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Scale-free fluctuations are ubiquitous in behavioral performance
and neuronal activity. In time scales from seconds to hundreds of
seconds, psychophysical dynamics and the amplitude fluctuations
of neuronal oscillations are governed by power-law-form long-
range temporal correlations (LRTCs). In millisecond time scales,
neuronal activity comprises cascade-like neuronal avalanches that
exhibit power-law size and lifetime distributions. However, it
remains unknown whether these neuronal scaling laws are corre-
lated with those characterizing behavioral performance or whether
neuronal LRTCs and avalanches are related. Here, we show that
the neuronal scaling laws are strongly correlated both with each
other and with behavioral scaling laws. We used source recon-
structed magneto- and electroencephalographic recordings to char-
acterize the dynamics of ongoing cortical activity. We found robust
power-law scaling in neuronal LRTCs and avalanches in resting-state
data and during the performance of audiovisual threshold stimulus
detection tasks. The LRTC scaling exponents of the behavioral per-
formance fluctuations were correlated with those of concurrent
neuronal avalanches and LRTCs in anatomically identified brain
systems. The behavioral exponents also were correlated with
neuronal scaling laws derived from a resting-state condition and
with a similar anatomical topography. Finally, despite the differ-
ence in time scales, the scaling exponents of neuronal LRTCs and
avalanches were strongly correlated during both rest and task
performance. Thus, long and short time-scale neuronal dynamics
are related and functionally significant at the behavioral level.
These data suggest that the temporal structures of human cog-
nitive fluctuations and behavioral variability stem from the scaling
laws of individual and intrinsic brain dynamics.
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Human cognitive and behavioral performance is highly vari-
able and exhibits slow fluctuations that are salient in con-

tinuous performance tasks (CPTs) (1). Psychophysical time series
have been known since the early 1950s to be nonrandomly clus-
tered (2), and later studies have shown that hit-rate and/or re-
action-time fluctuations in CPT data are fractal and power-law
autocorrelated across hundreds of seconds (3–9). The biological
origins and relevance of these dynamic, however, remain unclear
(10, 11).
Similar to those in behavioral performance, the fluctuations of

collective neuronal activity at many levels of the nervous system
are scale-free and governed by power-law scaling laws. On long
time scales (100−103 s), scale-free fluctuations and long-range
temporal correlations (LRTCs) are salient in the amplitude enve-
lopes of spontaneous neuronal oscillations in data recorded with
magneto- and electroencephalography (M/EEG) (12). It appears
that these oscillation amplitude fluctuations reflect the un-
derlying dynamic architecture of spontaneous brain activity dis-
covered with functional MRI (fMRI) and defined by correlated
slow fluctuations in blood oxygenation level–dependent (BOLD)

signals among well-delineated functional brain systems (13–15).
The oscillation amplitudes are directly correlated with these BOLD
fluctuations (16–20) and exhibit interareal correlations that closely
match those of BOLD signals (17, 21–23). Moreover, BOLD
signals also exhibit scale-free temporal (24–26) and spatiotem-
poral correlations (27–29). The scaling laws of LRTCs thus are a
unifying fundamental characteristic of spontaneous brain activity
(1, 30, 31).
On short time scales (10−3−10−1 s), negative deflections in local

field potentials form spatiotemporal cascades of activity, “neu-
ronal avalanches” (32–34), the size and lifetime distributions of
which are power laws akin to those of a critical branching process
(33). Neuronal avalanches characterize spontaneous neuronal
network activity in organotypic cultures (32), brain slices in vitro
(35), and monkey (34) and human cortex (36) in vivo. In monkey
cortex, the avalanches are delimited by cycles of ongoing neuro-
nal oscillations (34) showing that in addition to LRTCs (12),
neuronal avalanches also coexist with neuronal oscillations.
The power-law scaling behavior and fractal properties of neu-

