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Abstract
Epigenetic alterations contribute significantly to the de-
velopment and progression of gastric cancer, one of the 
leading causes of cancer death worldwide. Epigenetics 
refers to the number of modifications of the chromatin 
structure that affect gene expression without altering 
the primary sequence of DNA, and these changes lead 
to transcriptional activation or silencing of the gene. 
Over the years, the study of epigenetic processes has 
increased, and novel therapeutic approaches that tar-
get DNA methylation and histone modifications have 
emerged. A greater understanding of epigenetics and 
the therapeutic potential of manipulating these process-
es is necessary for gastric cancer treatment. Here, we 
review recent research on the effects of aberrant DNA 
and histone methylation on the onset and progression 
of gastric tumors and the development of compounds 
that target enzymes that regulate the epigenome.
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INTRODUCTION
Gastric cancer (GC) is the fourth most frequent cancer 
and is the second leading cause of  cancer-related death 
worldwide[1]. Histologically, gastric tumors are divided 
into intestinal and diffuse types according to the Lauren 
classification[2]. The intestinal type of  GC mostly pro-
gresses through the successive steps of  normal gastric 
mucosa, leading to acute and chronic gastritis, atrophic 
gastritis, intestinal metaplasia, dysplasia, and finally a 
gastric tumor[3]. In contrast, the sequence of  events in 
the development of  diffuse type GC is poorly under-
stood, although a subset of  diffuse type GC appears to 
develop independently of  atrophic gastritis or intestinal 
metaplasia[4,5]. Differences in the clinicopathological 
characteristics between these two histological types indi-
cate that development occurs through distinct molecular 
pathways[6-10]. Each histological type is a consequence of  
a progressive accumulation of  different genetic and epi-
genetic alterations.

Epigenetics refers to a number of  modifications in 
the chromatin structure that affect gene expression with-
out altering the primary DNA sequence, and these chang-
es lead to transcriptional activation or silencing of  the 
gene. Interestingly, epigenetic modifications of  DNA can 
also increases mutagenesis and influence the interactions 
between DNA and carcinogens and ultraviolet light[11]. 
Epigenetic modifications play a central role in gastric car-
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cinogenesis[12]. Recent reports indicate that infection with 
Helicobacter pylori (H. pylori) or Epstein-Barr virus (EBV), 
pathogens with a substantial role in development of  GC, 
are associated with elevated levels of  aberrant DNA 
methylation in GC[13-16]. The study of  epigenetic pro-
cesses has increased in recent years, and novel therapeutic 
approaches that target DNA methylation and histone 
modifications have emerged. A greater understanding of  
epigenetics and the therapeutic potential of  intervention 
into these processes is necessary to help GC treatment.

In this review, after a brief  introduction to the meth-
ylation machinery, we focus on the roles that aberrant 
DNA and histone methylation play in the onset and pro-
gression of  gastric tumors, and the development of  com-
pounds that target enzymes that regulate the epigenome.

METHYLATION MACHINERY 
DNA methylation refers to the addition or subtraction 
of  a methyl moiety at the 5 position of  the cytosine ring 
within CpG dinucleotides that are usually located in CpG-
rich regions or CpG islands and around the gene promot-
er. DNA methylation in gene promoter regions represses 
transcription of  their downstream genes associated with 
the suppression of  gene expression[17]. However, methyla-
tion in gene bodies does not block transcription and is 
sometimes associated with active transcription[18]. Meth-
ylation status is controlled by DNA methyltransferases 
(DNMT1, DNMT3A, and DNMT3B)[19]. DNMT1 main-
tains the existing methylation patterns following DNA 
replication, whereas DNMT3A and DNMT3B target 
unmethylated CpGs to initiate methylation and are highly 
expressed during embryogenesis and minimally expressed 
in adult tissues[20]. Another DNA methyltransferase fam-
ily member, DNMT3L, interacts with DNMT3A and 
DNMT3B to facilitate methylation of  retrotransposons[21]. 
Many studies have shown that overexpression of  DNA 
methyltransferases is closely related to tumorigenesis, 
although the role of  DNMT3L in cancer is still unclear 
(Table 1). In addition, H. pylori infection may increase 
DNA methyltransferase activity through upregulation of  
the epidermal growth factor and its receptor or via the 
release of  inflammatory mediators, such as nitric oxide[22]. 
In particular, DNMT1 overexpression has been associated 
with EBV infection in GC[23-25].

