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Abstract
The Nuclear Envelope (NE) contains over 100 different proteins that associate with nuclear
components such as chromatin, the lamina and the transcription machinery. Mutations in genes
encoding NE proteins have been shown to result in tissue-specific defects and disease, suggesting
cell-type specific differences in NE composition and function. Consistent with these observations,
recent studies have revealed unexpected functions for numerous NE associated proteins during
cell differentiation and development. Here we review the latest insights into the roles played by
the NE in cell differentiation, development, disease and aging, focusing primarily on inner nuclear
membrane (INM) proteins and nuclear pore components.

Introduction
One of the major transitions in the evolution of life on earth was the appearance of an
endomembrane system that allowed for cellular compartmentalization. The most
conspicuous manifestation of this event, which occurred between 2.1 and 1.8 billion years
ago and gave rise to the entire domain Eukaryota, was the emergence of a physical
membrane barrier separating nuclear and cytoplasmic components. It has only recently
become evident, however, that beyond its classical barrier function, the NE together with its
associated proteins is a major player in cellular organization, gene expression and the
regulation of development [1–3].

The first experimental evidence for the presence of the NE came from micromanipulation
studies of the nucleus almost 100 years ago [4]. With the emergence of the electron
microscope in the 1950s, it was established that the NE consists of two concentric
membranes, the inner nuclear membrane (INM) and the outer nuclear membrane (ONM),
both perforated by nuclear pores [5,6]. While the ONM is contiguous with the endoplasmic
reticulum (ER) and studded with ribosomes in the cytoplasmic side, the INM is in direct
contact with nuclear contents such as chromatin and the nuclear lamina, a meshwork of
intermediate filaments important for the maintenance of nuclear architecture [7–9].
Although the NE represents a continuous membrane system, protein composition differs
dramatically between the ONM and the INM [10]. For example, several transmembrane
proteins called Nesprins, characterized by a Klarsicht/ANC-1/Syne-1 homology (KASH)
domain, are targeted to the ONM to specifically interact with structural components of the
cytoplasm and SUN proteins [11,12]. The latter belong to a large group of integral

© 2012 Elsevier Ltd. All rights reserved.

Corresponding author: Hetzer, Martin W (hetzer@salk.edu).

NIH Public Access
Author Manuscript
Curr Opin Cell Biol. Author manuscript; available in PMC 2013 December 01.

Published in final edited form as:
Curr Opin Cell Biol. 2012 December ; 24(6): 775–783. doi:10.1016/j.ceb.2012.08.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



membrane proteins that exclusively reside at the INM and bind to the nuclear lamina and
chromatin, participating in the regulation of diverse nuclear functions [13,14].

Transport of macromolecules between the nucleus and the cytoplasm is regulated by
massive multiprotein channels known as Nuclear Pore Complexes (NPCs). NPCs are
composed of ~30 different nucleoporins (Nups) and can be generally subdivided into at least
two classes. The first class represents the structural scaffold of the NPC, which is stably
embedded into the NE, including the NUP107/160 complex and the NUP205/188/93
complex. The second class includes approximately 15 Nups that form peripheral
components of the NPC. Most of these Nups contain phenylalanine-glycine (FG) repeat
motifs, which bind directly to soluble transport receptors and facilitate transport through the
nuclear pore [2]. Interestingly, many nucleoporins of this group are mobile and exhibit
shuttling off and on the NPC [15]. Whether this dynamic behavior might relate to their role
as transport mediators remains unclear.

In recent years there has been a growing appreciation that changes in NE composition
contribute to both development and disease [1,2,16,17]. Genetic mutation of widely
expressed NE protein genes commonly give rise to tissue-specific disorders; this implies the
existence of functional differences between nuclear envelopes of different cell types,
conceivably acting as specialized ‘nuclear outfits’ for diverse cell fate determination events.
Well-known examples of tissue-specific diseases are the ones that result from mutations in
lamins or lamin-interacting proteins. Furthermore, certain NPC components also exhibit
tissue-specific disease phenotypes, and are essential during decisive steps of differentiation
and development. These observations support a new vision of the NE as a hub at which
fundamental signaling pathways converge to facilitate gene regulation during cell
differentiation and development. Still, distinguishing precisely how these processes occur at
the NE and how tissue-selective abnormalities arise from ubiquitously expressed proteins
has been a long-standing conundrum. Here we will review emerging roles of NE-associated
proteins during development and disease and discuss the fascinating biological implications
of these findings.

