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Abstract
AIM: To investigate the effects of different concentra-
tions of Schistosoma japonicum (S. japonicum) egg an-
tigen on fibrogenesis and apoptosis in primary hepatic 
stellate cells (HSCs).

METHODS: A mouse model of schistosomiasis-asso-
ciated liver fibrosis (SSLF) was established by infect-
ing mice with schistosomal cercaria via  the abdomen. 
HSCs were isolated from SSLF mice by discontinuous 
density gradient centrifugation, and their identity was 
confirmed by immunofluorescence double staining 
of α-smooth muscle actin (α-SMA) and desmin. The 
growth inhibitory effect and 50% inhibitory concentra-
tion (IC50) of S. japonicum  egg antigen for primary 
HSCs (24 h) were determined using a cell counting kit-8 
(CCK-8) assay. The expression levels of α-SMA, matrix 
metalloproteinase-9 (MMOL/LP-9) and tissue inhibitor 

of metalloproteinases-1 (TIMP-1) in HSCs in response 
to different concentrations of S. japonicum egg anti-
gen were detected by Western blotting and real-time 
reverse transcription-polymerase chain reaction. The 
levels of phospho-P38 (P-P38), phospho-Jun N-terminal 
kinase (P-JNK) and phospho-Akt (P-AKT) in HSCs were 
detected by Western blotting.

RESULTS: An SSLF mouse model was established, and 
primary HSCs were successfully isolated and cultured. 
S. japonicum egg antigen inhibited HSC proliferation 
in a concentration-dependent manner. The IC50 of the 
S. japonicum egg antigen was 244.53 ± 35.26 μg/mL. 
S. japonicum egg antigen enhanced α-SMA expression 
at both the mRNA and protein levels and enhanced 
TIMP-1 expression at the mRNA level in HSCs (P  < 
0.05), whereas the expression of MMOL/LP-9 was at-
tenuated at both the mRNA and protein levels in a con-
centration-dependent manner (P  < 0.05). A high con-
centration of S. japonicum egg antigen enhanced P-P38, 
P-JNK and P-AKT activation (P  < 0.05). The changes 
in α-SMA and MMOL/LP-9 expression induced by S. ja-
ponicum egg antigen were closely correlated with P-P38 
and P-JNK activation (P  < 0.05). The attenuation of 
MMOL/LP-9 was also correlated with P-AKT activation (P  
< 0.05), but the increase in α-SMA expression was not. 
TIMP-1 expression was not correlated with P-P38, P-JNK 
or P-AKT activation.

CONCLUSION: S. japonicum  egg antigen promotes 
fibrogenesis, activates the P38/JNK mitogen-activated 
protein kinase and AKT/PI3K signaling pathways and 
inhibits proliferation in primary HSCs isolated from SSLF 
mice in a concentration-dependent manner.
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INTRODUCTION
Schistosomiasis is a water-borne parasitic disease that plagues 
many tropical and subtropical regions. At least 200 mil-
lion people in 76 countries are currently afflicted by this 
disease, and a further 500-600 million people are at risk of  
infection[1]. Schistosoma japonicum (S. japonicum), the Asian 
schistosome, causes schistosomiasis in China, Japan, the 
Philippines and Indonesia. A nationwide schistosomiasis 
survey carried out in 2003 indicated that there were still 
more than 800  000 people infected with S. japonicum in 
China[2].