ronal LRTCs and avalanches strongly suggest that the brain
operates near a critical state (12, 30, 32, 33, 37). Computational
modeling predicts that LRTCs and neuronal avalanches are cou-
pled (38) and suggests that they coemerge from neuronal inter-
actions in a critical regime (30). So far, however, neither the
relationship between LRTCs and avalanche dynamics nor their
significance at the behavioral level has been elucidated. We hy-
pothesize here that the scaling laws of LRTCs and neuronal ava-
lanches are related and are correlated with the interindividual
variability in behavioral scaling laws. We test the hypothesis with
source reconstructed task- and resting-state M/EEG recordings
and show that behavioral scaling laws, LTRCs, and neuronal
avalanches are strongly correlated.

Results
Paradigm for Mapping Individual Behavioral and Neuronal Scaling
Laws. As an experimental task that yields psychometric data for
probing the scaling laws of cognitive dynamics (7), we used a
factorial audiovisual threshold-stimulus detection task (TSDT)
in which the subjects were presented independent and continuous
auditory and/or visual stimulus streams. The subjects attended
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either the visual or the auditory stream, or both streams
concurrently, and reported each perceived stimulus in the atten-
ded modality. In TSDTs, the stimulus intensity is adjusted before
the experiment so that approximately half the stimuli are per-
ceived and then kept constant (Fig. 1A and Fig. S1A) (7, 39).
Auditory, visual, and audiovisual tasks revealed complex tem-
poral structures in individual behavioral time series with intermit-
tent sequences of detected (Hits) and undetected stimuli (Misses)
(Fig. 1B). We used detrended fluctuation analysis (DFA) to eval-
uate the underlying scaling laws and found that the Hit–Miss series
were characterized by robust LRTCs (Fig. 1C and Fig. S2A; r2 =
0.978 ± 0.003, mean ± SD for 56 datasets). At the group level, the
behavioral scaling exponents were significantly modulated by both
the stimulus modality (auditory/visual) and the task (uni-/bimodal)
(Fig. S2A). Nevertheless, although the task effects accounted for
11% of total variance in behavioral scaling exponents, as much as
44% of total variance was attributable to interindividual variability.
To test whether the scaling laws of neuronal activity underlie

the interindividual variability in the behavioral scaling laws, we
used M/EEG for noninvasive measurements of ongoing brain
activity and source reconstruction methods for transforming fil-
tered M/EEG data into time series of 400 patches fully covering

the cortical surface (Materials and Methods). We extracted am-
plitude fluctuations of ongoing cortical oscillations with narrow-
(Fig. 1D) and broad-band filters. The scaling exponents of LRTCs
in neuronal amplitude fluctuations then were estimated with
DFA (Fig. 1E). These source-level data revealed fractal ampli-
tude fluctuations (Fig. 1D) and hence corroborate earlier M/EEG
sensor-level (12) and electrocorticographic (40) investigations in
revealing highly robust LRTCs in all studied frequency bands
(r2 = 0.993 ± 0.0006; Fig. S2B). The mean LRTC scaling expo-
nents of 10-Hz amplitudes were significantly different among the
three task conditions (Fig. S2B).
To obtain a complementary view of the scaling laws of human

brain dynamics, we searched for neuronal avalanches—uninter-
rupted cascades of large-magnitude events across the cortical
surface—by using broad-band filtered data and peak detection
(34). These events were salient in source-reconstructed M/EEG
data (Fig. 1F and Fig. S3A) and were characterized by power-law
size and lifetime distributions with exponents close to those of
a critical branching process (−1.5 and −2, respectively (33) (Fig. 1
G and H). To confirm the power-law nature of these distributions,
we reproduced all analyses with surrogate data. Although the size
and lifetime distributions of surrogate data were fit by exponentials

