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Proteasomes are essential and ubiquitous ATP-dependent pro-
teases that function in eukarya, archaea, and some bacteria. These
destructive but critically important proteolytic machines use a 20S
core peptidase and a hexameric ATPase associated with a variety
of cellular activities (AAA+) unfolding ring that unfolds and spools
substrates into the peptidase chamber. In archaea, 20S can func-
tion with the AAA+ Cdc48 or proteasome-activating nucleotidase
(PAN) unfoldases. Both interactions are stabilized by C-terminal
tripeptides in AAA+ subunits that dock into pockets on the 20S
periphery. Here, we provide evidence that archaeal Cdc48 also
uses a distinct set of near-axial interactions to bind 20S and pro-
pose that similar dual determinants mediate PAN–20S interactions
and Rpt1–6–20S interactions in the 26S proteasome. Current dogma
holds that the Rpt1–6 unfolding ring of the 19S regulatory particle
is the only AAA+ partner of eukaryotic 20S. By contrast, we show
that mammalian Cdc48, a key player in cell-cycle regulation, mem-
brane fusion, and endoplasmic-reticulum–associated degradation,
activates mammalian 20S and find that a mouse Cdc48 variant
supports protein degradation in combination with 20S. Our results
suggest that eukaryotic Cdc48 orthologs function directly with 20S
to maintain intracellular protein quality control.

AAA+ protease | p97

AAA+ (ATPase associated with a variety of cellular activities)
enzymes use cycles of ATP binding and hydrolysis to exert

mechanical forces on substrates and power a diverse array of
biological functions (1). In all cells, protein-unfolding machines
of the AAA+ family form hexameric rings that cooperate with
associated peptidases to execute intracellular protein degrada-
tion (2). The proteolytic sites of AAA+ proteases are sequestered
within the interior of a barrel-shaped, self-compartmentalized
peptidase, accessible only through narrow axial entrance tun-
nels that exclude folded proteins. Peptidase access is controlled
by the AAA+ unfoldase, which docks with the peptidase, pulls
the native structure of target proteins apart, and then trans-
locates the polypeptide through its axial channel and into the
degradation chamber.
The 20S peptidase is the degradation module for proteasomes

in all domains of life, but functions with different AAA+ un-
foldases, including the Rpt1–6 unfolding ring of the eukaryotic 26S
proteasome, the double-ring Cdc48 or single-ring proteasome-
activating nucleotidase (PAN) enzymes in archaeal proteasomes,
and the Mpa unfoldase in Actinobacteria (Fig. 1A) (3–6). In all
organisms, the 20S peptidase has a four-ring α7β7β7α7 structure
and uses N-terminal residues of the α subunits to gate entrance of
substrates into its degradation chamber (Fig. 1B) (5, 7–9).
The subunits of the AAA+ ring have C-terminal tripeptides

that dock into conserved pockets on the peptidase α ring and
help stabilize an open-gate conformation to allow 20S degrada-
tion of proteins or large peptides (Fig. 1B) (10). These tripep-
tides generally match a hydrophobic, tyrosine, any residue motif
(HbYX). Indeed, HbYX-peptidase interactions have been pro-
posed to be both necessary and sufficient for docking and reg-
ulation (10). However, we recently discovered that the HbYX

motif of archaeal Cdc48 was not essential for functional collab-
oration with archaeal 20S, suggesting that additional interactions
between the AAA+ ring and 20S must exist (4). Eukaryotic
Cdc48, which is also called p97 or valosin-containing protein
(VCP), is an essential enzyme that plays roles in cell-cycle
regulation, postmitotic membrane fusion, endoplasmic-re-
ticulum-associated degradation, and the ubiquitin-proteasome
system (11–13). Cdc48 is generally thought to function up-
stream of the 26S proteasome, for example by powering retro
translocation of substrates across the endoplasmic reticulum
membrane or disassembling macromolecular complexes (14, 15).
However, Cdc48 has also been proposed to function more di-
rectly with the 26S proteasome (16). Despite having HbYX tails
(Fig. 1C), eukaryotic Cdc48 has never been reported to interact
directly with 20S.
Here, we identify residues in loops near the bottom of the

axial channel of archaeal Cdc48 that appear to function in
combination with HbYX interactions to mediate 20S binding.
We also show that mouse Cdc48 interacts functionally with the
cognate mouse 20S peptidase as well as with archaeal 20S and
demonstrate that a variant of mouse Cdc48 collaborates with
mouse or archaeal 20S in protein degradation. Our results
deepen understanding of the functional determinants of 20S
interactions with AAA+ unfolding rings, suggest that the use of
peripheral and near-axial contacts may be a conserved feature
of many AAA+ proteases, and support a potential role for
Cdc48 in higher organisms in direct 20S-dependent protein
quality control.