Despite recent progress in anti-schistosomal strate-
gies, clinical management remains a challenge because 
schistosomiasis-associated liver fibrosis (SSLF) is a com-
plex, multi-step and often fatal disease. Cercaria that are 
transmitted through the skin can lay a large number of  
eggs, which then pass through the sinusoidal endothelial 
vascular system, settle in the liver, release immol/Luno-
competent products, interact with various liver cells and 
finally lead to liver fibrosis[3]. This liver fibrosis could de-
velop into an irreversible advanced stage upon repeated 
exposure to the causative agents (i.e., S. japonicum eggs). 
Primary hepatic stellate cells (HSCs) are believed to be 
the crucial contributors to the fibrotic process by pro-
ducing extracellular matrix and interrupting the balance 
of  fiber generation vs degradation[4]. Some studies have 
investigated the mechanism underlying the pathogenesis 
of  SSLF. S. mansoni eggs can stimulate hepatic endothelial 
cell proliferation[5] and migration, promote angiogenesis[6], 
induce fibroblast proliferation[7] and collagen synthesis[8] 
and down-regulate LX-2 activation and fibrogenesis[9]. 
However, little is known about the mechanisms that are 
active in HSCs during the development and progression 
of  SSL[3,10]. 

In this study, primary HSCs isolated from SSLF mice 
were exposed to different concentrations of  S. japonicum 
egg antigen and then analyzed to better understand the 
interaction between HSCs and SSLF.

MATERIALS AND METHODS
Animals
Healthy 4- to 6-wk-old male BALB/C mice were ob-
tained from a schistosomiasis control station in Hubei 
province, China.

Reagents
S. japonicum egg antigen [0.01 g/mL in phosphate-

buffered saline (PBS)] was obtained from the Hubei 
schistosomiasis control station and diluted to the working 
concentration in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 2% fetal bovine serum 
(FBS) before use.

Animal model development
The SSLF model was established by abdominal infection 
with schistosomal cercaria according to the method used 
in a previous study[11]. In brief, mice in the model group 
were percutaneously infected with S. japonicum by placing 
a glass slide carrying 20 ± 2 cercariae in non-chlorinated 
water on the abdomen of  each mouse for 15 min. Mice 
in the control group were treated with non-chlorinated 
water containing no cercariae. All mice were raised for 6 
wk under pathogen-free conditions with free access to 
food and water. All animal experiments were performed 
in accordance with the Guide for the Care and Use of  
Laboratory Animals of  the Chinese Council on Animal 
Care. Liver samples were taken from 10 infected and 10 
normal mice and fixed in 4% (v/v) paraformaldehyde 
(PFA) in PBS.

Masson staining
Masson staining was performed using standard methods 
to observe collagen fiber deposition. About 5 middle-
power fields were randomly selected from each sample for 
analysis, and the ratio of  the area occupied by collagen fi-
bers to the total area was quantified using Image Pro Plus 
6.0 software (Media Cybernetics Inc., United States).

Hepatic stellate cell isolation and culture
HSCs were prepared by the discontinuous density gra-
dient centrifugation technique previously described by 
Schafer et al[12], with minor modifications. Briefly, the liver 
was perfused with Solution I [137 mmol/L NaCl, 5.4 
mmol/L KCl, 0.6 mmol/L NaH2PO4•2H2O, 0.8 mmol/
L Na2HPO4•12H2O, 10 mmol/L HEPES, 0.5 mmol/L 
EGTA, 4.2 mmol/L NaHCO3, 5 mmol/L glucose, 100 
U/mL penicillin and 100 U/mL streptomycin (Gibco, 
United States), pH = 7.4] and Solution II [137 mmol/L 
NaCl, 5.4 mmol/L KCl, 0.6 mmol/L NaH2PO4•2H2O, 
0.8 mmol/L Na2HPO4•12H2O, 10 mmol/L HEPES, 3.8 
mmol/L CaCl2•2H2O, 24.2 mmol/L NaHCO3, 5 mmol/
L glucose, 600 mg/L collagenase IV (Gibco, United 
States), 400 mg/L pronase (Sigma, United States), 20 mg/
L DNAse (Gibco, United States), pH = 7.4] through the 
hepatic portal vein. The livers were removed and forced 
through a 200 gauge mesh. Parenchymal cells were sepa-
rated by centrifugation at 20 g for 5 min. The supernatant 
was transferred to a 50 mL centrifuge tube and centri-
fuged at 500 g for 7 min. The pellet was resuspended in 
15% OptiPrep (Sigma, United States), and 11% OptiPrep 
and 5 mL GBSS (120 mmol/L NaCl, 5 mmol/L KCl, 
0.84 mmol/L Na2HPO4•2H2O, 0.22 mmol/L KH2PO4, 
1.9 mmol/L MgCl2•6H2O, 1.5 mmol/L CaCl2•2H2O, 27 
mmol/L NaHCO3, 5 mmol/L glucose, pH = 7.4) were 
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then layered on the top of  the 15% OptiPrep, and the 
gradient was centrifuged at 1400 g for 17 min. The inter-
face between the 11% OptiPrep and the GBSS was col-
lected and washed twice with GBSS. The collected cells 
were cultured in DMEM containing 10% FBS (Gibco, 
United States). The cell viability, as measured by a Trypan 
Blue exclusion assay, was approximately 90%. Primary 
HSCs from passages 7-8 were used in this study. 

