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This paper describes two folded metamaterials based on the
Miura-ori fold pattern. The structural mechanics of these meta-
materials are dominated by the kinematics of the folding, which
only depends on the geometry and therefore is scale-independent.
First, a folded shell structure is introduced, where the fold pattern
provides a negative Poisson’s ratio for in-plane deformations and
a positive Poisson’s ratio for out-of-plane bending. Second, a cellu-
lar metamaterial is described based on a stacking of individual
folded layers, where the folding kinematics are compatible be-
tween layers. Additional freedom in the design of the metamate-
rial can be achieved by varying the fold pattern within each layer.

In this paper, we describe the use of origami for mechanical
metamaterials, where the fold patterns introduce kinematic

deformation modes that dominate the overall structural re-
sponse. The geometry and kinematics of two types of folded
metamaterial are described: a folded shell structure and a folded
cellular metamaterial. The examples presented here are both
based on a particular fold geometry: the classic Miura-ori pat-
tern. This pattern has previously been considered for applica-
tions, such as deployable solar panels (1), and was observed in
the biaxial compression of stiff thin membranes on a soft elastic
substrate (2, 3).
In recent years, origami has seen a surge in research interest

from engineers and physicists. Developments include folded
sandwich panel cores (4, 5), origami-inspired stents (6), self-
folding membranes (7), and cellular materials made from folded
cylinders (8). An important concept is rigid origami, where the
fold pattern is modeled as rigid panels connected through fric-
tionless hinges. These assumptions make the study of origami
folding a matter of kinematics. Of particular interest here are
fold patterns where four fold lines meet at each vertex (so-called
degree-4 vertices). Each such vertex has one degree of freedom,
a tessellated fold pattern is overconstrained, and folding is only
possible under strict geometric conditions. In a landmark paper,
Huffman (9) studied rigid folding using spherical geometry; re-
cent work includes the modeling of crease patterns using qua-
ternions (10) and an increased understanding of the foldability
conditions for partly folded quadrilateral surfaces (11, 12).
In describing the properties of the folded metamaterials, we

are here primarily concerned with the deformation kinematics. If
required, these models can straightforwardly be extended to in-
clude simple constitutive behavior at the fold lines [for instance,
elastic (13) or plastic (14) behavior].
The paper is structured as follows. First, the Miura-ori unit cell

is introduced, because its geometry plays a key role in the me-
chanical properties of the folded metamaterials. The first such
metamaterial is based on a single planar Miura-ori sheet: a fol-
ded shell structure. Of particular interest are the shell’s out-
of-plane kinematics. Second, a bulk metamaterial is proposed
based on the stacking of individual Miura-ori layers, and its
folding kinematics are explored. A brief discussion concludes
the paper.

Unit Cell Geometry
A Miura unit cell is shown in Fig. 1. Its geometry can be pa-
rameterized in a number of ways. We here define the unit cell
by the dimensions of its smallest constituent component, a
parallelogram with sides a and b and acute angle γ, and the

dihedral fold angle θ ∈ [0, π/2] between the facets and the xy
plane. The outer dimensions are then given by

H = a · sin θ  sin γ; [1]

S= b ·
cos θ  tan γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ cos2θ  tan2γ

p ; [2]

L= a ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− sin2θ  sin2γ

q
; [3]

and

V = b ·
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ cos2θ  tan2γ
p : [4]

When designing metamaterials, the mechanical properties are
often characterized in a partly folded state. For a selected set
of outer dimensions H, S, V, L, the fold pattern parameters
can then be back-calculated (4, 15). Additional useful rela-
tionships are

tan ξ= cos θ  tan γ; [5]

sinψ = sin θ  sin γ; [6]

cos γ = cos ξ  cosψ ; [7]

and

sinφ= sin ξ=sin γ; [8]

with ξ ∈ [0, γ], ψ ∈ [0, γ], and φ ∈ [0, π/2]. Note that a Miura-ori
sheet can be folded from a flat sheet with only bending along the
fold lines and, therefore, is a developable surface.