Fig. 1. Paradigm for mapping individual behavioral and neuronal scaling laws with TSDTs and source-reconstructed M/EEG recordings. (A) Examples of noise-
embedded visual and auditory stimuli whose SNRs are tuned before the experiment to yield an ∼50% hit rate and then kept constant (Fig. S1). (B) Behavioral
performance time series of detected (upward ticks) and undetected (downward ticks) display rich dynamics in a bimodal audiovisual TSDT (visual, red; auditory, blue;
time series are for thefirst 10minof a 30-min sessionof a representative subject). (C) Visual and auditory detection time series exhibit LRTCs thatmaybe characterized
for each subject byDFAexponents, βV and βA. (D) Amplitudefluctuations ofneuronal oscillations in local cortical patches (here, 10Hz in the inferior parietal gyrus) are
fractally self-similar and (E) show robust LRTC. (F) Avalanche dynamics are salient in source-reconstructed broad-band data. The time series of cortical patches in the
example avalanche (see also Fig. S3A) are color codedby the peak latency. These colors correspond to those displayedonpial andflattened cortical surfaces and show
the progression of this activity cascade from posterior parietal to temporal and postcentral loci. (Bottom) The avalanche time series (black lines) show the number of
cortical patches in which a peak was found, with zeros indicating interavalanche periods. (G) The sizes and lifetimes of cortical avalanches are approximately power-
law distributed with exponents, α, close to those of a critical branching process (−1.5 and −2, respectively). (H) In line with this notion, the kappa index, κ, for the size
distribution is close to 1. All data in this figure are from the same 30-min session of a subject representative in having β closest to population mean.
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better than by power laws (P < 10−4, T test), the original data were
much better represented by a power-law than by an exponential
(P < 10−10, T test; for further corroboration, see Fig. S3 B–D). Like
those of LRTCs, the scaling exponents of neuronal avalanches
were modulated by the tasks (Fig. S3 B andC). To confirm that the
LRTCs and neuronal avalanches in these data were not attribut-
able to artificial sources, we reproduced these analyses on inverse-
modeled empty-room magnetoencephalography (MEG) data as
well as on forward- and inverse-modeled simulated uncorrelated
brain activity. These control experiments rule out the possibility
that environmental or instrument noise, the mixing of neuronal
signals at the scalp level, or the source reconstruction methods
might contribute to the power-law scaling behavior of LRTCs and
avalanches found here to characterize brain activity (Fig. S4).

Neuronal and Behavioral Scaling Laws Are Correlated. To test our
hypothesis of a relation between power-law scaling of brain ac-
tivity and behavior, we first averaged the DFA exponents across
brain regions and task conditions. Individual variation in the DFA
exponents of the behavioral time series exhibited a remarkable
dependence on the LRTCs of 10-Hz oscillations, whether estimated
from task data or from separate resting-state data (Fig. 2A). A sim-
ilar relationship was found throughout frequency bands from 5 to

30 Hz, for broad-band amplitudes, and for the DFA exponents of
the avalanche time series (Fig. 2B). Interestingly, the short–time
scale avalanche dynamics, as quantified by the power-law expo-
nents of size or lifetime distributions, also were correlated with the
behavioral scaling exponents in both task- and resting-state data
(Fig. 2C and Fig. S5 A and B). Hence, a large fraction of interin-
dividual variability in behavioral scaling laws is explained linearly
by corresponding variability in the neuronal scaling laws.
To test whether arousal fluctuations driven by the autonomic

nervous system played a role in this correlation, we characterized
the scaling behavior of heart-rate fluctuations and evaluated the
correlation of these scaling exponents with those of behavioral
and neuronal (10-Hz) LRTCs during task performance (Fig. S6
A–D). The scaling exponents of heart-rate variability indeed were
correlated with both neuronal and behavioral exponents, but a
partial correlation analysis revealed that the correlation with
behavior was indirect and that the neuronal LRTCs were a me-
diating variable (Fig. S6E). The same result was found when
comparing heart-rate and neuronal LRTCs measured during rest
with task-state behavioral LRTCs (Fig. S6 F–H).
We then tested our second hypothesis about whether the