Immunofluorescence staining
Immunofluorescence double staining of  α-smooth mus-
cle actin (α-SMA) and desmin was used to identify acti-
vated HSCs. Briefly, cell slides were fixed in 4% PFA and 
incubated with a blocking solution containing 0.1% Tri-
ton X-100 and 5% bovine serum albumin (BSA) in PBS, 
followed by incubation with anti-desmin (Abcam, United 
Kingdom) and anti-α-SMA (Boster, China) primary an-
tibodies at 4 ℃ overnight. After three washes with PBS, 
the slides were incubated with secondary FITC-conjugat-
ed antibodies and Cy3-conjugated antibodies (Proteintech, 
United States) for 1 h at 37 ℃ and then with Hoechst 
33258 for 5 min. The cells were observed and imaged us-
ing a TE-2000 Nikon Inverted fluorescence microscope, 
and the number of  positive cells per 100 cells was ana-
lyzed.

Cell counting Kit-8 
The cell growth inhibitory effect and 50% inhibitory 
concentration (IC50) of  S. japonicum egg antigen for pri-
mary HSCs were determined using a cell counting kit-8 
(CCK-8) assay. HSCs were treated as follows: cultured 
cells (1 × 104/well) in a 96-well plate were exposed to a 
range of  concentrations of  S. japonicum egg antigen (1, 5, 
25, 125, 250, 625, 1250, 2500 and 3125 μg/mL) for 24 h, 
and 10 μL of  water soluble tetrazolium-8 (WST-8) (Pro-
moter, China) was then added to the medium containing 
the S. japonicum egg antigen. The cells were incubated 
then for 2 h. The absorbance of  each well was read at 
450 nm, and a blank well that contained only culture 
medium and was used for background correction. The 
percent inhibition was calculated according to the fol-
lowing formula: Inhibition (%) = [1 - (treated/control)] 
× 100[13,14]. The IC50 was determined using Statistical 
Product and Service Solutions (SPSS) 16.0 software (SPSS 
Inc., United States). 

Real-time reverse transcription-polymerase chain 
reaction 
Cultured cells were incubated with various concentra-
tions of  S. japonicum egg antigen (0, 5, 10, 15, 50, 250 
μg/mL) for 24 h. Total RNA was isolated from HSCs 
using the TRIzol reagent (Invitrogen, United States) ac-
cording to the protocol described by the manufacturer. 
RNA samples were quantified by measuring the absor-
bance at 260 nm and 280 nm using a spectrophotometer, 
and all samples had an A260/A280 ratio between 1.8 
and 2.0, which indicated a high purity of  the extracted 
RNA. The RNA concentrations were calculated based 