Folded Shell Structures
The first metamaterial here described is a folded shell structure.
A partly folded Miura-ori sheet is considered as a shell struc-
ture, where the local fold pattern alters the shell’s global me-
chanical properties. It is an example of a compliant shell
mechanism (16), where the overall kinematics are a function of
the articulation along the fold lines as well as the deformation of
the interlaying thin-walled facets. This hierarchical interaction
of deformation kinematics can produce unexpected and fasci-
nating mechanical properties.
In describing the kinematics of a Miura-ori sheet, a distinction

must be made between the in-plane and out-of-plane deforma-
tions of the shell structure.
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In-Plane Kinematics.When modeled as rigid origami, the Miura-ori
sheet has a single in-plane expansion mode, with kinematics that
can be characterized by an expansion coefficient or Poisson’s ratio:

νSL = −
«L
«S

= −
S
L
dL
dS

= − tan2ξ; [9]

where the strains «L and «S are instantaneous true strains. As
illustrated in Fig. 2, the Poisson’s ratio is always negative; this
unusual material property can be found in microstructured mate-
rials referred to as auxetics (17) as well as fluctuating membranes
and crumpled papers (18). The negative in-plane Poisson’s ratio
of the Miura-ori sheet is well-known (1, 3). However, previous
formulations obscured an important insight: the Poisson’s ratio is
only a function of the angle ξ in the xy plane or, equivalently, the
ratio S/V. This insight will lead on to the folded cellular meta-
material described in the next section.

Out-of-Plane Kinematics.Of particular interest are the out-of-plane
kinematics of the Miura-ori folded shell structure (Fig. 3). Simple
experiments revealed two out-of-plane deformation modes:
saddle and twisting modes (15). A saddle-shaped bending mode is
conventionally expected in a material with a positive Poisson’s
ratio. For the Miura-ori sheet, therefore, the Poisson’s ratios for
in-plane and out-of-plane deformations are of opposite sign.

A key observation is that, for out-of-plane deformations, the
facets of the Miura unit cell must bend. These modes can, there-
fore, not be captured in a rigid origami model without introducing
additional fold lines. For themechanical analysis, the facet bending
is modeled by introducing a diagonal fold line to the parallelo-
gram facets. The additional fold lines can be considered as a
convenient construct to simplify modeling. However, such spon-
taneous fold lines can, in fact, be observed in paper models, and
indeed, mathematical models of origami folding show that de-
velopable deformations of facets bounded by straight lines must
remain piecewise planar (19). Their formation is also motivated
by the physics of stress concentration in thin-walled shells (20, 21).
To first-order approximation, the choice of diagonal for the
additional fold line does not matter (SI Appendix, section S1).
We here select the shorter diagonal, motivated by observation
of physical models as well as energetic considerations.
Schenk and Guest (13) described a simple mechanical model to

study the dominant kinematics of the sheets, whereby the folded
sheet was modeled as a pin-jointed truss (SI Appendix, section S2).
By introducing a bending stiffness along the fold lines, Kfold, and
across the facets, Kfacet, the modal response of the folded shell was
studied. An important nondimensional material parameter is the
ratio of the fold and facet stiffness. The modal analysis confirmed
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Fig. 1. A folded Miura-ori sheet consists of tessellations of a unit cell. The
unit cell geometry can be described using parameters defining a parallelo-
gram facet, a, b, γ, and fold angle θ ∈ [0, π/2]. An alternative parameteri-
zation is given by dimensions H, S, V, L. Other useful angles are shown,
where ξ and ψ are angles between fold lines and the y axis and θ and φ are
dihedral angles between facets and the xy and yz planes, respectively. Three
configurations with θ = {0, π/4, π/2} are shown.
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Fig. 2. The in-plane expansion coefficient of a Miura-ori sheet, νSL = −cos2θ
tan2γ, for different geometries γ. The arrows indicate the primary strain
direction δS; pictured are configurations with γ = 60° and a/b = 1.