LRTC and avalanche dynamics were related. The LRTCs of 10-

Fig. 2. Scale-free neuronal dynamics are correlated with interindividual variability in behavioral scaling laws. (A) Mean local LRTCs in the 10-Hz band (β) both
during the TSDT task performance and in a separate resting-state session are correlated with the mean behavioral scaling exponents (βbehav.). (B) This cor-
relation was significant in frequency bands from 5 to 30 Hz, in broad-band data, and for the avalanche DFA (*P < 0.05, **P < 0.01; ***P < 0.005). (C) Scaling
exponents of the size (purple) and lifetime (black) distributions of neuronal avalanches in task- and resting-state data are correlated with the behavioral
scaling exponents. (D) The LRTC scaling exponents of neuronal amplitude fluctuations in the 10-Hz and (E) all other studied frequency bands are strongly
correlated with the scaling exponents of neuronal avalanches. (F) Partial correlation analysis shows that neuronal LRTCs also are correlated with behavioral
LRTC when the contribution of neuronal avalanches is factored out and that the correlation between avalanches (α) and behavioral LRTC (β*) is mediated
through the correlation between neuronal LRTCs (β) and avalanches (see also D and E).
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Hz oscillations were strongly correlated with the scaling expo-
nents of neuronal avalanches (Fig. 2D and Fig. S5B). Surpris-
ingly, the correlation between LRTCs and avalanches was
even more pronounced in the other frequency bands (Fig. 2E).
These data thus indicate that short (10−3−10−1 s) and long
(100−103 s) time-scale neuronal dynamics are related and cor-
related with behavioral scaling laws. The correlation between
neuronal LRTCs and avalanches raises the question of whether
they both are directly correlated with the behavioral scaling laws.
We addressed this question with a partial correlation analysis and
found that, in fact, the correlation of neuronal avalanches with
behavior was fully explained by their correlation with neuronal
LRTCs, although factoring out the contribution of neuronal
avalanches did not alter the correlation between neuronal and
behavioral LRTCs (Fig. 2F).

Specific Cortical Regions Underlie the Correlation Between Neuronal
and Behavioral Scaling Laws. The cortical structures underlying
brain–behavior correlations were identified by correlating the
DFA exponents of each cortical patch with the exponents of the
behavioral scaling laws. For clarity, we collapsed the data into θ/α
(5, 7.5, and 10 Hz) and β/γ (15, 20, and 30 Hz) frequency bands.
In both θ/α and β/γ bands, visual behavioral LRTCs were cor-
related with neuronal LRTCs during task performance in the
posterior parietal cortex and, in the β/γ band, also in the cuneus
and inferotemporal visual regions. These cortical regions are
task relevant in supporting visual attentional and representa-
tional functions, respectively. In addition, however, neuronal and
behavioral LRTCs in the visual task were correlated in assum-
ingly task-irrelevant sensorimotor regions and in those belonging
to the default mode system, such as the posterior cingulate,
precuneus, medial prefrontal cortex, and inferior parietal cortex
(Fig. 3A). These observations are well in line with the notion that
the detection-probability fluctuations in TSDT experiments may
be determined largely by antagonistic (41) fluctuations of
modality-specific attentional and default-mode systems (1, 19).
When comparing the visual behavioral LRTCs with neuronal
LRTCs in the resting state, we found a similar, albeit more
widespread, anatomical pattern of correlations (Fig. 3B). This
suggests that individual endogenous brain dynamics largely are
preserved during the tasks. The resting-state data also show that
the brain–behavior correlation of LRTCs in the sensorimotor
system cannot be explained simply by motor response–related
amplitude transients during task performance. Additional anal-
yses of sensorimotor amplitude time series and motor responses
showed that even during task performance, the motor responses
do not bias the correlation between sensorimotor and behavioral
LRTC exponents or introduce artificial correlations (Fig. S7).
Similar to the visual modality, the comparison of neuronal and
behavioral scaling laws in the auditory task revealed significant
correlations in both task-relevant and -irrelevant regions, al-
though the neuronal correlates of the behavioral scaling laws in
visual and auditory tasks clearly involved distinct cortical regions
(compare Fig. 3 A and B with C and D). Task-relevant structures
included predominantly the inferior frontal and superior tem-
poral gyri that support auditory attentional and sensory process-
ing, respectively, as well as the anterior cingulate and insula (Fig.
3C). Neuronal LRTCs in the conceivably task-irrelevant visual
cortical areas in the occipital and inferotemporal cortices, how-
ever, also were strongly correlated with behavioral LRTCs in the
auditory task. Importantly, these regions together closely match
those found to be correlated with auditory TSDT performance in
fMRI (42). A similar anatomical pattern also was observed in the
resting state (Fig. 3D), corroborating the notion that endogenous
neuronal dynamics are preserved during task performance.

