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We report on the construction of sex-specific linkage maps, the identification of sex-linked markers and the genome size
estimation for the brine shrimp Artemia franciscana. Overall, from the analysis of 433 AFLP markers segregating in a 112 full-
sib family we identified 21 male and 22 female linkage groups (2n=42), covering 1,041 and 1,313 cM respectively. Fifteen
putatively homologous linkage groups, including the sex linkage groups, were identified between the female and male
linkage map. Eight sex-linked AFLP marker alleles were inherited from the female parent, supporting the hypothesis of a
WZ-ZZ sex-determining system. The haploid Artemia genome size was estimated to 0.93 Gb by flow cytometry. The
produced Artemia linkage maps provide the basis for further fine mapping and exploring of the sex-determining region and
are a possible marker resource for mapping genomic loci underlying phenotypic differences among Artemia species.
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Introduction

Artemia, known as brine shrimp, is a genus of small planktonic
crustaceans found worldwide in natural salt lakes and salterns [1].
Their larvae (nauplii) are the most commonly used live food in
aquaculture activities, specifically for larval growth of more than
85% of the marine species reared in aquaculture [2,3]. Adult
Artemia survive extreme salinities, while their encysted embryos
(cysts), produced under stressful conditions, have a unique
tolerance for high doses of UV and ionizing radiation, anoxia,
thermal extremes and desiccation-hydration cycles [4—6]. Cysts
remain viable for years and produce nauplii within 24 h after
hydration.

An overview of Artemia cytogenetics, DNA content and available
molecular tools is provided. Six different sexually dimorphic
species can be found in the Artemia genus, among which Artemia
Jranciscana Kellogg, 1906 [4] and several obligate parthenogenetic
Artemia populations ranging in ploidy from 2n to 5n [7]. All
sexually dimorphic Artemia species are diploids with 2n=42,
except A. persimilis (2n = 44) [8]. The Artemia genome size has been
assessed with two different techniques producing discordant
estimates: 2.93 Gb (3 pg) by Feulgen densitometry [9] and 1.47
Gb (1.5 pg) by DNA reassociation kinetics [10]. Despite the use of
flow cytometry in the most recent evaluations of crustacean
genome size [11-13], so far no flow cytometry-based estimates of
the Artemia genome have been published. To date, genomic
resources for Artemia have been limited to RAPD [14,15], RFLP
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[16], AFLP [17,18], microsatellite markers [19] and the 15,822 bp
mitochondrial genome sequence [20,21].

In crustaceans, three major genetic sex determination systems
have been suggested by cytogenetics and sex-linked markers: WZ-
27 (females are the heterogametic sex), XX-XY (males are the
heterogametic sex) and androdioecy (a mix of ZZ males and WZ
hermaphrodites, as in Fulimnadia lexana) [22]. Examples of
crustaceans with an XX-XY sex-determining system are decapods
such as the Chinese mitten crab Eriocheir sinensis [23,24], terrestrial
isopods and the amphipods Orchestia cavimana and O. gammarellus
[25]. However, a WZ-ZZ sex-determining system has been found
in decapods such as Litopenaeus vannamei [26], tiger shrimp Penaeus
monodon [27], Macrobrachium rosenbergii [28], kuruma prawn Penacus
Japonicus [29], Australian red claw crayfish Cherax quadricarinatus
[24] and in isopods like Armadillidium vulgare and all Valvifera,
except Saduria entomon [30]. In bisexual Artemia, female heterogam-
ety has been suggested previously by observation of sexual
heterochromosomes in A. salina [31], A. franciscana and A. persimilis
[8]; by crossing experiments with A. franciscana showing a recessive
sex-linked trait called “white eye” [32] and by karyotyping and
heterochromatin experiments showing one heterochromatic block
in female and two in male A. persimilis [8].

Over the last decade, linkage maps have been developed for a
number of crustaceans such as Daphmia pulex [33], D. magna [34],
Tigriopus californicus [35], P. monodon [36-38], L. vannamer [39-41],
Fenneropenaeus chinensis [42,43] and P. japonicus [44]. Sex-linked
markers have been found in males of the isopod Mysis relicta [45]
and of Triops cancriformis [46]. In female crustaceans, sex-linked
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Figure 1. Artemia franciscana autosomal female linkage groups Twenty-one linkage groups representing the Artemia franciscana
autosomal genome containing markers originating from female parental strain Vinh Chau (ARC1349). Each AFLP marker is represented
by (1) a code referring to the corresponding PC (Table S1), followed by (2) the molecular size of the fragment in nucleotides and (3) the type of
parental marker (female marker, tagged as “F”). Cumulative marker distances (cM) are indicated on the left.

doi:10.1371/journal.pone.0057585.g001

markers have been found in the isopods Paracerceis sculpta [47] and
Jaera ischiosetosa [48], in the crab Cancer setosus [49], in penaeid
shrimps L. vannamer [41] and P. monodon [27] and in giant
freshwater prawn M. rosenbergiz [50]. Moreover, a hermaphrodite-
determining allele has been studied in the androdioecious
branchiopod E. fexana [51]. So far, neither linkage maps, nor
trait-linked markers including sex-linked markers have been
identified in Artenua [8].

