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Abstract
Biphasic contact analysis is essential to obtain a complete understanding of soft tissue
biomechanics, and the importance of physiological structure on the joint biomechanics has long
been recognized; however, up to date, there is no successful developments of biphasic finite
element contact analysis for 3D geometries of physiological joints. The aim of this study is to
develop a finite element formulation for biphasic contact of 3D physiological joints. The
augmented Lagrangian method was used to enforce the continuity of contact traction and fluid
pressure across the contact interface. The biphasic contact method was implemented in the
commercial software COMSOL multiphysics. The accuracy of the implementation was verified
using 3D biphasic contact problems, including indentation with a flat-ended indenter and contact
of glenohumeral cartilage layers. The ability of the method to model multibody biphasic contact of
physiological joints was proved by a 3D knee model. The 3D biphasic finite element contact
method developed in this study can be used to study the biphasic behaviors of the physiological
joints.
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1 Introduction
Osteoarthritis is a degenerative disease that affects cartilage and subchondral bone of
articulating joints. Mechanical behavior of the articular cartilage has long been associated
with the initiation of this disease. Clinical and animal studies have been used to test these
hypotheses; however, not all of the mechanical components can be measured, and not all of
the observed failures are at the surface of the tissues (Freeman, 1975). Because of this
fundamental limitation of experimental measures, a numerical solution of articular cartilage
is essential to obtain a more complete understanding of the diarthrodial joint biomechanics.

Biphasic theory (Mow et al., 1980) has been widely used to model biomechanical behavior
of hydrated soft tissues, such as articular cartilage and meniscus. It considers hydrated soft
tissues as mixture of a porous-permeable solid phase and an interstitial fluid phase.
Analytical solutions for the biphasic contact mechanics in axisymmetric joints have been
developed (Ateshian et al., 1994; Ateshian and Wang, 1995; Wu et al., 1997; Wu et al.,
1998a), but these solutions apply to fairly idealized problems. In order to investigate the
biomechanical behavior of human diarthrodial joints which are tremendously complex, it is
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necessary to use numerical methods, such as the finite element method. Donzelli and Spilker
(Donzelli and Spilker, 1998; Donzelli et al., 1999) implemented a Lagrange multiplier finite
element method to investigate the contact mechanics of biphasic cartilage layers in 2D under
small deformations, and they found that the surface curvature of articular cartilage
significantly changed the stress and strain in the tissue. Yang and Spilker (Yang and Spilker,
2007) extended the Lagrange multiplier finite element method to 3D contact problems. Chen
et al. (Chen et al., 2005) investigated contact mechanics of biphasic cartilage layers in 2D
under large deformations and sliding, also using a Lagrange multiplier method, whereas
Ateshian et al. (Ateshian et al., 2010) used an augmented Lagrangian method to investigate
biphasic contact mechanics in 3D. Beside self-developed biphasic contact programs, the
commercial finite element software ABAQUS is a program widely used to study soft tissue
contact (Federico et al., 2004; Pawaskar et al., 2010; Pawaskar et al., 2011; Warner et al.,
2001; Wu et al., 1998b). However, the ‘drainage-only-flow’ boundary condition
implemented in ABAQUS (i.e. the fluid only flows from the interior to the exterior of the
cartilage layer) is inconsistent with the equation of conservation of mass across the contact
interface (Hou et al., 1989). Recently, Guo and Spilker developed an augmented Lagrangian
method for 2D and 2D axisymmetric contact problems of cartilage layers, and implemented
it in COMSOL Multiphysics (Guo et al., 2012a; Guo et al., 2012b; Guo and Spilker, 2011a;
Guo and Spilker, 2011b).

In sum, though the importance of physiological structure and fluid flow on the joint
biomechanics has long been recognized (Fithian et al., 1990), to date, there have been no
successful developments of biphasic finite element contact analysis for 3D geometries of
physiological joints. The aim of this paper is to extend the augmented Lagrangian method
developed in our previous study (Guo et al., 2012b; Guo and Spilker, 2011b) to 3D contact
problems. Several example problems are provided to verify the accuracy of the method. The
ability of the method to simulate multibody biphasic contact of physiological joint is proved
via a 3D knee model with physiological geometries.