Discussion
In the present study, we found that the strength of autocorrela-
tions in neuronal oscillations during task performance, as indexed
by individual LRTC scaling exponents, was correlated with the
LRTCs in behavioral time series. Importantly, these behavioral
scaling exponents were correlated with neuronal exponents also
measured during the performance of another task or during rest,
indicating that the relationship is not specific to the concurrent
task (Fig. S8) and suggests that this neuronal dynamics arises en-
dogenously. The neuronal sources showing correlations between
brain and behavior were localized to task-positive systems, in-
cluding the visual and auditory cortices, as well as to regions
controlling attention. Interestingly, neuronal LRTCs in a subset of
the default-mode network (DMN) also were correlated with be-
havioral LRTCs. These observations are in line with fMRI studies
suggesting that out-of-phase slow fluctuations (41) in such task-
relevant and task-irrelevant structures, e.g., in somatosensory (43)
and auditory (42) TSDTs, predict trial-by-trial variation in be-
havioral performance. Furthermore, a recent study shows that
DMN activity might underlie focused attentional states during

Fig. 3. Neuronal correlates of behavioral scaling laws. Pearson correlation
coefficients were computed between βbehav. and β in the six narrow-fre-
quency bands for each cortical patch (Fig. 2B), and significant (P < 0.05, FDR
corrected) correlations were displayed on cortical surfaces collapsed into θ/α
(5, 7.5, and 10 Hz) and β/γ (15, 20, and 30 Hz) frequency ranges. For each
cortical patch of the Destrieux parcellation, the color intensity indicates the
fraction of significant correlations across the three bands (pale, 1/3; medium,
2/3; full, 3/3). (A) Correlation of visual behavioral scaling exponents, βV, with
the β of neuronal LRTCs during visual task performance. (B) Correlation of βV
with β in separate resting-state data. (C) Correlation of auditory behavioral
scaling exponents, βA, with the β of neuronal LRTCs during auditory task
performance. (D) Correlation of βA with β in separate resting-state data. a,
Anterior; C, central; CI, cingulate; CN, cuneus; F, frontal; G, gyrus; i, inferior;
LIN, lingual; m, middle; O, occipital; P, parietal; p, posterior; pr, pre; s,
superior; T, temporal. Colors: red, occipital; green, parietal; blue, frontal;
yellow, temporal; purple, cingulate. iPG shows the angular part.
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continuous performance tasks (44). These BOLD signals and the
oscillation amplitude fluctuations, such as those measured in this
study, covary in intrinsic connectivity networks (16, 18, 19, 21, 22).
Importantly, because similar albeit more widespread correla-

tions between neuronal and behavioral LRTCs also were observed
during rest (Fig. 3), the individual phenotypic variability in neu-
ronal scaling laws may be a determinant of the dynamic nature of
variability in task performance. Supporting this idea, LRTCs in
oscillations are heritable (45), test–retest reliable (46), and cor-
related with brain pathologies (40, 47–50). Considering that the
exponents of autonomic nervous system fluctuations were corre-
lated only indirectly with behavior (Fig. S6), the intrinsic organi-
zation of neuronal networks as reflected in scaling laws of neuronal
fluctuations is a likely physiological substrate of the scaling laws
governing the variability in psychophysical performance (1, 12).
The notion of phenotypic and individual neuronal scaling laws