Results
Probing Non-HbYX Interactions Between Archaeal Cdc48 and 20S.
Cdc48 from the archaeon Thermoplasma acidophilum (taCdc48)
and orthologs in archaea and eukarya contain a family-specific N
domain, D1 and D2 AAA+ rings, and a flexible linker that con-
nects the D2 ring to the C-terminal HbYX motif (Fig. 1A). Re-
cently, we found that a taCdc48 variant lacking the N domain and
C-terminal HbYX tripeptide (taCdc48ΔN/ΔC3) bound ta20S only
∼25-fold less tightly than the parental taCdc48ΔN enzyme, in-
dicating that non-HbYX residues must also make significant
contributions to 20S binding (4). To identify potential non-HbYX
contacts, we built a simple model of a Cdc48–20S complex by
initially aligning the axis of the hexameric ring of mouse Cdc48/
p97 (Protein Data Bank ID code 3CF1; ∼50% homology with
taCdc48; ref. 13) with the axis of a heptameric α ring from the
crystal structure of T. acidophilum 20S (Protein Data Bank ID
code 1YAU; ref. 17). The Cdc48 ring was then moved along and
rotated around the common axis until the two rings were close
and the C-terminal residues of each Cdc48 subunit (the linker
and HbYX motif were disordered) were close to one of the
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α-binding pockets. In this model, loops at the bottom of the axial
pore of the D2 ring (pore-2 loops) were in proximity to the
expected positions of N-terminal gating residues of the α ring.
These potential interactions are shown in cartoon form in Fig. 1B.
The linkers that connect the D2 ring to the HbYX docking motifs
would also be in the vicinity of the α ring.
To test the importance of the linkers, we deleted the C-terminal

20 residues of taCdc48ΔN (taCdc48ΔN/ΔC20), which removes the
HbYX motif and the complete linker region. As assayed by stim-
ulation of peptide degradation (Fig. 2A), the ΔC20 deletion did not
weaken ta20S binding substantially (Kapp = 41 ± 8 nM) compared
with the ΔC3 deletion (Kapp = 24 ± 4 nM). However, both variants
bound more weakly than the parental taCdc48ΔN enzyme (Kapp =
2 ± 0.5 nM) and supported lower maximal levels of peptide deg-
radation. By contrast, taCdc48ΔN/ΔC20 and taCdc48ΔN displayed
similar activities in ATP hydrolysis and unfolding of GFP-ssrA in
the absence of ta20S (Fig. 2B). taCdc48ΔN/ΔC20 also supported
ta20S degradation of GFP-ssrA (Fig. 2A, Inset; Fig. 2B). We con-
clude that linker residues do not make major non-HbYX inter-
actions with archaeal 20S or play roles in ATP-dependent protein
unfolding or translocation.
To test the importance of the D2 pore-2 loop of taCDC48, we

deleted the central amino acids (residues 580–583) of this loop.
The taCdc48ΔN/Δ580–583 mutant displayed ∼10-fold lower ta20S
affinity (∼20 nM) than the taCdc48ΔN parent, as assayed by
stimulation of peptide cleavage (Fig. 2C). Strikingly, although
taCdc48ΔN/Δ580–583 and taCdc48ΔN/ΔC3 both interacted with 20S
with interaction constants of ∼20 nM, combining the Δ580–583
and ΔC3 mutations resulted in a variant (taCdc48ΔN/Δ580–583/ΔC3)
that displayed no activation of ta20S peptide cleavage at con-
centrations up to 1 μM (Fig. 2C). These results suggest that the
pore-2 loops of the D2 ring and the HbYX motifs make in-
dependent contributions to ta20S recognition. One caveat is that
taCdc48ΔN/Δ580–583 and taCdc48ΔN/Δ580–583/ΔC3 had reduced
ATPase activity compared with the parental enzyme (Fig. 2B).