Inner nuclear membrane proteins play a role in cell signaling and
differentiation

The INM harbors a unique set of transmembrane proteins, most of which have not been fully
characterized. Based on biochemical evidence obtained from isolated rat liver NEs,
approximately 70 different proteins reside in the INM, many of which interact with the
lamina and/or chromatin [18]. However, recent proteomic studies performed in different
tissues identified novel INM proteins, suggesting that NE composition is tissue-specific
[19,20]. Consistent with these findings, mutations and misregulation of genes encoding INM
proteins result in tissue-specific defects and numerous diseases, ranging from muscular
dystrophies and cardiomyopathies to bone disorders [21–25]. An emerging theme is that
tissue-specific INM proteins are required for proper regulation of numerous cell signaling
pathways, disclosing previously unanticipated roles of the NE during cell differentiation and
development (Table 1).

The most well documented example of NE-mediated signaling is MAN1 and its role in
transforming growth factor beta (TGF-β) signaling. MAN1 belongs to the family of LEM-
domain proteins, defined by a ~40 residue protein-protein interaction motif termed the LEM
domain. In humans, heterozygous loss of function mutations of MAN1 lead to several
sclerosing bone dysplasias, while knockout of the MAN1 gene in mice causes embryonic
lethality [22,26,27]. Loss of MAN1 has been linked to enhanced TGF-β signaling, and is
now recognized as a negative regulator of this pathway. MAN1 binds and inhibits R-
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SMADs, which are known mediators of TGF-β signaling [22,28–30]. Importantly, members
of TGF-β superfamily of cytokines were originally isolated as cartilage and bone-inducing
factors, which could explain why partial loss of MAN1 causes bone sclerosis and
overgrowth of connective tissue [31–33]. The current model proposes that MAN1 sequesters
R-SMADs at the NE, preventing transcription of R-SMAD target genes (Figure 1A).

Other LEM domain containing INM proteins such as emerin, Lamin B receptor (LBR),
LEM2 and Lamina-associated polypeptide 2 beta (LAP2β) are also involved in different
signaling cascades [24,34–36]. LEM2 negatively regulates Extracellular signal-regulated
kinases (ERK) signaling during myoblast differentiation in C2C12 cells, as depletion of
LEM2 blocks C2C12 differentiation and leads to the hyperactivation of ERK1/2 [36].
Likewise, cardiomyocytes from emerin-null mice as well as knockdown cells in culture
show accumulation of activated ERK1/2 in the nucleus, suggesting that emerin attenuates
ERK signaling [37,38]. Emerin also regulates the Wnt pathway by preventing the
accumulation of β-catenin in the nucleus, presumably by stimulating β-catenin export [34].
Surprisingly, emerin can be found at adherens junctions of the intercalated disc (ID) in
cardiomyocytes [39]. Loss of emerin at this junctions perturbs β-catenin distribution and ID
architecture [40], suggesting that cell-type specific localization of INM proteins may also
account for the emergence of NE tissue-specific diseases. Overall, these findings indicate
that several INM proteins utilize a common mode of action in which they sequester
transcriptional activators away from target genes (Figure 1A).

Signal transduction events at the NE are not restricted to LEM domain-containing INM
proteins [41,42]. For instance, Nuclear Envelope Transmembrane protein 39 (NET39)
antagonizes myoblast differentiation by directly binding to mammalian target of rapamycin
(mTOR). NET39 overexpression leads to mTOR inactivation and the repression of mTOR-
insulin-like growth factor 2 (IGFII) signaling, central for the initiation of myogenesis
(Figure 1B) [41]. Another example is NET37, which promotes C2C12 differentiation via the
maturation and secretion of IGFII, an autocrine factor critical for the activation of AKT
signaling. NET37 functions by utilizing its glycosidase activity within the perinuclear space
(PNS) where IGFII is processed into a mature form (Figure 1B) [42].