2 Methods
The velocity-pressure (v-p) formulation of infinitesimal deformation linear biphasic theory
(Almeida and Spilker, 1997) was adopted in this study based on its robustness with
tetrahedral elements. A standard continuum mechanics nomenclature was adopted, and the
indicial notation was used. The governing equations are

(1)

(2)

where superscripts s and f refer to the solid and fluid phases, respectively;  is the solid
phase velocity, which is the time derivative of the solid phase displacements ; κ is the

permeability of the fluid phase; p is the fluid pressure; (),i denotes the partial derivative; 

and  are the solid and fluid phase stress tensors;  is the solid phase strain tensor

(the superscript s is omitted);  is the material property tensor of the solid phase; and δij
is the Kronecker delta. The solid phase and fluid phase stress tensors are defined as:

(3)
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(4)

where φs and φf are the solid and fluid volume fractions, respectively, for the saturated (φs +
φf = 1) mixture.

The initial and boundary conditions on the non-contacting boundaries are

(5)

(6)

(7)

(8)

(9)

where an over-bar signifies a prescribed value of the quality; the subscript ()0 denotes an

initial value; total stress is defined as the sum of the fluid and solid stress, ; and

the relative fluid flow is defined as  or Q =−κp,ini. The boundaries Γβ,
β=u, v, p, t, and Q, correspond to portions on which displacement, velocity, pressure, total
traction, and relative flow, respectively, are prescribed.

Biphasic contact boundary conditions were taken from the theoretical work of Hou et al.
(Hou et al., 1989), and they were defined as

(10)

(11)

(12)

(13)

where superscripts A and B refers to two deformable bodies. These equations correspond to
kinematic conditions on the continuity of location of points in contact, Eq. (10); continuity
of the relative flow across the contact boundary, Eq. (11); kinetic continuity conditions on
the fluid pressure, Eq. (12); and the normal component of solid phase elastic stress, Eq. (13),
on the contact boundary. The continuity equation of the relative flow across the contact
boundary, Eq. (11), is under the assumption that the permeability is isotropic and constant.
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To enforce the contact constraint, the augmented Lagrangian framework for single-phase
contact problem (Simo and Laursen, 1992) was adapted to the current biphasic contact
framework (Table 1). An augmentation component was introduced for the contact pressure,
and an additional iteration level was added where the usual displacement and fluid pressure
variables were solved separately from the contact pressure. The algorithm repeated this
procedure until it fulfilled a convergence criterion.

The biphasic contact equations were implemented in commercial finite element software
(COMSOL Multiphysics 4.2®, COMSOL, Inc., Burlington, MA). As with earlier biphasic
implementations in COMSOL (Guo and Spilker, 2011b; Spilker et al., 2009), solid
mechanics from the Structural Mechanics Module and Darcy’s Law from the Earth Science
Module were combined and coupled to obtain the biphasic equations. A contact pair was
used to enforce contact constraint for the solid phase, and an identity pair was used to
enforce fluid continuity constraint for the fluid phase (for details see Appendix A).

3 Example Problems
3.1 Indentation test

Indentation experiments are frequently used to study the biomechanical properties of
articular cartilage. A mathematical solution was developed by Mak et al. (Mak et al., 1987).
Spilker et al. (Spilker et al., 1992) presented a finite element solution, but the porous
indenter was modeled as a free draining boundary and the contact between the indenter and
the cartilage was not modeled. In 2007, Yang and Spilker (Yang and Spilker, 2007) modeled
the 3D indentation test, and they used Lagrange multiplier method to model the biphasic
contact. In this study, biphasic indentation test with flat-ended indenter was used to verify
that the contact algorithm functioned as expected.

The indentation with a flat-ended indenter was modeled (Figure 1). A layer of soft tissue of
uniform thickness, h=0.75 mm, was attached to subchondral bone at its lower surface, and
indented normal to the tissue surface by a flat-ended cylindrical indenter of radius and
height, Rind =0.75mm. The radius of soft tissue was R0=4Rind mm since a previous study
has demonstrated that the tissue response is negligible for R0<4Rind (Spilker et al., 1992).
The subchondral bone was modeled as an impermeable, fixed surface. The top surface of the
indenter was subjected to a displacement of −0.075mm in a ramp time of 500s and then
held. A free-draining boundary condition was applied on the top surface of the indenter and
on the cartilage surface outside of the contact area. Material properties of the cartilage were
Young’s modulus E = 0.5417 MPa, Poisson’s ratio ν = 0.0833, permeability κ = 4.0 ×
10−15m4N−1S−1, and solid content φs = 0.2. Material properties of the indenter were E =
541.7MPa ,ν = 0.125, κ = 4.0 × 10−12m4N−1s−1, and φs = 0.95. The model was discretized
with a total of 22998 tetrahedral elements. The bottom surface of the indenter was set as
source boundary, and the top surface of the cartilage was set as destination boundary. To get
a better computational solution, the destination boundary had finer mesh than the source
boundary.

