k
GeneChip array resulting in genotypes at 237,902 SNPs following quality control
procedures [Coop et al., 2008].

Throughout our analyses we compared five methods for computing multipoint IBD
estimates. The first method, labeled NoLD, used the standard HMM as described in the
Methods section “Standard HMM” with no adjustment for LD among the markers. Our
second method is identical to the NoLD method but uses a sparser set of markers; we label
this method NoLD-S. For NoLD-S, we randomly selected a set of markers that were
separated by one centiMorgan. Both the NoLD and NoLD-S methods use the HMM that is
essentially equivalent to the one used in the PLINK software package [Purcell et al., 2007]
for identifying IBD segments. Method three included LD in the model as described in the
Methods section “Modeling LD: Conditioning on a single SNP genotype” where genotype
probabilities at the current marker were conditioned on the genotype at only the immediately
previous marker (labeled LD-1). Our fourth method uses the same model as in LD-1, but
conditions on the single previous marker with highest correlation to the current marker, from
among the 20 previous markers within 2 cM (LD-20). Finally, we used the linear model with
ridge regression, as described in the Methods section “Modeling LD: Conditioning on
multiple SNP genotypes” to account for LD with L = 20. We call this method LD-RR. In
addition to these five methods, for the simulated data in the sib pair, we also estimate IBD
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using MERLIN [Abecasis et al., 2002; and MERLIN with clusters [Abecasis and Wigginton,
2005] (MERLIN-CL).

We look at two measures of accuracy when comparing the methods. Our first is an overall
measure of IBD sharing across all markers. For a pair of individuals we compute the bias
and the root mean squared error (RMSE) between the true IBD and estimated IBD sharing,
across all loci, where the IBD sharing at a locus is the proportion of alleles shared at that
locus. That is, at locus k; the true proportion of alleles shared IBD is

1 1
M=l +3 (lsk:3+lsk:5+ls‘:7) +7 15, where 1, _ is the indicator function of the pair
being in condensed identity state rat locus & The estimated proportion of alleles shared IBD

— 1 1
is =P (Sk=11G) +5 [P (Sk=3|G) +P (S=5|G) +P (Sx=7|G)] +— P (Sx=8|G), where the
probabilities are estimated using one of the methods listed above. The average true and

1 —
estimated proportion of alleles IBD across K loci are ﬂ——Zk 1Tk and 7= —Ek 17k
respectively. We use 7 replication to measure the bias anlé RMSE of each method where

1 1
Bias=—x[ | (7 ~ ') and RMSE= | 5T (@0 — n0)’.

SIBLING PAIRS

We computed the bias and RMSE of the IBD estimating methods described above using the
CEU haplotypes to estimate background LD for those methods that allow for it. When using
the MERLIN methods, for the data with 2% genotype error and 5% missing data, we first
use MERLIN’s genotyping error detection methods to remove genotypes that are flagged as
problematic. Figure 2 shows how the chromosome-wide estimates of the average proportion
of alleles shared IBD compares with the true values. There is high concordance between
estimated and true values for methods that account for LD, though MERLIN-CL does less
well in the presence of missing data and genotyping error. We note that the methods that do
not include LD show a systematic positive bias when the true sharing is low. Thinning the
genotype data to include markers with little or no LD improves the bias but introduces
greater variance in the estimates of average IBD. Methods that include LD all show accurate
estimates, even in the presence of errors and missing data. The MERLIN-based methods,
however, show significant degradation in accuracy when errors are present. Figure 3 and
Supplementary Table S4 shows the biases and RMSE of the different methods. We see that
NoLD, NoLD-S and MERLIN have higher bias and RMSE than the methods that include
LD in the model. Of the methods that include LD, both LD-20 and LD-RR have relatively
small bias and RMSE in both missing data and genotyping error scenarios. In addition, the
Supplementary Text and Figures show how well each method does at giving high
probability to the true IBD state at a locus.