DNA methylation has also been implicated in the 
regulation of  higher order chromatin structure, the main-
tenance of  genome integrity, and stable patterns of  gene 
expression. These biological effects of  DNA methylation 
are, at least in part, mediated by proteins that preferen-
tially bind to methylated DNA[26]. Methylated DNA is 
specifically recognized by a set of  proteins called methyl-
CpG-binding proteins (MBPs), which belong to three 
different structural families: methyl-CpG binding domain 
proteins (MBDs), Kaiso domain proteins, and SET and 
RING finger-associated domain (SRA) domain pro-
teins[27,28]. MBD family proteins (MeCP2, MBD1, MBD2, 
MBD3 and MBD4) bind methylated CpG (5mCpG) 
through a conserved protein motif  called the methyl-

CpG binding domain[29,30]. Over the last decade, proteins 
that utilize different structures to recognize and bind 
DNA or its components have been identified. In 2001, 
Prokhortchouk et al[31] identified Kaiso proteins, which 
bind methylated DNA through a zinc finger motif. Other 
MBPs including UHRF1 and UHRF2 were identified, 
and these proteins use the SRA to bind 5mCpG[32,33].

In cancer, the roles of  MBPs are related to their func-
tions as transcriptional repressors or chromatin remodel-
ers (Table 1)[34-36]. However, a few studies have reported 
MBPs in GC (Table 1). Mutations in MBD4 have been 
found in gastric tumors in association with microsatel-
lite instability[37,38]. MBD4 encodes a protein that interacts 
with the mismatch repair protein hMLH1. Therefore, it 
has been postulated that mutations in MBD4 may result 
in mismatch repair deficiency[30].

The processes of  DNA methylation and histone mod-
ification often involve dynamic interactions that either re-
inforce or inhibit epigenetic changes. Thus, histone modi-
fication can also alter chromatin remodeling, and this is a 
possible mechanism for decreased gene expression[39-41].

The nature of  the interaction between DNA and his-
tones, which are composed of  pairs of  the four core pro-
teins H2A, H2B, H3, and H4, alters the accessibility of  
DNA transcription sites to RNA polymerase Ⅱ and oth-
er transcription factors. The interaction between histones 
and DNA is thought to be under epigenetic control, 
because specific amino acid residues on specific histone 
core proteins are subjected to post-translational modifica-
tions, such as acetylation, methylation, phosphorylation, 
ubiquitination, sumoylation, proline isomerization, and 
ADP ribosylation[42,43]. Histone acetylation and methyla-
tion are the only modifications that have been clinically 
associated with pathological epigenetic disruption in can-
cer cells[44]. In this review, we focus on histone methyla-
tion modifications.

Histones can be mono-, di-, or trimethylated at ly-
sine and arginine residues by histone methyltransfer-
ases (HMTs) or demethylated by histone demethylases 
(HDTs). Depending on the residue and the level of  
methylation, the chromatin may be transcriptionally ac-
tive or inactive. In general, trimethylation at H3K4 and 
H3K36 or monomethylation at H3K27, H3K9, H4K20, 
H3K79, and H2BK5 is associated with transcriptional ac-
tivation. In contrast, trimethylation at H3K27, H3K9, and 
H4K20 or monomethylation at H3K27, H3K9, H4K20, 
H3K79, and H2BK5 is associated with transcriptional 
repression[44].