on the absorbance at 260 nm. Aliquots of  total RNA 
(0.5 μg) from each sample were reverse transcribed 
into cDNA according to the instructions provided with 
the first-strand cDNA synthesis kit (TaKaRa, Japan). 
Equal amounts of  the reverse transcription products 
were subjected to polymerase chain reaction amplifica-
tion using SYBR Green as a fluorescent indicator on 
an AB iCycler system (AB, United States). The levels 
of  α-SMA, matrix metalloproteinase-9 (MMOL/LP-9) 
and tissue inhibitor of  metalloproteinases-1 (TIMP-1) 
mRNAs were normalized to the level of  glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) mRNA. The 
fold change in the expression of  target genes between 
the experimental and control samples was calculated us-
ing the 2-∆∆CT method, as previously described[15]. The 
primers used in this study were synthesized by Invit-
rogen Ltd. (Invitrogen, United States): α-SMA sense 
CGGGAGAAAATGACCCAGATT, α-SMA antisense 
GGACAGCACAGCCTGAATAGC, MMOL/LP-9 
sense ACAGCCAACTATGACCAGGAT, MMOL/LP-9 
antisense CAGGAAGACGAAGGGGAAGAC, TIMP-1 
sense CTTGGTTCCCTGGCGTACTC, TIMP-1 an-
tisense ACCTGATCCGTCCACAAACAG, GAPDH 
sense GGTTGTCTCCTGCGACTTCA and GAPDH 
antisense GGGTGGTCCAGGGTTTCTTA.

Western blotting 
Western blot analysis was performed as described previ-
ously[16]. In brief, proteins from HSCs were extracted 
using RIPA lysis buffer (50 mmol/L Tris, 150 mmol/L 
NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% 
SDS, pH = 7.4) containing protease inhibitors. After 
the samples were boiled for 5 min at 95 ℃ in 5 × load-
ing buffer, equal amounts (50 μg) of  cell homogenates 
were separated by 12% SDS-PAGE. The proteins were 
then electrophoretically transferred at 250 mAH onto 
polyvinylidene fluoride membranes. The membranes 
were blocked with 5% nonfat dry milk or BSA in Tris-
buffered saline-Tween 20 (TBST) and probed at 4 ℃ 
overnight with primary antibodies against α-SMA (1:200, 
Boster, China), MMOL/LP-9 (1: 200, Boster, China), 
TIMP-1and β-actin (1:500, Santa Cruz, United States), 
phospho-P38 (P-P38) and total P38 (T-P38) (1:1000, Cell 
Signaling Technology, United States), phospho-JNK (P-
JNK) and total-JNK (T-JNK) (1:1000, Cell Signaling 
Technology, United States), phospho-AKT (P-AKT) (1: 
1000, Cell Signaling Technology, United States) and total-
AKT (T-AKT) (1:400, Santa Cruz, United States). The 
membranes were then washed and incubated for 1 h with 
horseradish peroxidase-conjugated secondary antibodies 
diluted 1:5000 or 1:2000. The membranes were washed, 
and all blots were visualized using an ECL detection sys-
tem (Biouniquer, China). The bands were quantitated in 
grayscale using Image J software (NIH, United States).

Statistical analysis
The results of  multiple observations are presented as 
the means ± SD of  at least 3 independent experiments. 
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collagen fibers deposited in the normal mouse livers ex-
cept in the vessels (Figure 1). In addition, the ratio of  the 
collagen fiber-deposited area to the total area was signifi-
cantly greater in the SSLF livers than in the normal livers 
(Table 1). The above results suggest that the SSLF mouse 
model was established successfully.

Identification of isolated HSCs
Primary HSCs isolated from SSLF mice displayed a qui-
escent phenotype. When cultured in plastic culture dishes, 
these cells began to exhibit an activated phenotype. The 
expression levels of  α-SMA and desmin increased, and 
this feature was used to identify activated HSCs. Immu-
nofluorescence double staining showed that α-SMA and 
desmin were expressed in the cytoplasm of  HSCs (Fig-
ure 2). Approximately 95% of  the cells expressed both 
α-SMA and desmin, suggesting that primary HSCs were 

Student′s t test was used to evaluate the difference in the 
ratio of  the collagen fiber-deposited area to the total area 
between infected and normal mouse livers. ANOVA was 
used to evaluate the differences between the S. japonicum 
egg antigen-treated group and the control group. Person 
linear correlation analysis was used to analyze the correla-
tions between the α-SMA, MMOL/LP-9 and TIMP-1 
expression levels and the P-P38, P-JNK and P-AKT 
levels. All P values were two sided, and P < 0.05 was 
considered statistically significant. Statistical analysis was 
performed using SPSS 16.0 software.