Apart from their roles in signaling, INM proteins also participate in nuclear architecture,
chromatin configuration and cytoskeleton organization [11–14,19,20]. For example, emerin
binds structural proteins (i.e. SUN1, lamins), chromatin regulators (i.e. barrier-to-
autointegration factor (BAF), Lmo7) [43,44], and cell signaling factors (i.e. β-catenin) [34],
but how these interactions are orchestrated to execute specific functions is unclear. These
interactions may be partially regulated by post-translational modification, as new evidence
suggests emerin is phosphorylated on as many as twelve residues [45]. Establishing the
precise mechanism of post-translational modification of INM proteins and how these
alterations modulate protein function remains an important area of future research that may
render insight into tissue-specific roles of INM proteins.

Tissue-specific roles of nucleoporins in cell differentiation, development,
and disease

The primary function of NPCs has traditionally been viewed to be nucleo-cytoplasmic
transport. Yet recent studies indicate that NPCs might play additional roles in nuclear
processes such as chromatin organization and gene regulation [46–48]. Moreover,
accumulating evidence has established unambiguous connections between single
nucleoporin mutations and tissue specific disorders [49,50•,51•] (Table 1). These
observations suggest not only that NPCs may have cell type-specific composition, but also
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that tissue-specific nucleoporins might act as critical regulators of gene expression programs
during differentiation and development.

In humans, NUP155 is predominantly enriched in heart and skeletal muscle [52].
Interestingly, a recessive Mendelian mutation in NUP155 cosegregates with atrial
fibrillation (AF), a form of clinical arrhythmia that can lead to sudden cardiac death.
Nup155−/− mice die early in embryogenesis but heterozygous animals show an AF
phenotype, suggesting that reduction of NUP155 leads to a tissue-specific defect [50•].
Further analysis revealed that NUP155 is required for proper export of Hsp70 mRNA and
import of HSP70 protein, a factor previously linked to this disease (Figure 2A) [53,54].
Supporting its importance in cardiac muscle, NUP155 also interacts with HDAC4 in rat
cardiomyocytes, where it is required for the localization and regulation of hypertrophy-
related genes. Disruption of this interaction by overexpression of a NUP155 C-terminal
truncation mutant suppressed HDAC4-induced gene expression changes, indicating
NUP155-mediated localization, presumably at the pore, is crucial for HDAC4 function
(Figure 2A) [55]. Curiously, inherited mutation of NUP155 in AF patients leads to NUP155
mislocalization. Since HDAC4 regulation of hypertrophy-related genes is dependent on
NUP155 localization in cardiomyocytes, and complication of hypertrophic cardiomyopathy
can lead to AF, it is intriguing to speculate that malfunction of HDAC4 in hearts carrying
this mutation may also contribute to AF.

Both stable and dynamic NPC components play a role in particular aspects of development.
NUP133, a component of the stable NUP107-160 subcomplex, is required for neuronal
differentiation during mouse development. Nup133-null mice die during embryogenesis
owing to impaired neuronal development, while in vitro, Nup133-null embryonic stem (ES)
cells are unable to efficiently produce terminally differentiated neurons [51•]. Utilizing in
situ hybridization, the authors determined NUP133 is expressed in a tissue-specific manner
in the developing embryo, suggesting the existence of cell-type-specific nuclear pores.
However, it is important to note that the lack of transcription of Nups does not always
correlate with absence of protein at the NPC. For example, scaffold nucleoporin transcripts,
such as those belonging to the NUP107–160 subcomplex, are down-regulated in developing
C. elegans embryos and adult worms without affecting their protein levels at NPCs [56••].
This finding suggests scaffold Nups can be extremely long-lived proteins in post-mitotic
cells even when their expression is strongly reduced [56••,57••]. In this regard, differential
expression of Nups during differentiation and development should always be validated at the
protein level, especially when studying stable NPC components.