LARGE PEDIGREE PAIRS

As in the simulated sibling pair data, we estimated the LD parameters using the HapMap
CEU founder genotypes. As seen in Figure 4 and Supplementary Table S4, the RMSE show
a pattern similar to what was seen in the sibling pairs with the methods that model LD
having higher accuracy at measuring overall chromosome-wide sharing. In the models that
do not include LD, the thinning strategy resulted in much more accurate sharing estimates
than did the method that includes all markers. This is likely because in distantly related
relative pairs relatively fewer regions are shared IBD, yet the high degree of LD in the dense
SNP data results in a larger fraction of regions that are not IBD appearing to be IBD.
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Similarly, by conditioning on the SNP with the highest LD rather than simply the
neighboring SNP, the LD-20 method achieves higher accuracy than the LD-1 method. The
LD-RR method is very similar to LD-20 when there are no errors or missing data but shows
improved performance when errors and missing data are present. The estimated versus true
chromosome-wide proportion of alleles shared IBD for each method are shown in Figure 5
where we see that the models that incorporate LD are able to accurately recover the true
chromosome-wide IBD sharing. In addition, the Supplementary Text and Figures show how
well each method does at assigning high probability to the true IBD state at a locus.

The standard HMM is computationally efficient, allowing one to include very large numbers
of markers in an analysis. Extending the HMM to include LD, however, does impose an
extra computational burden, particularly if one wants to adjust for LD using information
from many, as opposed to a single marker. The IBDLD method can be broken down into
three separate computational tasks, (1) estimating the transition rate parameter A; (2)
estimating the background LD parameters, either y or the two-locus haplotype frequencies;
and (3) estimating IBD for many markers in a pair of individuals. In our large pedigree case,
accomplishing task (1) for a single pair took 172 sec using 100,000 simulations. Estimates
of the LD parameters were based on 234 phased chromosomes for methods LD-1 and
LD-20, and on unphased genotypes from 117 subjects for method LD-RR. For a
chromosome with 11,643 SNPs, these estimates took 43.35, 85.05 and 1490.81 sec,
respectively. Note that unless a phased panel is already available, methods LD-1 and LD-20
would require additional time to phase the LD training panel. We recorded the time to
estimate IBD across the chromosome for each of the methods for a single pair. These results
are shown in Table I.

HUTTERITE DATA

We obtained estimates for the HMM transition rate parameter A for each pair of individuals
as described in the Methods section. The estimates of ) gave exponential curves for the
transition probabilities that matched the simulated data extremely well, the mean coefficient
of determination across 185,745 pairs was 0.9988 with SD 0.0015.

We applied both methods LD-20 and LD-RR to the Hutterite data. Because the Hutterites
are a European-derived population, we estimated the background LD parameters using
either the CEU phased founder haplotypes for the LD-20 method, or the CEU unphased
founder genotypes for the LD-RR method. We then estimated the genomewide average
proportion of alleles shared IBD for all pairs of individuals and compared these estimates to
the kinship coefficients as computed from the known pedigree. Assuming no pedigree
errors, we expect the genomewide sharing to approximately equal the kinship coefficient
with variability resulting from the stochastic nature of segregation. Figure 6A displays the
estimated genomewide average proportion of alleles shared IBD as a function of the pair’s
kinship coefficient. Both LD-20 and LD-RR plots are very similar (data not shown). The
plot shows a high degree of bias in the estimates. We conjecture this is the result of genetic
drift in the allele and haplotype frequencies between the ancestral Hutterite population and
the current CEU population. To adjust for this effect, we then used the Hutterite genotype
data as its own LD training sample. For the LD-RR method we used the genotypes of all the
individuals to estimate the LD parameters. To estimate the LD parameters in the LD-20
method we used the 176 phased haplotypes that were previously determined [Coop et al.,
2008]. These haplotypes were only phased for SNPs that were completely informative in
nuclear families, resulting in haplotypes with a high degree of missing data. Estimating the
LD parameters requires enough haplotypes with non-missing data to get a reliable estimate
of frequencies. To get good haplotype frequency estimates we imputed missing phase data

Genet Epidemiol. Author manuscript; available in PMC 2013 March 04.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Han and Abney

Page 11

using the weighted A-nearest neighbor method [Yu and Schaid, 2007] with k= 10, after
removing 3,881 SNPs with unphased data greater than 20%. Estimates of the genomewide
average proportion of alleles shared IBD against the kinship coefficient are shown in Figure
6B and C. The square root of the mean squared difference between the sharing estimates and
the Kinship coefficients were 0.0105 and 0.0119 with bias —0.0065 and 0.0080 for the LD-
RR and LD-20 methods, respectively.