RESULTS
Establishment of the mouse model of SSLF
Masson staining showed that collagen fibers were de-
posited at the periphery of  the eosinophilic granuloma 
and that eggs were deposited in the venae of  mouse liver 
tissues at 6 wk post-infection; in contrast, there were no 

B

A

Figure 1  Masson staining of 6 wk post-infect mice livers (× 200). A: Normal 
mice; B: Infected mice, the red arrow indicated the eggs deposited in the vein, 
the blue represented acidophilic necrosis, and the black was the collagen fiber 
deposited around the vein. 

Table 1  Ratio of collagen fiber deposited area to the totalin 
the normal and infected mice livers (mean ± SD)

Group n Ratio of deposited collagen fiber area against the total

Normal 10  5.18% ± 1.88%
Infected 10 14.53% ± 2.90%a

aP < 0.05 vs Normal. 

C

B

A

Figure 2  Immunofluorescence staining in primary primary hepatic stellate 
cells (× 400). A: α-Smooth muscle actin (red hue); B: Desmin (green hue); C: 
Overlay. 
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isolated successfully.

Inhibitory effect and IC50 of S. japonicum egg antigen 
for primary HSCs
Figure 3 shows that S. japonicum egg antigen inhibited 
the proliferation of  primary HSC in a concentration-
dependent manner. The percent inhibition values for S. 
japonicum egg antigen were 7.06% ± 2.26% for 1 μg/mL, 
11.13% ± 1.90% for 5 μg/mL, 17.25% ± 1.95% for 25 
μg/mL, 26.16% ± 1.28% for 125 μg/mL, 68.96% ± 
4.73% for 250 μg/mL, 75.77% ± 3.87% for 625 μg/mL, 
75.95% ± 4.40% for 1250 μg/mL, 75.84% ± 5.33% for 
2500 μg/mL and 75.30% ± 4.84% for 3125 μg/mL. 
The IC50, defined as the concentration of  a substance 
that reduces cell survival by 50%, is a useful parameter to 
quantify the effect of  a substance on cell survival. In this 
study, the IC50 of  S. japonicum egg antigen was calculated 
to be 244.53 ± 35.26 μg/mL.

Expression of α-SMA, MMP-9 and TIMP-1 in response to 
S. japonicum egg antigen in vitro 
As shown in Figure 4, S. japonicum egg antigen at 50 or 
250 μg/mL enhanced α-SMA expression in HSCs at 
both the mRNA and protein levels. At the mRNA level, 
the fold change in α-SMA expression was 1.97 ± 0.18 
in response to 50 μg/mL and 2.18 ± 0.22 in response to 
250 μg/mL relative to the control (1.00 ± 0.10, P < 0.05) 
(Figure 4C). At the protein level, the α-SMA/β-actin ra-
tio was 0.94 ± 0.03 at 50 μg/mL and 1.06 ± 0.04 at 250 
μg/mL, compared with 0.63 ± 0.05 for the control (P < 
0.05, Figure 4A and B). 

However, at the mRNA level, 3.45 ± 0.36-fold re-
duction in response to 50 μg/mL and 4.49 ± 0.28-fold 
reduction in response to 250 μg/mL in MMOL/LP-9 ex-
pression were observed after 24h with egg antigen treat-
ment, compared with 1.05 ± 0.12 for the control (P < 
0.05, Figure 4C). At the protein level, the MMOL/LP-9/
β-actin ratios were 0.59 ± 0.03 at 50 μg/mL and 0.49 ± 
0.10 at 250 μg/mL, compared with 0.98 ± 0.08 for the 

control (P < 0.05, Figure 4A and B). In addition, S. japoni-
cum egg antigen also enhanced TIMP-1 expression at the 
mRNA level. The fold change in TIMP-1 mRNA expres-
sion was 2.00 ± 0.27 in response to 50 μg/mL and 2.62 
± 0.18 in response to 250 μg/mL compared with 1.05 ± 
0.13 for the control (P < 0.05, Figure 4C). However, as 
shown in Figure 4A and B, S. japonicum egg antigen had 
no effect on TIMP-1 expression at the protein level. 