is in line with computational modeling showing that emergent
fluctuations in resting-state neuronal activity with realistic struc-
tural connectivity exhibit spatiotemporal power-law scaling (51).
The individual variability in the scaling laws of neuronal ava-
lanches, LRTCs, and behavior thus might arise mechanistically
from the dynamics of neuronal activity in the individual brain
architecture of structural connectivity (30, 38, 52, 53) together
with individual variability in the expression of cellular level
mechanisms (54–56) that regulate, for instance, the excitation–
inhibition balance (38). Neuronal avalanches appear phenome-
nologically distinct from LRTCs in that they involve a spatial
dimension and time scales much shorter than those typically as-
sociated with LRTCs (10−3−10−1 vs. 100−103 s, respectively).
Nevertheless, as predicted theoretically (38), we found that the
power-law exponents of avalanche size and lifetime distributions
were strongly correlated with those of LRTCs in a range of fre-
quency bands. Although the avalanche exponents also were cor-
related with behavioral LRTCs, this relationship was indirect and
mediated by neuronal LRTCs. We suggest that neuronal ava-
lanches and oscillations exhibiting LRTCs coemerge in near–
critical-state brain dynamics and reflect propagating neuronal
activity at widespread spatial and temporal scales.
Criticality has gained widespread interest in neuroscience as a

framework for understanding the character and functional im-
plications of variability in brain activity (12, 30, 32). The meta-
stability of critical systems maximizes their dynamic range (57),
storage capacity (58), and computational power. Fractal self-
similarity, power-law scaling behavior, and “1/f noise” at the
phenomenological level are typical for systems exhibiting “ava-
lanche dynamics” and operating in a critical (37) or self-organized
critical state (59). Nevertheless, the fact that numerous complex
systems exhibit similar dynamics raises the question of whether
fractal neuronal dynamics are an epiphenomenon without func-
tional relevance. Our results contribute to this context in two
respects. First, the discovery that neuronal scaling only in well-
delineated and task-specific brain systems is correlated with hu-
man behavioral scaling suggests that neuronal criticality is not
epiphenomenal. Second, the observations of LRTCs and neuro-
nal avalanches with power-law size and lifetime distributions add
to the growing body of data suggesting that the human brain
operates near a critical regime (12, 30, 32, 33), which may fun-
damentally determine the dynamics of human perceptual, cog-
nitive, and behavioral processes.

Materials and Methods
Subjects and Stimuli. Fourteen healthy subjects (seven females) participated in
the experiment, which comprised three continuous 30-min M/EEG task-state
recordings followed by a 10-min resting-state recording. In each of three 30-
min task-state experiments, continuous, concurrent, and uncorrelated series
of constant-intensity noise-embedded threshold-level auditory and visual
stimuli were presented. The interstimulus interval ranged from 1.5 to 6 s, with
a mean of 3.75 s, yielding a total of 480 auditory and visual stimuli per

experiment. Before each experiment, the subject was instructed to indicate
the perception of each stimulus in the attended sensory modality by pressing
a button with the index finger (left/right hand pseudo-randomly counter-
balanced across subjects). In the three randomly ordered task-state record-
ings, the tasks were to attend the auditory (A), the visual (V), or both (B)
stimuli. Before the onset of the experiment, the intensities of auditory and
visual stimuli with respect to the continuous background, as indexed by
a signal-to-noise ratio (SNR), were calibrated separately to yield an initial
detection probability (hit rate, HR) of ∼50%. After calibration, these SNR
values were kept constant throughout the experiment.