We note that points that lie far off the line in Figure 6 represent pairs with misspecified
relationships, either due to errors in the pedigree or sample switches. In particular we note
that one pair that was entered into the pedigree as siblings was estimated to have sharing
consistent with identical twins. Another pair which the pedigree showed as being distantly
related (kinship coefficient <0.05) also had sharing consistent with being identical twins.
Further follow-up indicated that a sample had been mistakenly duplicated and assigned
incorrectly to another individual in the pedigree. The majority of the other outlying points
are pairs involving this incorrectly duplicated individual where the estimated sharing is
actually consistent with the true relationship. We also ran PREST [McPeek and Sun, 2000]
on the data (Fig. 7), which shows some evidence of misspecified relationships. Inferring the
true relationship from the computed EIBD statistic, however, would be difficult for most of
the misspecified pairs.

DISCUSSION

In this work we developed a method, IBDLD, that can rapidly estimate IBD sharing between
pairs of individuals related through an arbitrary pedigree given dense genotype data. The
problem of estimating IBD in large pedigrees given multipoint genotype data has been a
particularly vexing one to geneticists resulting in a variety of pedigree splitting strategies.
All such approaches, however, necessarily entail a loss of information which can either lead
to a significant reduction in power [Dyer et al., 2001] or increase in false positives [Newman
et al., 2001] when performing mapping. These difficulties have been compounded recently
with the wide use of genotyping chips with high-density genotyping data. The presence of
LD in such data has the consequence of rendering the standard HMM inappropriate. IBDLD
overcomes both difficulties and is computationally efficient enough to use genomewide on
samples of at least several hundred related individuals.

When using an HMM model that does not incorporate LD, the two methods NoLD and
NoLD-S represent two extreme SNP pruning strategies, no pruning and severe pruning,
respectively. Other, more sophisticated pruning strategies could be used which would result
in accuracy intermediate between the two extremes, while keeping computation time to a
minimum. Our results indicate, however, that regardless of the pruning strategy used,
accuracy will be far worse than methods that incorporate LD into the model, at the cost of
additional computation time.

We explore two different models for including the background LD. Results from the two
models indicate that they generally perform similarly, though the LD-RR method appears to
be somewhat more robust than LD-20 in the presence of missing genotypes and genotyping
error. Additionally, the LD-20 method requires phased haplotypes in the panel of individuals
from whom the background LD will be modeled. Although if such a panel is available this
does not pose any difficulty, it may often be the case that there is no such suitable data.
Using a panel that accurately represents the LD in the study sample is critical to the
accuracy of the method. In the analysis of the Hutterite data one might expect that the
HapMap CEU population would provide an accurate representation of the LD as the
Hutterites are a European Caucasian-derived population. Using this panel, however, resulted
in significant bias in the estimates of IBD sharing. Instead, using the same sample in which
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we wish to estimate IBD to also model the LD gave highly accurate estimates. In the context
of estimating IBD in a sample of individuals related through an arbitrary pedigree, then, it
becomes necessary to phase all the individuals. Standard methods for phasing individuals
with dense genomewide data typically assume the subjects are unrelated. Phasing within a
pedigree, with the expectation that Mendelian inheritance laws will be obeyed, is a laborious
and potentially error prone task. Approaches such as the one used by Kong et al. [2008] may
be promising in this respect. The difficulty with phasing in this context results in our LD-RR
method, which requires only unphased genotypes in the LD modeling panel, being
advantageous.