Being the first transmembrane nucleoporin to be discovered [58], NUP210 was first
proposed to be involved in anchoring the NPC to the NE membranes [59]. Nonetheless,
several current findings challenge this perception, as NUP210 is absent in many tissue types.
Also, NUP210 is differentially expressed in the kidney during mesenchymal to epithelial
transition, raising the possibility of cell type-specific nuclear pores and a potential role for
NUP210 in regulating cell differentiation [60,61]. In support of this idea, NUP210 has been
recently identified to be upregulated and to play a pivotal role during myogenic and
neuronal differentiation [62••]. Expression analysis showed NUP210 is absent in myoblasts
and ES cells but becomes expressed and incorporated into NPCs in myotubes and
neuroprogenitor (NP) cells, respectively. Depletion of NUP210 by RNAi blocks myogenesis
and the differentiation of ES cells into NP cells without affecting global nuclear transport.
Significantly, NUP210 was found to be required for the induction of genes essential for cell
differentiation (Figure 2A) [62••]. Given that the NPC is considered a site coupled with
transcription, one potential function of NUP210 might be to recruit transcription or mRNA
export factors to the NPC to facilitate gene expression. Taking this into consideration, one
could envision a scenario where NPC composition can be modulated in a tissue-specific
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manner to accommodate diverse regulatory functions within a multicellular organism.
Intriguingly, some NPC components have alternative transcription variants, an unstudied
feature in most nucleoporins [63,64]. It is interesting to speculate whether splicing variants
contribute to diversity and functionality of NPCs across different tissues.

Multiple studies in S. cerevisiae indicate NPCs may serve as anchoring structures to help
stabilize and promote gene transcription [65–67]. Yet, how NPCs influence gene regulation
in multicellular organisms during development remains poorly understood. Three
independent studies have recently reported participation of several Nups in transcriptional
activation in Drosophila [68••,69••,70••]. NUP98, Sec13, NUP62, NUP50, and additional FG
Nups dynamically associate with chromatin in a stage-specific manner during larvae
development [68••,69••]. Strikingly, these interactions were commonly observed to occur
inside the nucleoplasm (i.e. away from the NE), expanding the functional reach of NPCs in
higher eukaryotes. Genome-wide association studies in Drosophila embryonic cells revealed
NUP98 and NUP50 preferentially bind to highly transcribed genes involved in
developmental regulation (Figure 2A) [68••,69••]. Particularly, target gene expression was
reduced after knockdown of NUP98, whereas overexpression stimulated their expression
[68••]. Together, these findings portray a much more complex picture of NPC components in
gene regulation and uncover a novel role of nucleoplasmic Nups in stimulating gene activity
and regulating developmental programs in higher eukaryotes. Interestingly, murine NUP50
exhibits tissue-specific protein expression and Nup50−/− mice die during embryogenesis
owing to abnormal neural tube formation [71]. Whether NUP50, or other nucleoplasmic
Nups, drive tissue morphogenesis in mammals via cell-type-specific NUP-chromatin
interactions remains a fascinating possibility.

The lamins and associated INM proteins in disease
A wide array of human disorders is caused by mutations in genes encoding NE proteins
[1,17,23], commonly referred to as nuclear envelopathies and laminopathies. Laminopathies
originate from a variety of different mutations in LMNA, the gene encoding A-type lamins
[1,23]. Although A-type lamins are expressed in almost all tissues, LMNA mutations
frequently give rise to tissue-specific diseases, ranging from muscular dystrophies to
progeria [13,72,73]. Intriguingly, mutations in certain INM proteins that are anchored to the
NE by A-type lamins have been implicated in Emery-Dreifuss muscular dystrophy, a
disorder that phenocopies diseases caused by certain LMNA mutations [74,75]. Specifically,
a recent study demonstrates SUN1, another INM protein known to interact with A-type
lamins [13], to be directly involved in progeric and dystrophic laminopathies, as knockout of
Sun1 in progeric and dystrophic mice reverts tissue pathogenesis and averts premature death
by reducing cell cytotoxicity from SUN1 mislocalization [76••]. The fact that many INM
proteins are both functional interactors of A-type lamins and tissue-specific may explain
why LMNA mutations can lead to distinct diseases in different tissues.