A growing number of  studies have analyzed the 
HMTs and HDMs in tumor cells, whereas few genes 
involved in histone methylation activity have been de-
scribed for GC (Table 1). EZH2, an HMT that plays a 
role in trimethylation of  H3K27 and leads to silencing 
of  important genes in carcinogenesis, is overexpressed 
in several types of  cancer, including GC[45,46]. Cai et al[47] 

reported that EZH2 plays an important role in the multi-
step process of  intestinal-type GC. In addition, Fujii et 
al[48] demonstrated that silencing of  EZH2 by siRNA re-
sulted in a lower H3K27me3 protein level in GC cells.
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Table 1  Methylation machinery in gastric cancer

Among the HDTs, RBP2 is a newly identified mem-
ber of  the JARID family of  proteins, and RBP2 specifi-
cally targets tri- and dimethylated H3K4 for demethyl-
ation in cancer[49,50]. Zeng et al[51] reported that RBP2 is 
overexpressed in GC and suggested that HDT inhibition 
by targeting RBP2 may be an anticancer strategy.

DNA METHYLATION 
DNA methylation contributes to cancer mainly through 

DNA hypo- or hypermethylation. DNA hypomethyl-
ation, which refers to the loss of  DNA methylation, af-
fects chromosomal stability and increases aneuploidy[52]. 
DNA hypermethylation, which refers to the gain of  
methylation at a locus originally unmethylated, usually re-
sults in stable transcriptional silencing, which functions in 
regulating gene expression[53,54].

Global DNA hypomethylation is usually considered 
one of  the hallmarks of  cancer cells, because aberrant 
hypermethylation-vulnerable genes are overlapped by 
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Gene Function Alteration in cancer Ref.

DNMT1 Maintenance of methylation
Repression of transcription

Upregulation
Mutation

Kanai et al[93] 
Fang et al[94] 
Ding et al[95] 
Yang et al[96] 

Mutze et al[97] 
DNMT3A De novo methylation during embryogenesis 

Imprint establishment Repression
Upregulation

 Mutation
Ding et al[95] 
Fan et al[98] 

Yang et al[96] 
DNMT3B De novo methylation during embryogenesis 

Repeat methylation Repression
Upregulation

Mutation
Ding et al[95] 

Su et al[99] 
Hu et al[100]

Yang et al[96] 
MeCP2 Transcription repression Upregulation

Mutation
Wada et al[101] 

MBD1 Transcription repression Upregulation
Mutation

-

MBD2 Transcription repression DNA demethylase Downregulation
Mutation

Kanai et al[102] 

MBD3 Transcription repression, but requires MBD2 to recruit it 
to methylated DNA

Upregulation
Mutation

-

MBD4 Transcription repression DNA repair
Glycosylase domain, repair of deaminated 5-methyl C

Downregulation
Mutation

Pinto et al[38] D'Errico et al[37] 

Kaiso Transcription repression Upregulation Ogden et al[103] 
G9a Histone methyltransferase Gene Repression Lee et al[104] 
RIZ1

Histone methyltransferase
Underexpression Oshimo et al[105] 

PRDM2 Mutation Pan et al[106] 
SUZ12 Histone methyltransferase Upregulation Yoo et al[107] 
BMI1 Histone methyltransferase Upreguletion Liu et al[108] 

Xiao et al[109]

Lu et al[110]

Zhang et al[111]

Li et al[112] 
EVI1 Histone methyltransferase Chromosomal rearrangement Takahata et al[113] 
EZH2 Histone methyltransferase Amplification

Upregulation
Mutation

Mattioli et al[114] 
Varambally et al[115] 

Fujii et al[48]

Cai et al[47] 
Choi et al[46] 

Zhou et al[116] 
NSD2/MMMSET Histone methyltransferase Upregulation

Translocation
Hudlebusch et al[117] 

SUV39H1 -2 Histone methyltransferase Polymorphism Li et al[84] 
LSD1/BHC110 Histone demethylase Downregulation Magerl et al[118] 
JARID1A-D Histone demethylase Upregulation 

Inactivation 
Zeng et al[51] 

JMJD2A Histone demethylase Mutation
Upregulation

Li et al[119] 
JHDM3A
JMJD1A-C Histone demethylase Downregulation Katoh et al[120] 

DNMT: DNA methyltransferase; EVH1: Domain containing 1; EZH2: Enhancer of zest homolog2; JARID: Jumonji, AT-rich interactive-domain; JHDM: JmjC 
domain-containing histone demethylase 1; JMJD: Jumonji domain containing 2; LSD1: Lysine specific demethylase; MBD: Methyl-CpG-binding domain; 
NSD2: Nuclear receptor-binding SET-domain protein 2; PRMT: Protein arginine methyltransferase 1; RIZ1: Retinoblastoma protein-interacting zinc finger 1; 
SUV39H: Suppressor of variation 3-9 homolog. 
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Table 2  Aberrant DNA methylation in gastric cancer

Gene Role Aberrant methylation Ref.