Although this phenotype could reflect changes in protein con-
formation and thus be an indirect effect on 20S binding, several
observations favor direct effects. First, ATP hydrolysis is not
required for the interaction of taCdc48ΔN with ta20S (4). Second,
taCdc48ΔN/Δ580–583 fully activated peptide cleavage by ta20S (Fig.
2C). Third, taCdc48ΔN/Δ580–583 and taCdc48ΔN/Δ580–583/ΔC3 had
protein-unfolding activity commensurate with their reduced ATP
hydrolysis activities (Fig. 2B) and thus are functional enzymes.
Fourth, although taCdc48ΔN/Δ580–583 unfolded GFP-ssrA at
∼20% of the parental rate, it supported 20S degradation of GFP-
ssrA at only ∼5% of the parental rate (Fig. 2B), indicating
a substantially larger defect in coordination of 20S protein deg-
radation than in protein unfolding.
In our model of the complex, the pore-2 loops of the D2 ring

of Cdc48 were close to the expected positions of the N-terminal
gating residues of the 20S α subunits (Fig. 1B). If these regions of
Cdc48 and 20S do contact each other, then gating-residue
mutations should also diminish binding. Indeed, when we de-
leted the gating residues in the ta20SΔα2–12 mutant, higher con-
centrations of this enzyme were required to support GFP-ssrA
degradation by a fixed concentration of taCdc48ΔN in compari-
son with degradation by ta20S (Fig. 2D). This result supports a role
for the near-axial gating residues of the α ring in binding Cdc48.

Evidence for Non-HbYX Recognition of 20S by PAN.Given our Cdc48
results, we wondered if non-HbYX interactions might also con-
tribute to PAN–20S recognition. Although we previously failed
to detect an interaction between a Methanocaldococcus jannaschii
PAN variant missing the HbYX motif (mjPANΔC3) and ta20S (4),
replacing ATP with ATPγS in the peptide-cleavage assay allowed
mjPANΔC3 to stimulate ta20S activity with an apparent affinity
of 3.8 ± 1 μM (Fig. 2E). Wild-type mjPAN bound ta20S more
tightly (54 ± 7 nM) under the same conditions (Fig. 2E). Thus,
the PAN HbYX motif makes significant contributions to 20S
binding but is not necessary for recognition. Pore-2 loops similar
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to those in the D2 ring of Cdc48 are also present in the single
AAA+ rings of PAN, Mpa, and the Rpt1–6 subunits of the 26S
proteasome (18), raising the possibility that all of these enzymes
use a combination of peripheral HbYX contacts and near-axial
interactions to collaborate with the 20S peptidase.

Eukaryotic 20S Interacts Functionally with Cdc48. In eukaryotes,
both the α7 and β7 rings of 20S consist of seven genetically dis-
tinct subunits, whereas the corresponding rings in archaeal 20S
are each built from seven identical subunits (5). Moreover, in the
26S proteasome, the C-terminal tails of the Rpt1–6 subunits in
the AAA+ unfolding ring differ in sequence and dock with dis-
tinct α subunits in the 20S core peptidase (10, 19–21). Did

evolution of eukaryotic 20S result in loss of functional inter-
actions with Cdc48? To address this question, we initially used
Saccharomyces cerevisiae 20S (sc20S) and tested if archaeal
taCdc48 or taCdc48ΔN could stimulate peptide cleavage. Indeed,
both taCdc48 enzymes enhanced peptide cleavage by yeast sc20S
(Fig. 3A). Moreover, robust degradation of GFP-ssrA was ob-
served when we combined taCdc48ΔN and sc20S (Fig. 3B). Thus,
a homomeric Cdc48 AAA+ ring can functionally collaborate
with the heteromeric rings of yeast 20S both in gate opening and
protein degradation.
Next, we tested if eukaryotic Cdc48, which harbors conserved

20S binding motifs (Fig. 1C), could functionally interact with
20S, either from the same eukaryotic species or from archaea.
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Barthelme and Sauer PNAS | February 26, 2013 | vol. 110 | no. 9 | 3329