Loss of cell compartmentalization in laminopathies and cancer
As key structural components of the nucleus, nuclear lamins cause loss of nuclear integrity
when mutated [77,78]. These lamin mutations often result in dramatic morphological
deformations of the NE. Strikingly, two recent studies have shown that mutation or
downregulation of nuclear lamins can also lead to a temporal disruption of the nuclear
membrane, resulting in the mislocalization of nuclear and cytoplasmic components [79,80].
Isolated human fibroblasts from patients with different lamin A/C mutations exhibit non-
lethal NE ruptures during interphase [79]. Moreover, knock down of lamins in human cancer
cells, which already display a certain degree of NE rupturing events, increases the frequency
of nuclear ruptures [80]. These findings suggest that loss of cell compartmentalization by
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transient NE rupturing may lead to cell dysfunction and pathological hallmarks of
laminopathies as well as cancer.

The NPC in aging and neurodegenerative disease
Deterioration of NPCs in aged cells has been recently shown to cause loss of NE integrity
[56••]. In dividing cells, NPCs are disassembled at the onset of mitosis and reassembled in
the newly forming nuclei. However, in post-mitotic cells, scaffold nucleoporins remain
stably associated at the NE for the entire lifespan of a cell [56••,57••]. The lack of a
replacement mechanism eventually leads to the deterioration of NPCs and loss of the nuclear
permeability barrier (Figure 2B) [56••]. Strikingly, cytoplasmic tubulin accumulates inside
nuclei of aged rat neurons, a characteristic that has been previously described in various
neurological disorders including Parkinson’s disease [81,82]. This implies that gradual
deterioration of NPCs might contribute to pathological progression of neurodegenerative
diseases in the brain.

Concluding remarks
The view of the NE has been greatly revolutionized since the first pathological mutation of
the NE-associated protein, emerin, was unveiled in the mid 1990s [21,83]. Since then,
multiple discoveries have continued to link human disease and tissue-selective defects to
mutations in genes encoding NE proteins. Nevertheless, future research must attempt to
elucidate the molecular biology hidden behind these phenotypes. Recent studies have
demonstrated induced pluripotent stem cells (iPSC) can be generated from patients with
laminopathies [84,85••]. These iPSCs are able to recapitulate the laminopathy phenotype
when induced to differentiate in culture [84,85••]. These findings not only provide an in vitro
model to study laminopathies but hold the potential to provide new insights into the
pathology of nuclear envelopathies in the future. Furthermore, since many NE proteins have
been found to be vital during embryogenesis [26,50•,51•,71], it is not surprising that many
knockout mice are embryonic lethal. Thus, to examine the individual contribution of
particular NE proteins in different cell-types and stages during development, it would be
extremely useful to utilize tissue-specific conditional knock outs. Dissecting the pathways
and identifying the molecular players responsible for these phenotypes will shed light on
potential novel mechanisms involved in the regulation of cell differentiation and
development.
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Figure 1.
(A) LEM2 is a negative regulator of ERK signaling during muscle differentiation. Although
the mechanism by which ERK1/2 is inhibited is unclear, one possibility could be through the
sequestration of ERK1/2 to the nuclear periphery. Emerin has been shown to play a role in
two different signaling cascades. First, it negatively regulates Wnt signaling by preventing
accumulation of β-catenin in the nucleus, presumably by stimulating export of β-catenin.
Second, emerin negatively regulates ERK signaling through unclear mechanisms. MAN1
negatively regulates TGF-β signaling by sequestering R-Smads away from gene targets. (B)
During myogenesis, NET39 acts as a repressor of the mTOR-IGF-II signaling pathway.
NET39 blocks IGF-II transcription by inhibiting mTOR activity at the NE. NET37, an INM
protein with glycosidase activity promotes myogenesis by activating AKT signaling through
the maturation and secretion of IGF-II in the PNS/ER.
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Figure 2.
(A) NUP155 regulates the export of Hsp70 mRNA and import of Hsp70 protein in cardiac
muscle, a function NUP155 loses in atrial fibrillation. In cardiomyocytes, NUP155 mediates
localization and activity of HDAC4. Addition of NUP210 to NPCs induces activation of
genes critical for myogenesis and the differentiation of ES cells into NP cells. In Drosophila,
several dynamic NPC components shuttle off the pore to regulate the expression of
developmental genes inside the nucleoplasm. (B) Lack of a replacement mechanism of
NPCs in post-mitotic cells results in deterioration of NPCs over time and progressive loss of
cell compartmentalization.
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Table 1