ABCB1 Multidrug resistance Hyper Poplawski et al[121], Tahara et al[122], Lee et al[123] 
ADAM23 Tissue cell invasion and metastasis Hyper Takada et al[124], Watanabe et al[125], Kim et al[126] 
ALDH2 Oxidative pathway of alcohol 

metabolism
Hypo Balassiano et al[127] 

APC Tissue cell invasion and metastasis
Signal transduction

Hyper Bernal et al[128], Ksiaa et al[63], Shin et al[69], Geddert et al[129] 

ARPC1B (p41ARC) Cell morphology Hyper Maekita et al[130], Shin et al[69] 
BNIP3 Apoptosis Hyper Murai et al[131], Hiraki et al[132], Sugita et al[133] 
BRCA1 DNA repair Hyper Bernal et al[128], Ryan et al[134] 
CAV1 Tissue cell invasion and metastasis Hyper Yamashida et al[135] 
CDH1 Tissue invasion and metastasis Hyper Leal et al[136], Bernal et al[136], Borges et al[61], Tahara et al[122], 

Al-Moundhri et al[137], Balassiano et al[127] 
CHFR Cell cycle regulation Hyper Oki et al[138], Hiraki et al[139], Hu et al[140] 
DAPK Apoptosis Hyper Bernal et al[128], Zou et al[74], Hu et al[140], 

Tahara et al[122], Sugita et al[133] 
FHIT Apoptosis Hyper Leal et al[136], Bernal et al[128] 
FLNC Cell morphology Hyper Kim et al[126], Shi et al[141] 
GATA4/5 Transcriptional factor Hyper Akiyama et al[142], Wen et al[143], 
HAND1 Cell differentiation Hyper Maekita et al[130], Shin et al[69], Shi et al[141] 
HRAS Signal transduction Hypo Fang et al[144], Luo et al[145] 
IGFBP3 Cell cycle regulation Hyper Gigek et al[146], Ryan et al[134], Chen et al[147] 
LOX Tissue cell invasion and adhesion Hyper Maekita et al[130], Shin et al[69], Tamura et al[148] 
MGMT DNA repair Hyper Bernal et al[128], Hibi et al[149], Ksiaa et al[63]; Zou et al[74], 

Schneider et al[14], Hiraki et al[139], Balassiano et al[127], Shi et al[141] 
MLF1 Cell differentiation Hyper Watanabe et al[125], Shi et al[141], Yamashita et al[135] 
MLH1 DNA repair Hyper Bernal et al[128], Poplawski et al[121], Hiraki et al[139], Kim et al[150], 

Shin et al[58] 
MOS Cell cycle regulation Hypo Shin et al[58] 
MTHFR DNA synthesis

DNA repair
DNA methylation

Hypo Balassiano et al[127] 

MYC Cell cycle regulation Hypo Fang et al[144], Luo et al[145]

P14ARF Cell cycle regulation
Apoptosis

Cell differentiation 

Hyper Balassiano et al[127], Geddert et al[129] 

P16 Cell cycle regulation Hyper Ksiaa et al[63], Dong et al[151], Zou et al[74], Shin et al[69], Hu et al[140], 
Ryan et al[134], Geddert et al[129], Balassiano et al[124], Al-Moundhri et al[137], 

Shin et al[58] 
PRDM5 Cell differentiation Hyper Watanabe et al[125], Shu et al[152] 
RAR-beta 2 DNA binding

Activation transcription
Hyper Bernal et al[128], Ksiaa et al[63] 

RASSF1A/ RASSF2 DNA repair
Cell cycle regulation

Hyper Zou et al[74], Guo et al[153], Shin et al[58] 