BI
O
CH

EM
IS
TR

Y



For these experiments, we used mouse Cdc48 and an ΔN variant
of this enzyme, because these Mus musculus enzymes (mmCdc48
and mmCdc48ΔN) were better behaved than the comparable
yeast enzymes. Importantly, mmCdc48 and mmCdc48ΔN en-
hanced peptide cleavage by mouse 20S (Fig. 3C). The mmCdc48
and mmCdc48ΔN enzymes also stimulated peptide cleavage by
archaeal ta20S (Fig. 3D). Thus, mouse Cdc48 interacts both with
mouse 20S and with the archaeal homolog of this enzyme.
Binding of mmCdc48 to mouse 20S (Kapp ∼1 μM) was weaker
than binding to ta20S (Kapp ∼10 nM), and the ΔN deletion in
mouse Cdc48 did not strengthen 20S affinity as it does in ar-
chaeal Cdc48. Nevertheless, mammalian Cdc48 retains the
ability to interact functionally with mammalian 20S.

20S-Dependent Degradation by an Altered-Specificity Mouse Cdc48
Variant. GFP-ssrA is recognized and unfolded by archaeal Cdc48
but not by mouse Cdc48 (22). However, Zwickl and colleagues
showed that substituting a Tyr-Tyr (YY) sequence from the D1
pore-1 loop of taCdc48 for the corresponding Leu-Ala (LA) se-
quence in mouse Cdc48ΔN transplanted the ability to recognize
and unfold GFP-ssrA (22). We found that mmCdc48YY/ΔN was
able to collaborate with both mm20S and ta20S to degrade GFP-
ssrA (Fig. 4 A and B). No degradation was observed without
mmCdc48YY/ΔN, without ATP, or when MG132, a 20S peptidase
inhibitor, was added. FormmCdc48YY/ΔN

–ta20S, Vmax and KM for
GFP-ssrA degradation (Fig. 4C) were similar to values for
taCdc48ΔN–ta20S degradation of this substrate (4). Thus, the en-
zymatic machinery required for protein degradation is still present,
at least vestigially, in mammalian Cdc48.
We did not detect GFP-ssrA degradation by mmCdc48 or

mmCdc48YY in the presence of ta20S (Fig. 4D). Thus, the N
domain of mmCdc48 represses unfolding/degradation, as we
previously observed for the N domain of archaeal taCdc48 (4).

The structure of the N domain is similar but not identical in
archaeal and mammalian Cdc48, but the N-domain sequence is
relatively poorly conserved between archaea and eukarya.
These variations probably account for the differences observed
in N-domain modulation of the activity of the archaeal and
mammalian enzymes.

Discussion
Attempts to detect functional interactions between eukaryotic
Cdc48 and 20S have not previously been successful (23). For
example, it was recently noted that no eukaryotic Cdc48–20S
complex has been isolated or successfully reconstituted (24). We
revisited this issue because archaeal Cdc48 and 20S comprise a
functional proteasome, and the archaeal and eukaryotic ortho-
logs of these enzymes share substantial sequence and structural
homology (4). Our current biochemical results demonstrate
functional collaboration between the Cdc48 and 20S enzymes
from mouse and also show that eukaryotic 20S can function with
archaeal Cdc48 and vice versa. Based on these results, we pro-
pose that eukaryotic 20S could be a component of a Cdc48–20S
complex as an alternative to binding the 19S regulatory particle
to form the 26S proteasome.
Whether a eukaryotic Cdc48–20S complex functions as an

alternative proteasome remains to be determined but mouse
Cdc48 can clearly function as a 20S activator. In addition, our
studies show that mouse Cdc48 variants contain the machinery
needed to unfold and translocate protein substrates into the 20S
degradation chamber. Moreover, degradation by mouse 20S and
a Cdc48 variant was inhibited by MG132. Thus, if Cdc48–20S
did function as an alternative eukaryotic proteasome, then in-
hibition of substrate proteolysis by MG132 or related 20S
inhibitors would not be sufficient to distinguish between deg-
radation by the 26S proteasome or Cdc48–20S. The role of
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Cdc48 in eukaryotic protein degradation has generally been
thought to involve extracting proteins from membranes or
macromolecular complexes for delivery to the 26S proteasome,
although some studies suggest that Cdc48 works more directly
with 26S (14–16). Indirect roles of Cdc48, direct roles in col-
laboration with the 26S proteasome, and direct roles of
a Cdc48–20S proteasome all remain possible. The challenge will
be to identify substrates degraded by one or more of these
Cdc48-dependent mechanisms.
Docking of C-terminal HbYX tripeptides into pockets on the