Results on shear stress σxy, and fluid pressure p, at several depths were in good agreement
with a previous study (Figure 2). For shear stress at the top level of the cartilage (Figure 2a),
smooth distribution was found under the loaded surface; minimum values were found at the
inside edge of the indenter; shear stress increased rapidly to a maximum value at the outer
edge of the indenter and then decreased rapidly to zero for r>Rind. Shear stress at the middle
and bottom level of the tissue varied smoothly with no boundary layers. The fluid pressure
(Figure 2b) increased with increasing depth, and varied smoothly.

Guo and Spilker Page 4

Comput Methods Biomech Biomed Engin. Author manuscript; available in PMC 2015 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Distribution of axial stress (Figure 2c) was in excellent agreement with results of a 3D finite
element solution of this indentation problem based on a Lagrange multiplier method (Yang
and Spilker, 2007). Large fluid pressure was found at mid-thickness and bottom surface of
the tissue under the loaded area, and fluid pressure was negligible at the indenter and the
tissue where r>2Rind. Very large negative axial stress was found at the edge of the indenter.
Negligible axial stress was found in the tissue for r>Rind. To examine the contact continuity
conditions along the contact surface, axial stress between the two bodies along the contact
boundary at t=250s were shown (Figure 2d). The continuity conditions were accurately
satisfied for both derived quality (axial stress) and primary parameters (displacement and
fluid pressure, data not shown). In sum, a biphasic indentation test was modeled in a 3D
model. Results at several depths were in good agreement with the published axisymmetric
solutions. Distribution of results was consistent with the previous solutions. The satisfaction
of continuity conditions was observed. All these results demonstrated the accuracy of the
augmented Lagrangian method developed in this study.

3.2 Glenohumeral Joint Contact
Unlike the indentation test with flat-ended indenter, the glenohumeral joint contact involves
evolving contact boundary. Yang and Spilker (Yang and Spilker, 2007) modeled the 3D
human glenohumeral joint using a Lagrange multiplier method. The same 3D model of the
human glenohumeral joint was developed to compare against the published solution. The
geometry of the model (Figure 3) was based on average values of stereophotogrammetric
data (Soslowsky et al., 1990). The contact-side radiuses of the glenoid cartilage and the
humeral head cartilage were 26mm and 23.5mm, respectively. The bone-side radius of the
glenoid cartilage was 34.5mm, and 23.5mm for the humeral head cartilage. The thicknesses
at the center were 1.5mm for both cartilages. The width of the glenoid cartilage was
11.5mm, and 19.1mm for the humeral head cartilage. Subchondral bones were assumed to
be rigid and impermeable, and were not explicitly modeled. Bone-cartilage interfaces were
modeled as impermeable surfaces. A compressive vertical displacement of 0.2mm was
applied to the humerus-bone surface in a ramp time of 10s and then held. The glenoid-bone
surface was held fixed. The bottom surface of the humeral head cartilage layer was set as
source boundary, and the top surface of the glenoid cartilage layer was set as destination
boundary. The model was discretized with 18627 tetrahedral elements. To get a better
computational solution, the destination boundary had finer mesh than the source boundary.
The material properties of the glenoid cartilage (Yang and Spilker, 2007) were Young’s
modulus E = 0.559MPa, Poisson’s ratio ν = 0.02, permeability κ = 1.16 × 10−15m4N−1S−1,
and solid content φs = 0.2. The material properties of the humeral head cartilage (Yang and
Spilker, 2007) were Young’s modulus E = 0.5565MPa, Poisson’s ratio, ν = 0.05,
permeability κ = 1.7 × 10−15m4N−1s−1, and solid content φs = 0.2.