Tissue-specific roles of nuclear envelope proteins

NE component Protein Expression Tissue-specific disorder or
developmental role

References

Nuclear Lamina Lamin A,
Lamin C

Most differentiated cells Muscular dystrophies,
cardiomyopathies, lypodystrophies
and peripheral neuropathies.
Progeroid syndromes, affecting
various tissues including skin, bone,
adipose, cardiac and skeletal
muscle.

[72,73,77]

Inner Nuclear Membrane Emerin Predominantly expressed in
cardiac and skeletal muscle.

Cardiomyopathy and Emery-
Dreifuss muscular dystrophy
(EDMD). Antagonizes ERK and
Wnt signaling.

[21,34,37–40, 83,78] [74]

LBR Predominantly expressed in
neutrophils.

Pelger-Huet anomaly (blood
laminopathy affecting neutrophils);
Greenberg skeletal dysplasia
(mainly affecting bone tissue).
Regulates growth and maturation of
myeloid progenitors.

[24,35]

Nesprin1 Predominantly expressed in
brain, pancreas, kidney,
cardiac, and skeletal muscle.

EDMD-like phenotype,
cardiomyopathy and cerebellar
ataxia.

[75]

LEM2 Predominantly expressed in
skeletal muscle.

Negatively regulates ERK signaling
during muscle differentiation.

[36]

MAN1 Negatively regulates TGF-β
signaling. Loss of function
mutations lead to sclerosing bone
dysplasias in humans.

[22,25–29]

NET37 Involved in AKT signaling.
Maturation and secretion of IGFII
during myogenesis.

[42]

NET39 Repression of mTOR signaling
during muscle differentiation.

[41]

SUN1 Predominantly expressed in
brain, testis, heart and skeletal
muscle.

Progeric and dystrophic
laminopathies. Gametogenesis in
mice.

[14,76••]

Nuclear Pore Complex NUP155 Predominantly expressed in

cardiac and skeletal muscle.a
Missense mutation causes atrial
fibrillation in cardiac muscle in
humans. Regulates hypertrophy-
related genes by modulating
HDAC4 function in rat
cardiomyocytes.

[50•,55]

NUP133 Differentially expressed during

embryogenesis.a
Neuronal cell differentiation during
mouse embryogenesis.

[51•]

NUP210 Only in certain cell types
including epithelial cells,
differentiated myotubes and
neuroprogenitor cells.

Muscle and neuronal cell
differentiation.

[60,61,62••]

NUP50 Highly expressed in developing
neural tube and testis in mice.

Neural tube formation during
embryogenesis in mouse. Gene
regulatory function during
development in D. melanogaster.

[69••,71]

NUP98 Ubiquituous. Acute myeloid leukemia;
hematopoietic stem-cell
proliferation in humans. Activation
of genes involved in developmental
regulation in D. melanogaster.

[49,68••,69••]

a
Differential expression of nucleoporins only determined by mRNA levels.
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