Collectively, the above observations indicate that S. 
japonicum egg antigen promoted fibrogenesis in HSCs and 
participated in the extracellular matrix remodeling ob-
served in SSLF.
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P38/JNK MAPK and AKT signaling pathway activation 
by S. japonicum egg antigen in vitro 
As shown in Figure 5, the P-P38, P-JNK and P-AKT 
activation levels were enhanced by stimulation with the S. 
japonicum egg antigen. The P-P38/T-P38 ratio was 1.03 ± 
0.08 at 50 μg/mL and 1.05 ± 0.01 at 250 μg/mL vs 0.18 
± 0.02 for the control (P < 0.05). The P-JNK/T-JNK 
ratio was 0.58 ± 0.04 at 15 μg/mL, 0.88 ± 0.05 at 50 μg/
mL and 0.67 ± 0.03 at 250 μg/mL vs 0.20 ± 0.01 for the 
control (P < 0.05). The P-AKT/T-AKT ratio was 0.57 ± 
0.11 at 250 μg/mL v 0.29 ± 0.03 for the control (P < 0.05). 
The above results indicate that S. japonicum egg antigen 
activated the P38/JNK mitogen-activated protein kinase 
(MAPK) and AKT signaling pathways in a concentration-
dependent manner.

Relationships among the levels of the α-SMA, MMP-9 
and TIMP-1 and P-P38, P-JNK and P-AKT in HSCs
α-SMA protein expression was positively correlated with 
the P-P38 (r = 0.669, P = 0.002) and P-JNK levels (r = 
0.686, P = 0.002). MMOL/LP-9 expression was nega-
tively correlated with the P-P38 (r = -0.976, P = 0.000), 
P-JNK (r = -0.86, P = 0.000) and P-AKT levels (r = 
-0.529, P = 0.024). However, TIMP-1 expression was 
not correlated with the P-P38, P-JNK or P-AKT level. 
α-SMA expression was not correlated with the P-AKT 

level.

DISCUSSION
HSC activation is considered the key step in liver fibro-
genesis, representing a transition from the quiescent state 
into a proliferative, fibrogenic and contractile state. HSCs 
reside in the space of  disse and are recruited to areas 
of  hepatic injury by chemokines, where they become 
activated[17]. During this process, HSCs are transformed 
from the quiescent to activated phenotype, a process that 
is accompanied by an increase in the expression levels 
of  α-SMA and desmin[18,19], which are considered to be 
markers of  HSC activation. The activated HSCs adopt a 
myofibroblast-like phenotype and secrete collagen-rich 
matrix into the extracellular space, leading to liver fibro-
sis[20]. HSCs have been implicated as the effector cells of  
hepatic fibrosis and cirrhosis associated with hepatitis B 
virus, hepatitis C virus, genetic hemochromatosis, bili-
ary atresia, cystic fibrosis and alcoholic liver disease in 
humans[20-23]. HSCs also play a role in eosinophilic granu-
lomatous inflammol/Lation and SSLF[24-26]. Bartley et 
al[25] showed that activated HSCs could be detected at the 
edges of  eosinophilic granulomas in S. japonicum-infected 
mice livers at 6 wk post-infection, and the localization of  
these cells was coincident with areas of  collagen deposi-
tion. In this study, collagen fiber deposition was observed 
at the periphery of  the eosinophilic granuloma, consis-
tent with the previous reports[25]. In addition, we also 
found that S. japonicum egg antigen inhibited HSC prolif-
eration in a concentration-dependent manner. 