Results of axial displacement (Figure 4a) and fluid pressure (Figure 4b) showed good
agreement with the 3D finite element solution based on the Lagrange multiplier method
(Yang and Spilker, 2007). Continuity conditions for fluid pressure and displacement across
contact interface were accurately satisfied. Tensile deformation was observed at the outer
portion of the contact surface. Maximum fluid pressure was found at the center of the
glenohumeral cartilage layers and decreased toward the edge of the contact. Maximum and
minimum principal elastic stresses for the solid phase are shown in figures 4c and 4d. The
solid phase experienced relatively low stress since a large portion of the load was carried by
the fluid phase. Peak values of both principal elastic stress occurred at the cartilage-bone
interface, away from the center. The circular bands of these peak values were smaller than
the contact radius. These findings agreed with Yang and Spilker’s solutions (Yang and
Spilker, 2007). All these results demonstrated the accuracy of the present biphasic contact
method.
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3.3 Knee Joint Contact
Up to now, most of the finite element models of the knee joint consider cartilage and
meniscus as solid. Several biphasic models of the knee joint (Donzelli, 1995; Guo et al.,
2012a; Wilson et al., 2003; Zhang, 2000) have been developed to study the interaction
between the fluid and solid matrix of the soft tissues during loading. Donzelli (Donzelli,
1995) presented a biphasic solution of the 2D axisymmetric knee using the Lagrange
multiplier method, but the ability of the implementation to solve the 3D physiological knee
model has not yet been demonstrated. Zhang et al. developed a magnetic resonance image
based 3D biphasic finite element model of the human knee joint (Zhang, 2000). But
physiological contact problems were not solved because fluid flow was assumed not to take
place between contact surfaces, which is inconsistent with the equation of conservation of
mass across the contact interface (Hou et al., 1989). Wilson et al. (Wilson et al., 2003)
developed a 2D axisymmetric biphasic model of human knee to study the initiation of the
osteoarthritis. However, they assumed that no fluid flow takes place between contact
surfaces. Furthermore, their model included a thin flexible membrane with a low stiffness
that was inserted between the articular cartilage layers and the meniscus - the membrane
could absorb most of the applied load, which is not physiologically meaningful. Guo and
Spilker (Guo et al., 2012a) recently presented a theoretically consistent 2D axisymmetric
solution of the knee joint. In sum, up to now, there is no theoretically consistent 3D biphasic
physiological knee model.

Biphasic contact of a 3D physiological knee joint was modeled in this study, and this 3D
knee model was used to verify the ability of the biphasic contact method to model contact of
physiological structures. The geometries of the model were from the Open Knee model
(Erdemir and Sibole, 2010), which is an open source 3D finite element representation of the
knee joint: the knee specimen (female, 70 years) was imaged using a 1.0 Tesla extremity
MRI scanner; geometries of tissue structures were provided in IGES format; the model was
meshed using TrueGrid. Because this study focused on the biphasic contact of the 3D knee
joint, only soft tissues were included in this study (Figure 5). The model consisted of 35313
hexahedral elements.

Three contact pairs were defined in the medial and lateral sides of the knee joint,
respectively, to detect contact between the femoral cartilage and tibial cartilage (1), tibial
cartilage and meniscus (2), and meniscus and femoral cartilage (3). The bottom surfaces of
the tibial cartilages were held fixed, and the top surface of the femoral cartilage was
subjected to a compressive axial displacement of 0.8 mm applied in a ramp time of 100s and
then held. Fluid continuity condition was applied to the contact area of the cartilages and
menisci. Free draining boundary conditions were applied on the peripheral surfaces and
surfaces outside of the contact area of the cartilages and menisci. Linear isotropic biphasic
material properties were used for femoral and tibial cartilages: Young’s modulus E =
0.69MPa, Poisson’s ratio ν = 0.018, permeability κ = 3 × 10−15m4N−1s−1, and solid content
φs = 0.25 (Cohen et al., 1993); while transverse isotropic biphasic material properties (Chern
et al., 1990; Proctor et al., 1989; Whipple et al., 1985) were used for meniscus: the
transverse moduli Er = Es = 0.075MPa, the circumferential modulus Eθ = 100MPa,
Poisson’s ratios νrθ = 0.0015, νθz = 2, and νrz = 0.5, permeability κ = 1.26 × 10−15m4N−1s−1,
and solid content φs = 0.25. Two cylindrical coordinate systems were defined as material
coordinate systems for the menisci: the medial meniscus has a fairly C shape, and the middle
point between anterior and posterior horn was set as the origin the cylindrical coordinate
system; the lateral meniscus has a fairly circular shape, so the middle point of the lateral
meniscus was set as the origin. The four meniscal attachments were modeled as springs with
stiffness of 2000 N/mm (Haut Donahue et al., 2002), respectively.
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In the initial position, the femoral cartilage was in contact with the menisci and not in
contact with the tibial cartilages. As the femoral cartilage pressed down, the menisci had a
very large deformation because of its low transverse moduli. Because of the meniscal
attachments, the meniscal horn only deformed in the vertical direction, and the deformation
in the horizontal direction was neglectable. At the end of the ramp displacement, femoral
cartilage was in contact with both menisci and tibial cartilages. During the compression
process, the contact algorithm detected correctly the contact in the model.