Fig. 3. (A) The undeformed configuration and the (B) twisting and (C) saddle-shaped deformation modes of a Miura sheet with 9 × 9-unit cells (a/b = 1, γ = π/3). It is
shown in ref. 13 that, over a wide range of geometries and material parameters, these deformation modes are the most flexible. Only for configurations where the
bending stiffness of the facets is much greater than the bending stiffness of the fold lines is the planar mechanism (Fig. 1) the most flexible deformation mode.
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the bending and twisting modes as dominant deformation modes
over a wide range of unit cell geometries and stiffness ratios.
In previous studies, the coupling coefficient between the op-

posing curvatures in the saddle-shaped deformation mode was
not quantified, because the Gaussian curvature varies across the
deformed sheet. The unit cell deformations must necessarily vary
across the surface, because the doubly curved geometry cannot
be attained through a tessellation of a single deformed unit cell.
To first order, however, the doubly curved deformation of the

folded sheet can be described by considering a single unit cell
with tessellation boundary conditions (Fig. 4). The tessellation
boundary conditions reduce the degrees of freedom of the unit
cell. As detailed in SI Appendix, section S3, the remaining de-
formation modes can then be separated into three orthogonal
modes: a planar mode, a symmetric out-of-plane mode (i.e.,
saddle), and an antisymmetric out-of-plane mode (i.e., twisting).
For the saddle mode, the out-of-plane coupling coefficient

between the curvatures, νκ = −κyy/κxx, is of interest. The first-order
deformation modes provide the necessary information to nu-
merically calculate the change in curvature. Remarkably, the out-
of-plane coupling coefficient is found to be equal and opposite to
the in-plane Poisson’s ratio:

νκ = −
κyy
κxx

= − νSL: [10]

Within the assumed kinematics for the folded sheets (i.e., only
developable deformations of the unit cell facets), the attainable
geometries are strictly limited. Although a large range of de-
formed sheet configurations can be attained using combinations
of stretching, bending, and twisting, deformations such as in-plane
and out-of-plane shear are not compatible with this kinematic
model. Physical sheets must, therefore, undergo nondevelopable
deformations (i.e., in-plane strains of the facets) to attain those
modes (5). Nonetheless, it is worth emphasizing that the initially
planar Miura folded shell can attain doubly curved configurations
and thus, changes its global Gaussian curvature, with only devel-
opable deformations of the unit cell facets.
Another folded shell structure, the eggbox sheet, was studied

in the work in ref. 13. It is shown to exhibit a material behavior
exactly opposite to the behavior described here for the Miura-
ori: it has a positive in-plane Poisson’s ratio but a negative
Poisson’s ratio in certain out-of-plane deformation modes. A
differentiating feature is that the eggbox sheet is nondevelopable
and therefore, cannot be folded from a flat sheet.

Folded Cellular Metamaterial
We can build on the results of the in-plane kinematics described
previously to show that different Miura sheets can be stacked to
form a 3D foldable metamaterial. Eq. 9 shows that the coupling
between expansion in the x and y directions shown in Fig. 1 depends
only on the in-plane angle ξ. In particular, it does not depend on
height H. Hence, Miura sheets with different heights H can be
stacked together, bonded along fold lines, and still fold freely (Fig.
5). The result of the stacking is a cellular metamaterial that expands/
contracts omnidirectionally and is highly anisotropic. Examples of
folded models are shown in SI Appendix, section S4.

Stacked Geometry. In the stacked configuration, the fold pattern
may vary from layer to layer, but it is here assumed that the unit
cell geometry alternates between successive layers: ABABA etc.
The unit cells in successive layers A and B must share at least
three geometric parameters, leaving a single free parameter.
This constraint can be recognized when considering the extrinsic
unit cell geometry: SA = SB, VA = VB, and LA = LB, where the
unit cell heights HA and HB can be selected independently. This
paper assumes, without loss of generality, that HB ≥ HA. In terms
of the intrinsic geometric parameters, if γB ≥ γA is taken as the
independent variable for layer B, the corresponding unit cell
parameters can be calculated by

aB = aA
cos γA
cos γB

; [11]

bB = bA; [12]

A

B C

D,i

D,ii D,iii
Fig. 4. To capture out-of-plane deformations, (A) additional fold lines
(bd, bf, eg, and ei ) are introduced diagonally across the facets. (B) The
deformations of the unit cells can be visualized by means of bounding
planes, which represent the tessellation boundary conditions ∠adg = ∠cfi
and ∠abc = ∠ghi. The resulting out-of-plane deformation modes are
(C ) twisting and (D) saddle-shaped bending, which are, respectively, an-
tisymmetric and symmetric in the yz plane (15). (D, i ) For the bending
mode, the tilt angles of the bounding planes, dρxx and dρyy, can be con-
verted to a corresponding change in curvature of the folded sheets: (D, ii )
κxx = dρxx/2S; (D, iii ) κyy = dρyy/2L. Additional details are in SI Appendix.
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and