periphery of the 20S α ring are important for 20S binding by
archaeal PAN and the Rpt1–6 unfolding ring of the 19S eukary-
otic regulatory particle (10, 19, 21). HbYX-α interactions also
help stabilize binding of Cdc48 to 20S, but archaeal Cdc48 still
binds and functionally collaborates with 20S after deletion of this
C-terminal tripeptide (4). Our current results show that PAN
lacking the HbYX motif also binds archaeal 20S and stimulates
peptide cleavage. We also found that near-axial interactions
mediated by residues in the pore-2 loop in the Cdc48 D2 ring,
which are positioned to interact with N-terminal gating residues
of the α subunits, appear to stabilize functional complexes be-
tween Cdc48 and 20S. Based on sequence and architectural
homology, similar interactions may help stabilize Mpa–20S,
PAN–20S, and 19S–20S binding. Thus, 20S binding by the AAA
+ rings of Mpa, Cdc48, PAN, and Rpt1–6 may all involve pe-
ripheral HbYX-α contacts as well as near-axial contacts between
N-terminal α gating residues and pore-2 residues in the AAA+
rings. Interestingly, the length of the pre-HbYX linker varies
significantly between archaeal Cdc48 (∼1–19 residues) and
eukaryotic Cdc48 (∼29–47 residues). Nevertheless, we find that
archaeal 20S functionally interacts with eukaryotic Cdc48 and

vice versa. Near-axial interactions may help to make these
interactions between enzymes from different domains of life
possible despite the observed linker-length differences. Whether
the longer linkers of eukaryotic Cdc48 are important for other
functions, such as interactions with specific adaptors, remains to
be determined.
The hexameric AAA+ ring of the ClpX unfoldase also

interacts with the heptameric rings of the ClpP peptidase, which
is structurally unrelated to 20S, using peripheral contacts as well
as near-axial interactions between pore-2 loops in the ClpX ring
and N-terminal residues that surround the entry pore to the
ClpP chamber (25). For ClpXP, these near-axial interactions
vary dynamically with nucleotide state, help control the rate of
ATP hydrolysis, and facilitate efficient protein unfolding (25).
Thus, bipartite interactions between AAA+ unfoldases and
their cognate peptidases may be common features of many
AAA+ proteases. Near-axial contacts may coordinate substrate
translocation through the central pore of the unfoldase ring and
into the degradation chamber of the peptidase. Crystal struc-
tures of 20S with the heptameric ATP-independent activator
PA26 also show peripheral interactions between C-terminal tails
and pockets in the α ring as well as interactions between an
internal activation loop in PA26 and the near-axial gating resi-
dues of the α ring (17), further supporting the possibility that
bipartite recognition is a universal feature of functional inter-
actions with the 20S peptidase.

Materials and Methods
Plasmids and Strains. The mouse Cdc48 gene was amplified from Mus mus-
culus cDNA by PCR and cloned into the pET28A (NdeI/SalI) expression vector,
resulting in fusion of an N-terminal His6-thrombin tag to Cdc48. Mutations
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were generated by site-directed mutagenesis and verified by sequencing.
The S. cerevisiae strain RJD1144 [MATa, his3Δ200 leu2-3,112 lys2-801 trpΔ63
ura3-52 PRE1-FLAG-6xHIS::Ylplac211 (URA3)] was generously provided by
R. Deshaies (California Institute of Technology, Pasadena, CA)].