Peak values of fluid pressure were found in the inner one-third part of the medial meniscus
and inner two-thirds part of the lateral meniscus (Figure 6b). This observation is consistent
with the model settings. The fluid was not allowed to move in or out from the inner surface
of the meniscus and was allowed to move in or out from the other three surfaces. Fluid flow
meet great resistance at the top and bottom menical surfaces because these two surfaces
were in contact with hydrated cartilages, and fluid flow faced no resistance at the peripheral
meniscal surafce because of the free draining boundary condition applied; therefore, most of
the fluid was moving from the inner part of the meniscus to the periphery, high fluid
pressure was created in the inner part of the meniscus, and low fluid pressure in the
periphery of the meniscus. Total normal stress (Figure 6c) had similar distributions as the
fluid pressure. Distributions of fluid pressure and total normal stress are in good agreement
with the 2D axisymmetric solutions (Donzelli, 1995; Guo et al., 2012a). The distributions of
total normal stress indicate that the inner part of the meniscus carried most of the
compression load. The difference of the medial and lateral distributions of fluid pressure and
total normal stress is probably caused by the difference of structures: the medial meniscus is
fairly C shape, yet the lateral meniscus is more like a circle. It is of interest in the future
study to investigate the effect of the shapes of the menisci on the fluid pressurization and
load distribution.

Distributions of fluid pressure on the tibial cartilages (Figure 7a) matched with that on the
femoral cartilages (Figure 7c). The match was also observed for the total normal stress
(Figure 7b and d). Since the femoral surface of the meniscus and tibial surface of the
meniscus had same distributions of fluid pressure and total normal stress (Figure 6b and c),
the matches of fluid pressure and total normal stress observed on the tibial cartilages and
femoral cartilages indicate that the load applied on the femoral cartilage was transmitted
through the fluid phase and solid phase of the menisci; and that the continuity conditions for
fluid pressure and total normal stress were accurately satisfied, respectively. Peak values of
fluid pressure and total normal stress on the tibial and femoral cartilages were both observed
on the lateral side (Figure 7). The peak value of the fluid pressure on the lateral side is
approximately 150 kPa larger than that on the medial side, and the peak value of the total
normal stress on the lateral side is approximately 160 kPa larger than that on the medial side.
The difference of results on the lateral and medial sides is probably caused by the difference
of meniscal structures. In the future study, the effect of structure on the distributions of fluid
pressure and stress can be investigated using the present 3D knee model.

In sum, a 3D biphasic model of a physiological knee joint was developed. A normal
compression displacement was applied linearly, and the contact algorithm detected correctly
the contact in the model during the loading process. The results of fluid pressure were
consistent with the model settings. The continuity conditions were accurately satisfied for
both fluid pressure and total normal stress. All these results demonstrated the ability of the
present augmented Lagrangian method to model 3D biphasic contact of physiological joints.
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4 Concluding Remarks
The aim of this study is to develop a 3D biphasic contact method for physiological joints.
An augmented Lagrangian finite element method was developed. The finite element
formulation was implemented in COMSOL Multiphysics. The accuracy of the 3D
implementation was verified using indentation with a flat-ended indenter and contact of
idealized glenohumeral cartilage layers. The method’s ability to model multibody biphasic
contact was verified by a 3D knee model with physiological geometrics. The method was
proven to be robust and able to model 3D biphasic contact of physiological joints. The
present biphasic contact method can be used to investigate the fluid pressurization of
physiological joints in daily activity and the effect of the physiological structure on the
biphasic behaviors of the joints, thus to provide more complete understandings of hydrated
soft tissues. One limitation of the 3D augmented Lagrangian method developed in this study
is that it only applies to problems with small deformation because of the linear elastic
biphasic theory adopted in this study. For problems with finite deformation, hyperelastic
biphasic theory (Holmes and Mow, 1990) should be used to replace the linear elastic
biphasic theory.
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Appendix A. Implementation of 3D Biphasic Contact Modeling in COMSOL
Multiphysics