θB = arccos
�
cos θA

tan γA
tan γB

�
; [13]

where Eq. 13 provides a transfer function between the fold
angles of the successive layers A and B. In this paper, we only
consider θA ∈ [0, π/2]. Extending the range to include θA ∈ [−π/2,
0] will result in a metamaterial where the layers are no longer
nested but connected along their ridges.

Expansion Coefficient. As a result of the stacking process, the in-
plane expansion coefficient of both the cellular metamaterial and
a single Miura sheet are identical. For the 3D metamaterial,
the through-thickness expansion coefficient is now relevant. For
a single layer, the coefficients can be written as

νLH = −
«H
«L

=
1− sin2ψ
sin2ψ

[14]

and

νSH = − νLHνSL; [15]

with νSL being the in-plane expansion coefficient from Eq. 9. The
single-layer expansion coefficient will, thus, always be positive,
and its height will reduce as the sheet expands in plane.
For a stacked metamaterial, the total stack height Hs = n(HB −

HA) + HA, with n the number of repeating layer pairs AB. For
large values of n, the through-thickness expansion coefficient
can be written as

νLH = −
cos γB
cos γA

cosψA

tanψA

1
sinψB

: [16]

Within the given bounds on fold angle θA, νLH will always be
negative. In other words, the expansion coefficient for the 3D

metamaterial, consisting of a layering of Miura sheets, is oppo-
site to that of its constituent layers.
For small numbers of n, the expansion coefficient of the

metamaterial will transition from a positive to negative Poisson’s
ratio behavior, respectively governed by Eqs. 14 and 16, as the
number of stacked layers increases.

Relative Density. An important property of a cellular material is its
relative density. For a single-layered Miura-sheet, this quantity is
given by

ρ= t ·
ab sin γ
HSL

; [17]

with t is the sheet thickness. The density is minimal when the
denominator (i.e., the outer volume of the unit cell) reaches
its maximum:

∂HSL
∂θ

= 4a2b
tan2γ
cos γ

�
1− 2  sin2θ

�
cos3ψ

1+ tan2ξ
= 0; [18]

which will always be satisfied at θ = π/4. In other words, regard-
less of its geometry, a single-folded Miura-ori layer will always
reach maximal volume at the same fold angle. A similar expres-
sion for the stacked configuration is less obviously derived, be-
cause the height HB of the stacking layer can be freely specified.
We here state the material density as a function of the partly
folded configuration,

ρ=
t
L
·

"
1

HB=HA − 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
L
HA

�2

+
�
V
S

�2
s

+
1

1−HA=HB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

�
L
HB

�2

+
�
V
S

�2
s #

; [19]

expressed in terms of the dimensionless groups ρc/ρ, t/L, HB/HA,
L/HA, and V/S.

A
B
A
B
A
B
A

Fig. 5. Individual Miura-ori sheets can be stacked together and bonded along joining fold lines to form a folded cellular metamaterial. Although the Miura-
ori unit cell geometry varies between successive layers, the stacked configuration preserves the folding kinematics, and the 3D metamaterial expands/con-
tracts uniformly. Here, a stack with alternating layers ABABABA is shown. An animation of the folding motion is provided by Movie S1.
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Self-Locking. An interesting feature of the Miura-ori pattern
is the ability to automatically control the maximum fold depth
of a sheet, which can be achieved by varying the unit cell ge-
ometry within a layer: when a unit cell reaches its maximum
fold angle θ = π/2, it locks up, and the folding motion of the

entire sheet is halted. It will be shown that, in the stacked
configuration, the folding motion is preserved when varying
the unit cell geometry within the layers, and the metamaterial
can, therefore, be designed to lock in a predetermined con-
figuration (Fig. 6).
First consider two adjoining unit cells A1 and A2 with different

geometries (Fig. 7). Taking A1 as reference configuration, the
relationships ψA1 = ψA2 and aA1 = aA2, thus, leave γA2 and bA2 to
be chosen freely for unit cell A2. By selecting γA2 < γA1, unit cell
A2 will lock at θA2 = π/2, when ψA = γA2. The corresponding θA1
can be calculated from