Activated HSC-secreted MMOL/LPs (e.g., MMOL/
LP-9) and their inhibitors (e.g., TIMP-1) remodel the tis-
sue matrix[22], and an imbalance in MMOL/LP/TIMP ex-
pression has been associated with cumulative fibrosis[27]. 
The expression of  α-SMA is increased in the livers of  
SSLF patients and infected mice and is closely correlated 
with the degree of  liver fibrosis[25,27]. In our experiment, 
the S. japonicum egg antigen attenuated MMOL/LP-9 
expression and enhanced α-SMA expression at both the 
mRNA and protein levels, and it also enhanced TIMP-1 
expression at the mRNA level. However, the TIMP-1 
protein level was not affected. The mRNA and protein 
expression levels are not always proportional due to the 
activities of  various regulatory mechanisms, e.g., post-
transcriptional modulation by miRNAs. The above re-
sults imply that the S. japonicum egg antigen is involved in 
MMOL/LP-9-mediated matrix remodeling and thus col-
lagen deposition, leading to liver fibrosis. The results of  
our study partially contradict to the previous report that 
S. mansoni eggs can down-regulate the activation of  and 
fibrogenesis in the human hepatic stellate cell line LX-2[9]. 
One potential reason for this discrepancy is the different 
cell models and schistosomal egg antigens used in the 
two studies. In vitro exposure to schistosome eggs induces 
only limited activation of  human dendritic cells (DCs) 
but strong activation of  murine DCs[28]. Similarly, in this 
study, the same concentrations of  egg antigen (5 μg/mL, 
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10 μg/mL, and 15 μg/mL) that attenuated α-SMA ex-
pression in human LX-2 cells had no effect on primary 
mouse HSCs. In addition, S. japonicum and S. mansoni eggs 
release different antigens[29], which may play a role in the 
discrepancy. 

MAPKs are pivotal transmitters of  extracellular sig-
nals such as hormones, cytokines, growth factors, and 
various environmental stress signals[30]. The MAPK fam-
ily has three major subfamilies: ERK, P38, and JNK, 
and the P38 and JNK pathways are involved in HSC 
transformation[31] and in the regulation of  the complex 
life cycle and host-parasite interactions of  S. japoni-
cum[32]. Many studies have shown that the regulation of  
MMOL/LP-9[33-36] and α-SMA[37-39] in various cell models 
is dependent on the activation of  the P38 and (or) JNK 
signaling pathways. In addition, AKT/PI3K activation 
contributes to liver[40], hear[41] and pulmonar[42-44] fibrosis. 
To gain insight into the potential signaling mechanisms 
mediating the HSC responses induced by the S. japonicum 
egg antigen, we investigated the roles of  the P38/JNK 
MAPK and AKT signaling pathways by assessing their 
phosphorylation status in primary HSCs after stimulation 
by the S. japonicum egg antigen. In this study, the P-P38 
and P-JNK levels were significantly enhanced after the 
treatment. The increase in α-SMA expression that was 
stimulated by the S. japonicum egg antigen was positively 
correlated with the P-P38 and P-JNK levels but not the 
P-AKT level. Attenuated MMOL/LP-9 expression was 
negatively correlated with the P-P38, P-JNK and P-AKT 
levels. TIMP-1 expression was not correlated with the 
P-P38, P-JNK or P-AKT level. We also noted that only 
S. japonicum egg antigen concentrations of  250 μg/mL or 
greater were associated with AKT activation, suggesting 
that AKT signaling may have a less important role than 
P38/JNK MAPK signaling in the induction of  fibrogen-
esis by the S. japonicum egg antigen. 

In conclusion, the results of  this study suggest that 
the S. japonicum egg antigen promotes fibrogenesis and 
inhibits the proliferation of  primary HSCs in a concen-
tration-dependent manner. These effects of  the S. japoni-
cum egg antigen may be attributed to the activation of  the 
P38/JNK signaling pathways in HSCs. Thus, inhibitors 
of  the P38/JNK signaling pathways may serve as poten-
tial therapeutic treatments for SSLF.
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