Expression and Protein Purification. The taCdc48, ta20S, mjPAN, and GFP-ssrA
proteins were expressed and purified as described (4). mmCdc48 proteins
were expressed in strain Escherichia coli BL21 (DE3) RIL (Stratagene). Protein
expression was induced at OD600 ∼0.8 by adding 1 mM isopropyl β-D-1-thi-
ogalactopyranoside, and growing cells for an additional 4 h at 37 °C. Cells
were harvested by centrifugation, resuspended in 50 mM Hepes·KOH (pH
7.5), 50 mM NaCl, 5 mMMgCl2, 0.5 mM EDTA, and 1 mM DTT in the presence
of a protease inhibitor mix (Roche), 1,000 units Benzonase (Sigma-Aldrich),
and 1 mg/mL lysozyme, and lysed by sonication. Cellular debris were re-
moved by centrifugation at 30,000 × g for 30 min. Polyethylenimine (0.1%
vol/vol) was added to the supernatant to precipitate nucleic acids, which
were removed by a centrifugation at 30,000 × g for 30 min. The cleared
supernatant was incubated with washed Ni++-NTA beads (Thermo Scientific)
at 4 °C for 2 h. After washing with 50 mM NaH2PO4 (pH 8.0), 500 mM KCl, 50
mM imidazole, and 0.5 mM EDTA, proteins were eluted with 500 mM im-
idazole. Samples were dialyzed against 20 mM Tris·HCl (pH 8.0), 50 mM NaCl,
1 mM DTT, and 1 mM EDTA and loaded onto a MonoQ column (GE
Healthcare) followed by elution with a linear salt gradient from 50 mM to 1
M NaCl. After thrombin cleavage overnight, fractions containing Cdc48 were
loaded onto a Superdex 200 (16/60) column (GE Healthcare) equilibrated in
50 mM Hepes·KOH (pH 7.5), 100 mM NaCl, 1 mM EDTA, and 1 mM DTT.
Cdc48 fractions that eluted at a position expected for hexamers were con-
centrated and frozen in liquid nitrogen for storage at –80 °C.

The yeast 20S core peptidase was isolated from S. cerevisiae strain
RJD1144, which contains a Flag-His6 tag on Pre1, using anti-FLAG M2 resin
(Sigma-Aldrich) and size-exclusion chromatography as described (26, 27).

Mouse 20S peptidase was purchased from R&D Systems. Cdc48 and PAN
concentrations are reported as hexamer equivalents. 20S concentrations are
reported as α7β7β7α7 equivalents.

Peptidase Assays. Cleavage of Mca-AKVYPYPME-Dpa(Dnp)-amide by ta20S
in the presence or the absence of taCdc48 was assayed at 45 °C as described
(4). For reactions containing mmCdc48 variants, the assay temperature was
37 °C. Cleavage of Mca-RPPGFSAFK-(Dnp)-OH (R&D Systems) by mm20S
(5 nM) was measured in the presence or absence of mmCdc48 or taCdc48 at
37 °C. Reactions were performed in 50 μL R buffer (25 mM Hepes·KOH, pH
7.5, 50 mM potassium acetate, and 5 mM magnesium acetate) and assayed
by changes in fluorescence (excitation 340 nm; emission 405 nm) using
a Spectramax 5 spectrofluorometer (Molecular Devices). Cleavage of Mca-
RPPGFSAFK-(Dnp)-OH by sc20S (10 nM) was assayed at 37 °C in R buffer plus
0.01% (vol/vol) IGEPAL CA-630.

Protein Unfolding and Degradation Assays. Protein unfolding was assayed by
loss of GFP-ssrA fluorescence (excitation 467 nm; emission 511 nm) in
a Spectramax 5 plate reader (Molecular Devices). Reactions were performed
in 30 μL 50 mM Hepes·KOH (pH 7.5), 100 mM KCl, and 20 mM MgCl2 at 60 °C
for taCdc48 and 37 °C for mmCdc48 variants. Reaction components were
preincubated for 20 min before adding 10 mM ATP. Protein degradation
was assayed by loss of GFP-ssrA fluorescence and SDS/PAGE at 37 °C for
mmCdc48 variants, 20S or at 45 °C for taCdc48 and 20S peptidase in 30 μL
50 mM Tris·HCl (pH 8.0), 100 mM NaCl, 20 mM MgCl2, 3% (vol/vol) glycerol,
5 mM ATP, and an ATP-regenerating system (20 U·mL−1 pyruvate kinase;
15 mM phosphoenolpyruvate).
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