θA1 = arcsin
�
sin θA2

sin γA2
sin γA1

�
: [20]

Next, consider the stacking of layers A and B, with unit cells B1
and B2 stacked onto A1 and A2, respectively (Fig. 7). Using Eq.
11, with the knowledge that aA1 = aA2 and aB1 = aB2, the geo-
metric condition

cos γA1
cos γB1

=
cos γA2
cos γB2

[21]

must be satisfied to enable stacking. With the four unit cells in
place, their combined kinematics can be studied. The in-plane

Fig. 6. A self-locking folded cellular metamaterial. As the Miura sheets
contract, the unit cells in the central column reach their maximum fold angle
before the rest of the layer, thereby halting the folding motion and locking
the metamaterial in a predetermined configuration. This behavior can be
achieved by varying the unit cell geometry within each layer. An animation
of the folding motion is provided by Movie S2.

A1

A2

B1

B2

A

B

Fig. 7. The unit cell geometry of the Miura pattern can be varied within each layer. A shows layer A with unit cells A1 and A2, on which are stacked unit cells
B1 and B2 in layer B. The relationship between the unit cell geometries is given by Eq. 21. The geometry γA2 < γA1 is selected such that unit cells A2 and B2 will
lock in a predetermined configuration, which is shown in B.
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expansion coefficient of unit cell A2, as transferred from A1 to
A2, is given by

−νA2SL = tan2γA2 −
sin2γA1
cos2γA2

sin2θA1: [22]

Similarly for unit cell B2, as transferred through A1 and B1, the
expansion coefficient can be expressed as

−νB2SL =
cos2γB1   cos2θA1   tan2γA1

cos2γB2

−
sin2γB1
cos2γB2

+ tan2γB2:

[23]

To preserve the compatibility between layers A and B during
folding, Eqs. 22 and 23 must be equal for any value of θA1. It
can be shown that this equality is satisfied under the same geo-
metric condition as given in Eq. 21. In other words, when a config-
uration is found where four unit cells fit together, they will remain
compatible in any folded configuration. Therefore, a stacked
metamaterial where the unit cell geometry is varied within the
layers will still fold freely.

Discussion
In this paper, we have described the geometry of two folded
metamaterials, both based on the Miura-ori fold pattern, that
display intriguing mechanical properties.
The folded shell structure, consisting of a single Miura sheet,

has opposite Poisson’s ratios for in-plane and out-of-plane
deformations. For planar deformations, it has a negative Poisson’s
ratio, whereas under bending, it deforms into a saddle-shaped

configuration characteristic of a positive Poisson’s ratio. Remark-
ably, these Poisson’s ratios are found to be equal and opposite.
By stacking folded Miura layers into a 3D structure, a cellular

folded metamaterial is obtained. Although the unit cell geometry
varies between successive layers, the folding motion is preserved
for the stack. The result is a metamaterial that can fold and
unfold uniformly. What is more, because the folding motion has
a single degree of freedom, the folded metamaterial can be
machined into any desired shape and still preserve its folding
motion. Applications can be found in impact absorption as well
as deployable structures. A key difference with the folding
metamaterial described in ref. 8 is the potential simplicity of
manufacture. The individual folded sheets can be manufactured
using established manufacturing methods (14) before being
stacked and joined along fold lines.
The geometric richness of the stacked metamaterial can be

further exploited by varying the fold pattern within a layer. For
instance, the folding motion can be halted at a desired fold angle,
enabling the design of metamaterials that can lock into a specific
configuration. This ability can be put to effective use in self-as-
sembly techniques. Using established micromanufacturing tech-
niques, a sheet can be folded using strain differentials across the
fold lines; the final configuration can then be ensured by using
a self-locking geometry. Alternatively, the self-locking can pro-
vide a tailored stiffening response of the metamaterial under an
impact load.
The geometric approach taken in this paper clearly provides

a highly idealized analysis of the structural mechanics of the
folded metamaterials. Future work may characterize the me-
chanical properties that do not follow from the described kine-
matics, such as shear deformations.
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