RORA Cell differentiation Hyper Watanabe et al[125], Yamashida et al[131] 
RPRM Cell cycle regulation Hyper Bernal et al[128], Schneider et al[14] 
RUNX3 Signal transduction Hyper Bernal et al[128], Sakakura et al[154], Lee et al[104], Zou et al[74], 

Hiraki et al[139], Tamura et al[148], Hu et al[140], Fan et al[155], 
Al-Moundhri et al[137] 

SHP1 Signal transduction Hyper Bernal et al[128], Ksiaa et al[63], 
TERT Cell senescence Hyper Kang et al[67], Wang et al[75], Gigek et al[77]

TFF1 Repair gene Hyper Carvalho et al[156], Ryan et al[134] 
THBD Inflammation response Hyper Maekita et al[130]; Shin et al[69] 
TWIST1 Cell differentiation Hyper Kang et al[67], Schneider et al[14] 

ABCB1: ATP-binding cassette, sub-family B (MDR/TAP), member 1; ADAM23: ADAM metallopeptidase domain 23; ALDH2: Aldehyde dehydrogenase 2 
family (mitochondrial); APC: Adenomatous polyposis coli; ARPC1B (p41ARC): Actin related protein 2/3 complex, subunit 1B, 41kDa; BNIP3: Adenovirus 
E1B 19kDa interacting protein 3; BRCA1: Breast cancer 1 gene; CAV1: Caviolin 1; CDH1: Cadherin 1; CHFR: Checkpoint with forkhead and ring finger 
domains; DAPK: Dapk death associated protein kinase; FHIT: Fragile histidine triad gene; FLNC: Filamin C, gamma; GATA4/5: GATA binding protein 
4/5; GSTP1: Glutathione S-transferase pi 1; HAND1: Heart and neural crest derivatives expressed 1; HRAS: v-Ha-ras Harvey rat sarcoma viral oncogene 
homolog; IGFBP3: Insulin-like growth factor; binding protein 3; LOX: Lysyl oxidase; MGMT: O-6-methylguanine-DNA methyltransferase; MLF1: Myeloid 
leukemia factor 1; MLH1: MutL homolog 1; MOS: Moloney murine sarcoma viral oncogene homolog; MTHFR: Methylenetetrahydrofolate reductase 
(NADPH); MYC: v-myc myelocytomatosis viral oncogene homolog (avian); P14ARF: Cyclin-dependent kinase inhibitor 2A; P16: Cyclin-dependent 
kinase inhibitor 2A; PRDM5: PR domain containing 5; RAR-beta 2: Retinoic acid receptor β 2 gene; RASSF1A/RASSF2: Ras association (RalGDS/AF-6) 
domain family member 1/member 2; RORA: RAR-related orphan receptor A; RPRM: TP53 dependent G2 arrest mediator candidate; RUNX3: Runt-related 
transcription factor 3; SHP1: Hematopoietic cell-specific protein-tyrosine phosphatase; TERT: Telomerase reverse transcriptase; TFF1: Trefoil factor 1; TFPI2: 
Tissue factor pathway inhibitor 2; THBD: Thrombomodulin; TWIST1: Twist homolog 1. 
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genes targeted by hypomethylation[55,56]. Compare et al[57] 

suggested that global DNA hypomethylation may be 
implicated in GC associated with H. pylori infection at 
an early stage. At the individual gene level, DNA hypo-
methylation is often associated with activation of  proto-
oncogenes.

In GC, few studies have shown promoter hypometh-
ylation associated with the activation of  proto-oncogenes 
(Table 2). In particular, Shin et al[58] reported that the 
hypomethylation of  the MOS promoter in GC was as-
sociated with tumor invasion, lymph node metastasis, and 
the diffuse type. A number of  genes involved in cell cycle 
regulation, tumor cell invasion, DNA repair, chromatin 
remodeling, cell signaling, transcription, and apoptosis are 
known to be silenced by hypermethylation in GC (Table 
2). 

Multiple reports have been published regarding gene 
hypermethylation in both intestinal and diffuse types of  
GC. Interestingly, the methylation profile differs between 
the intestinal and diffuse types of  GC[54].