In spite of IBDLD showing sensitivity to correctly modeling the background LD, it is highly
robust to pedigree misspecification. In our analysis of the Hutterite data, when a sample was
duplicated into an incorrect person in the pedigree, the estimates of IBD were essentially
unchanged, even though the estimates may have been distant from their expected value
based on the purported positions of the individuals in pedigree. Although a tool such as
PREST remains useful at detecting individuals who might have a misspecified relationship
with other pedigree members, it has difficulty in identifying the actual relationship much of
the time. IBDLD, on the other hand, can still accurately estimate the actual amount of IBD
sharing and, hence, suggest a very likely true position in the pedigree. Nevertheless, PREST
is extremely fast and maintains significant utility as a screening tool. The method presented
here would be particularly useful as a follow-up for pairs that appear to be sharing
anomalously relative to their known pedigree locations.

The robustness to misspecified relationships is the result of the high level of information in
very dense SNP data. The pedigree connecting a pair of individuals is used to both estimate
an expected level of IBD sharing and a transition rate between IBD states. When the
genotype information is highly informative toward IBD, the information from the pedigree
contributes a relatively small part. This leads to accurate estimates even when the pedigree is
incorrect. A particularly useful implication of this is that it may be possible to obtain highly
accurate estimates of IBD even when the pedigree is unknown. Though it will always be
more accurate to use pedigree information, in populations where the individuals are likely to
be highly related but where the genealogy is unavailable, it is probable that a modification of
the method will still be able to reasonably estimate IBD sharing. We are currently exploring
this idea.

A particular use of IBDLD is in the mapping of complex traits. Family studies that can
combine both linkage and association information may prove effective at helping to uncover
some of the “missing heritability” that plagues the mapping of common traits. The ability to
use large samples of related people with dense SNP data to obtain IBD estimates that can
then be used in a mixed model approach [Almasy and Blangero, 1998; Kang et al., 2010]
may increase power to detect QTL. Additionally, using actual rather than expected IBD
sharing may also lead to greater insight into genetic architecture by not only giving better
estimates of overall heritability of traits but also allowing one to assign heritability to either
particular chromosomes or chromosomal regions, e.g. Visscher et al. [2007].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

The condensed identity states. The 15 possible detailed identity states for individuals A and
B, grouped according to their nine condensed states. Points represent alleles and lines
indicate alleles that are IBD.
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Fig. 2.

Estimated average proportion of alleles shared IBD against the true average proportions for
sibling pairs. For each method we consider the two cases where the genotype data (1) have
neither missing data nor error, and (2) have 5% missing data and 2% error.
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Fig. 3.
Bias and RMSE for the different methods in a sibling pair. The genotype data (A) have
neither missing data nor error, and (B) have 5% missing data and 2% error.
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Fig. 4.
Bias and RMSE for the different methods in the large pedigree pairs. The genotype data (A)
have neither missing data nor error, and (B) have 5% missing data and 2% error.
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Estimated average proportion of alleles shared IBD against the true average proportions for
large pedigree pairs. For each method we consider the two cases where the genotype data (1)
have neither missing data nor error, and (2) have 5% missing data and 2% error.
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Estimated average proportion of alleles shared IBD across the genome against kinship
coefficient for the Hutterite sample. (A) LD-20 using the CEU population to model

Page 21

background LD, (B) LD-20 using the Hutterites themselves to model background LD, (C)

LD-RR using the Hutterites themselves to model background LD.
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EIBD versus kinship coefficient for the Hutterite sample. Deviations from the diagonal
indicate possible pedigree errors. EIBD was computed using PREST.
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TABLE |

Method speeds for a single pair for a single chromosome

Missing Error Siblingpair Largepedigree

Method rate rate time(sec) pair time (sec)
NoLD 0 0 0.940 1.020
0.05 0.02 0.941 1.050
NoLD-S 0 0 0.013 0.014
0.05 0.02 0.013 0.014
LD-1 0 0 1.657 1.729
0.05 0.02 1.659 1.731
LD-20 0 0 1.657 1.730
0.05 0.02 1.658 1.732
LD-RR 0 0 1.337 1.408
0.05 0.02 1.345 1411
MERLIN 0 0 0.308 -
0.05 0.02 0.384 -
MERLIN-CL 0 0 108.360 -
0.05 0.02 1,913.580 -
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