To obtain the infinitesimal deformation linear biphasic equations, solid mechanics from the
Structural Mechanics Module and Darcy’s Law from the Earth Science Module were
coupled. The governing equation for the solid mechanics mode is

(A1)

and the governing equation for Darcy’s Law mode is

(A2)

where ρ is fluid density, g is the magnitude of gravitational acceleration, D is the elevation,
and Qm is a mass source term.

The COMSOL user interface is built around the equations and coefficients in the modules,
and thus the COMSOL equations and the biphasic equations appeared to be slightly
different. To insure that the biphasic equations were exactly represented, the following
settings were used:

(A3)

(A4)

the fluid density, ρ, and porosity, φf, were assumed to be constant, therefore, we have (ρφf),t
= 0; finally, the gravity effects were turned off, which set the elevation D to zero. The initial
and boundary conditions found in the user interface of COMSOL Multiphysics
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corresponded to the initial and boundary conditions on the non-contacting boundaries, Eqs.
(5-9).

Beside kinematic continuity conditions for displacement and contact traction that a single-
phase contact problem consists of (Eqs. 10 and 13), biphasic contact problem has two
additional continuity conditions on relative fluid flow and fluid pressure (Eqs. 11 and 12).
COMSOL Multiphysics solves single-phase contact problems using an augmented
Lagrangian method, and the normal component of the contact pressure is given by

(A5)

where g is the gap distance from the destination boundary to the source boundary in the
direction normal to the destination surface, and ηn is the normal penalty factor with units of
force per volume. The augmented Lagrangian method ensures that the contact boundaries
overlap by an acceptably negligible amount g as the penalty factor goes to infinity.

The augmented Lagrangian framework for single-phase contact problem was extended to
biphasic contact framework: the contact pair was used to enforce continuity conditions of
the solid phase (Eqs. 10 and 13), and the identity pair was used to enforce continuity
conditions of the fluid phase (Eqs. 11 and 12). To enforce free-draining boundary condition
on the top surface of the soft tissue outside of the contact area, “Atmosphere/Gage” was
used as the boundary condition of the identity pair.
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Figure 1.
A schematic diagram of the biphasic indentation test with a flat-ended cylindrical indenter
(a) and meshed quadrant of the model (b).
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Figure 2.
Comparison of the shear stress σxy (a), and fluid pressure p (b) at several depths at t=500s
predicted by the 3D biphasic contact finite element model and the 2D noncontact model of
Spilker et al. (Spilker et al., 1992). Distribution of axial stress (c, in kPa) at t=250s on the
deformed geometry. Continuity of axial stress (d) between the two bodies along the contact
boundary at t=250s.
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Figure 3.
Meshed one-eighth geometry for glenoid and humeral head cartilage layers. Subchondral
bones were assumed to be rigid and impermeable, and were not explicitly modeled.
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Figure 4.
Distributions of axial displacement (a, in mm), fluid pressure (b, in kPa), maximum
principal elastic stress (c, kPa), and minimum principal elastic stress (d, kPa) of the shoulder
cartilage on the deformed geometry at 10 s. Boundary lines are initial position.
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Figure 5.
(a) Posterior view of the finite element model of the human knee soft tissues, including
femoral cartilages, menisci, and tibial cartilages. (b) Top view of the menisci and tibial
cartilages.
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Figure 6.
(a) location of two random meniscal slices (shown as red) in the 3D knee model.
Distributions of fluid pressure (b, in kPa) and total normal stress (c, in kPa) at 100s on the
selected meniscal slices.
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Figure 7.
Distributions of fluid pressure (a, in kPa) and total normal stress (b, in kPa) on the tibial
cartilages, and distributions of fluid pressure (c, in kPa) and total normal stress (d, in kPa) on
the femoral cartilages.
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Table 1

Augmented Lagrangian algorithm for biphasic contact of soft tissue

where tn is the normal component of the contact pressure; ηn is the normal penalty factor with units of force per volume; g is the gap distance

between the destination boundary and source boundary; GTOL is the tolerance for gap distance
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