The epithelial cadherin gene CDH1, which is a well-
studied gene involved in cancer, is downregulated in 
gastric tumors and is hypermethylated more frequently 
in the diffuse type than in the intestinal type of  GC. Loss 
of  CDH1 during tumor progression has led to the no-
tion that this is a tumor suppressor gene[59,60]. In addition, 
mapping of  the CDH1 promoter has revealed a positive 
association between hypermethylation and older age, as 
well as a significant correlation between DNA hyper-
methylation and the A allele of  the -160 C→A polymor-
phism. The A allele has been described to increase the 
risk of  developing GC in association with the methyla-
tion status[61]. Unlike the CDH1 gene, the P16 gene is hy-
permethylated mainly in the intestinal type of  GC[54,62,63]. 
This epigenetic mark was recently associated with tumor 
location and H. pylori infection in GC[64].

Other studies have also described a number of  genes 
that are silenced by hypermethylation in association 
with H. pylori or EBV infection: APC, SHP1, p14, and 
CDH1[63,65-67]. According to Chan et al[68], the eradication 
of  H. pylori infection significantly reduces the methylation 
index of  the CDH1 promoter. In contrast, it has been 
shown that a portion of  the aberrant DNA methylation 
induced by H. pylori infection may persist even after the 
infection has disappeared[69,70]. Shin et al[58] observed that 
the methylation levels in MOS remained significantly in-
creased in patients with previous H. pylori infection com-
pared with H. pylori-negative subjects.

Moreover, hypermethylation of  several gene promot-
ers has also been observed in the premalignant stages of  
GC, suggesting that aberrant methylation occurs early 
during gastric carcinogenesis[59,71-74]. For example, the 
methylation levels of  the catalytic subunit of  the telomer-
ase gene (hTERT) promoter are increased during gastric 
carcinogenesis. Wang et al[75] reported that the hTERT 
promoter was more methylated in GC than in precancer-
ous lesions and non-neoplastic gastric tissues. Therefore, 
it has been suggested that the degree of  methylation of  
the hTERT promoter may be useful in the early diagnosis 

of  GC and/or may have an impact on the anti-telomer-
ase strategy for cancer therapy. Other studies, however, 
showed that methylation of  the hTERT promoter and 
resultant gene expression were opposite to the general 
model of  regulation by DNA methylation, which is usu-
ally dependent on the CpG islands studied[76,77]. 

Recently, aberrant hypermethylation of  the newly as-
sociated metastatic suppressor gene RECK was found to 
be associated with GC development and may also be use-
ful for early diagnosis and treatment[78]. These abovemen-
tioned findings lead to the possibilities that epigenetic 
alterations may also occur at different stages of  gastric 
tumorigenesis.

HISTONE METHYLATION 
Histone modifications leading to gene expression altera-
tions have been described in several cancer types, but 
the methylation status of  chromatin is still unclear for 
GC. Using the ChIP-on-chip technique, Zhang et al[79] 

identified candidate genes with significant differences in 
H3K27me3 in GC samples compared to adjacent non-
neoplastic gastric tissues. These genes included onco-
genes, tumor suppressor genes, cell cycle regulators, and 
genes involved in cell adhesion. Moreover, these inves-
tigators demonstrated that higher levels of  H3K27me3 
produce gene expression changes in MMP15, UNC5B, 
and SHH.

In 2011, Kwon et al[80] showed that LAMB3 and 
LAMC2 were overexpressed in GC samples in com-
parison with non-neoplastic adjacent tissue samples. 
Furthermore, these researchers demonstrated that over-
expression of  these genes was a result of  the enrichment 
of  H3K4me3 in the gene promoter. Using immunohis-
tochemistry, Park et al[81] showed that higher levels of  
H3K9me3, which is a repressive mark, was associated 
with higher T stage, lymphovascular invasion, and re-
currence in gastric tumors. They also observed that the 
level of  H3K9me3 was correlated with patient survival, 
because stronger methylation corresponded to a worse 
prognosis and intermediate methylation to an intermedi-
ate prognosis.