M/EEG Recordings and Source Reconstruction. We recorded 366-channel M/
EEG data with 204 planar gradiometers, 102 magnetometers, and 60 EEG
electrodes (Elekta Neuromag Ltd.) at a 600-Hz sampling rate. The MaxFilter
software was used to suppress extracranial noise and to colocalize the signal
space data from different recording sessions and subjects. For cortical surface
reconstructions, we recorded T1-weighted (magnetization-prepared rapid
gradient echo) anatomical magnetic resonance images at a ≤ 1 × 1 × 1-mm
resolution with a 1.5-T MRI scanner (Siemens). This study was approved by
the Ethical Committee of Helsinki University Central Hospital and was per-
formed according to the Declaration of Helsinki. Written informed consent
was obtained from each subject before the experiment. FreeSurfer software
was used for automatic volumetric segmentation of the MRI data, surface
reconstruction, flattening, cortical parcellation, and labeling with the Des-
trieux atlas; the MNE software was used to create three-layer boundary el-
ement conductivity and cortically constrained source models, to colocalize
M/EEG–MRI data, and to prepare the forward and inverse operators (SI
Materials and Methods). M/EEG time series were filtered into seven fre-
quency bands, f. A bank of Morlet wavelets (f = 5, 7.5, 10, 15, 20, and 30 Hz)
yielded narrow-band data and a finite impulse-response filter was used for
broad-band filtering from 0.1 to 45 Hz (pass-band from 1 to 30 Hz). After
filtering, M/EEG sensor data were inverse transformed and then collapsed
into time series of 400 cortical patches with individual fidelity-optimized
parcellations (FOPs; SI Materials and Methods). Statistics and visualization
were performed in the 148-patch Destrieux parcellation. The scaling expo-
nent of each Destrieux parcellation patch was calculated by averaging the
exponents of corresponding subpatches in the FOPs.

Estimation of Neuronal and Behavioral Scaling Laws. The monofractal scaling
exponents of neuronal and behavioral LRTCs were estimated with DFA (12) of
band-amplitude envelopes and Hit–Miss time series (SI Materials and
Methods). A single neuronal avalanche was defined as a set of continuous
samples in which one or more peaks in broad-band filtered data were ob-
served. The number of peaks in the avalanche was taken as its size and the
time spanned by the samples as its lifetime. The scaling exponents of the size
and lifetime distributions then were estimated as in ref. 34 and the κ indices
as in ref. 58 (for details, see SI Materials and Methods).

Statistical Analysis. The correlations among neuronal and behavioral LRTC
scaling exponents and those of avalanche dynamics were assessed with
Pearson correlation coefficients. In Fig. 2, the behavioral scaling exponents
were averaged across conditions (βbehav.; Fig. 2A), the neuronal scaling ex-
ponents were averaged across patches and task conditions for each frequency
band (Fig. 2B), and the significance of the correlation coefficient was assessed
with t-statistics: t = r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn− 2Þ=ð1− r2Þ

p
, where r is the correlation coefficient

and n is the sample size (number of subjects). To measure the degree of as-
sociation between βbehav., β, and αlifetime/size, we used a partial correlation
analysis by computing Pearson correlation coefficients between each pair of
sets, regressing out the effect of the third set (Fig. 2F and Fig. S6).

In Fig. 3, the correlation between behavioral scaling exponents and the
patchwise neuronal scaling exponents was estimated with the Pearson corre-
lation coefficient as above. To identify the most central cortical regions un-
derlying behavioral scaling laws separately for the auditory and visual modali-
ties, the fraction of significant coefficients (P < 0.05, corrected for multiple
comparisons) was assessed in the unimodal tasks (Fig. 3). False discovery rate
(FDR) control was applied to correct the statistical significance for multiple
comparisons collectively across all cortical regions and the six frequency bands.

To estimate the task and modality effects on the behavioral scaling
exponents, two-way ANOVA was applied with task (auditory/visual) and
modality (uni-/bimodal) as the independent variables and the scaling expo-
nents were computed for each subject and condition as the dependent
variables. The task effect for the neuronal and avalanche scaling exponents
was estimated using one-way ANOVA with condition (either auditory/visual/
audiovisual or task/rest) as the independent variables and scaling exponents
of each subject and condition as the dependent variable.
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