Taken together with results from previous studies, 
these results have suggested that histone methylation 
results in a worse prognosis by inactivating certain tumor 
suppressor genes[82,83]. Moreover, Li et al[84] used GC cell 
lines to demonstrate that the PRC1 member CBX7 initi-
ated trimethylation of  H3K9 at the P16 locus through 
recruitment and/or activation of  the HMT SUV39H2 to 
the target locus. This finding links two repressive epigen-
etic landmarks, H3K9me3 formation and PRC1 binding 
within the silenced domains in euchromatin, and builds 
up a full pathway for epigenetic inactivation of  P16 by 
histone modifications. 

Recently, Angrisano et al[85] reported that H. pylori infec-
tion is followed by activation of  iNOS gene expression, 
chromatin changes at the iNOS promoter (including 
decreased H3K9 methylation and increased H3K4 meth-
ylation), and selective release of  MBD2 from the iNOS 
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promoter in a GC cell line.

METHYLATION INHIBITOR DRUGS
The silencing of  cancer-related genes by DNA methyla-
tion and chromatin modification are reversible and may 
represent a viable epigenetic therapeutic target. In the last 
decade, drugs that modify chromatin or DNA methyla-
tion status have been used alone or in combination in or-
der to affect therapeutic outcomes[86]. Specially, cytosine 
analogs (5-azacytidine and 5-aza-2’- deoxycytidine) are 
powerful mechanism-based inhibitors of  DNA cytosine 
methylation. These cytosine analogs are incorporated 
into the DNA of  replicating cells after the drugs have 
been metabolized to the appropriate dNTP. After incor-
poration into the DNA, the analogs interact with DNA 
methyltransferases to form covalent intermediates, and 
this interaction inhibits DNA methylation in subsequent 
rounds of  DNA synthesis[87]. Both drugs have been ap-
proved by the US Food and Drug Administration for use 
in hematological malignancy treatment[88].

In GC, surgery remains the primary curative treat-
ment for gastric tumors. Currently, adjuvant and neo-
adjuvant therapies are accepted[89]; however, so-called 
epigenetic therapy has not yet been used in treatment of  
GC patients.

In the past few years, epigenetic screening techniques 
using treatment with a demethylating agent have been 
developed to identify genes with epigenetic aberrations 
in GC cell lines. Zheng et al[90] treated a GC cell line with 
5-aza-2’-deoxycytidine and performed DNA methylation 
array analysis of  these cells with six normal mucosal sam-
ples from healthy patients. These results revealed 82 hy-
permethylated gene promoters. These authors investigat-
ed 15 candidate genes by methylation-specific PCR and 
confirmed five highly methylated promoters: BX141696, 
WT1, CYP26B1, KCNA4, and FAM84A. All of  these, 
except FAM84A, also showed DNA hypermethylation 
in serum of  GC patients, suggesting that serum DNA 
offers a readily accessible bioresource for methylation 
analysis.

A similar study conducted by Jee et al[91] described 11 
selected genes and validated the genes in three GC cell 
lines and in non-neoplastic gastric tissue by bisulfate 
sequencing. Differential DNA hypermethylation was 
observed in GPX1, IGFBP6, IRF7, GPX3, TFPI2, and 
DMRT1 promoter regions in GC cells but not in non-
neoplastic tissues. Moreover, a poor survival rate was ob-
served in those individuals with higher methylation status 
at the TFPI2 gene. TFPI2 is a serine protease inhibitor, 
which negatively regulates the enzymatic activities of  
trypsin, plasmin, and a tissue factor complex. Therefore, 
it has been proposed that this gene inactivation may be 
implicated in human carcinogenesis and metastasis[92].

CONCLUSION
In summary, aberrant DNA methylation and histone 
modification play a crucial role in gastric carcinogenesis. 

Thus, the recognition of  the methylation machinery, 
genes with aberrant methylation status, and histone meth-
ylation levels in gastric carcinogenesis exemplified in this 
review allow us to contemplate the possibility of  dealing 
with the aforementioned oncological issue in a new way 
that may have a significant impact on the therapy and 
management of  GC.
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