Genetic linkage maps are invaluable in forward genetic analyses
for the identification of the genomic loci responsible for
phenotypic differences. From this perspective, Artemia offers a
number of major advantages for time-effective generating of
experimental mapping populations and for mapping natural allelic
variation. They have a short generation time (24 weeks),
offspring production of several hundred individuals per brood,
storability of cysts for years, easy breeding in large numbers and
levels of genetic variability that are among the highest within
crustaceans [16,41,52]. In addition, we expect that forward
genetic approaches in Arfemia are not only restricted to Arlemia-
specific traits, but are also valuable for mapping traits such as sex,
Vibrio pathogen resistance and growth rate, segregating in
commercially important crustaceans. We believe therefore, that
Artemia could be a useful model species for other crustaceans.

In the present study, we report on a first AFLP-based linkage
map of 4. franciscana. We additionally present eight sex-linked
markers that disclose the linkage group corresponding to the W
chromosome and confirm female heterogamety in A. franciscana.
Finally, we report on the estimation of the A. franciscana genome
size by flow cytometry.

Materials and Methods

Mapping population

Cyst material of the A. franciscana strains from San Francisco
Bay, USA (SFB; ARC1364) and Vinh Chau, Vietnam (VC;
ARC1349) was obtained from the Laboratory of Aquaculture &
Artemia Reference Center cyst bank (http://www.aquaculture.
ugent.be). The SFB strain was first introduced in Vinh Chau,
Vietnam in 1982, eventually resulting in the new VC strain in the
late 1980s [53]. First, cysts from both strains were hatched
separately in acrated scawater (28°C, salinity 35 g1~ '). The instar
I nauplii of each strain were then harvested and reared for a week
in aerated seawater with added sea salt (Instant Ocean®, 28°C,
final salinity 70 g17") and fed with Tetraselmis suecica, a marine
unicellular green alga. The Artemia were subsequently transferred
to individual Falcon tubes and kept there under the same
conditions for seven days until sexual maturation. A controlled
cross between VC (@) and SFB (O") was then made, resulting in F;
progeny that was collected over a sieve every two days and grown
until maturity under the same conditions as the parental
generation. Adult F; progeny was rinsed with sterile distilled
water and the phenotypic sex of each I, offspring individual was
determined visually. For gut evacuation before DNA extraction,
the offspring and parents were starved during 24 h, followed by
removal of the brood pouch in females. Parents and progeny were
stored individually at —20°C.
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DNA extraction

DNA was extracted from parents and their 112 F; offspring
according to a modified C'TAB-method for shrimp tissue [54].
Briefly: to each sample, ground in liquid Ny, 150 pl of C'TAB
buffer was added. After homogenization, 750 ul of extra CTAB
buffer was added and the mix was left at 25°C for 30 min. PCA
solution was added (600 pl; 25:24:1 phenol/chloroform/isoamy-
lalcohol). After centrifugation, 800 pl of the upper aqueous phase
was added to 600 ul of CA solution (24:1 chloroform/isoamy-
lalcohol) and the mix was homogenized. To 700 ul of the upper
aqueous phase, 630 ul of isopropanol was added. The mix was
incubated for 1 h at —70°C. After centrifugation, the pellet was
washed with 600 pl of ethanol 70%, air-dried in a 60°C oven and
resuspended in 20 pl of sterile distilled water. DNA quality and
concentration were assessed on a 1% agarose gel.

Segregation analysis and linkage mapping

AFLP analysis with fluorescent dye detection was performed on
a LI-COR long read-IR? 4200 (LI-COR Biosciences) as described
by Vuylsteke etal. [55]. Sixty-five FEcoRI+3/Msel+3 primer
combinations (PCs) listed in Table S1 were used. AFLP analysis
of parents and 112 offspring was done on two separate 64-lane gels
per PC.

The degree of polymorphism between the two parental strains
was estimated based on AFLP fragments amplified by four PCs
(E112M212, E112M213, E112M233 and E112M234).

AFLP markers were scored using the specific image analysis
software AFLP-QuantarPro (http://www.keygene-products.com)
as described in Vuylsteke et al. [55]. Each AFLP marker was
identified by (1) a code referring to the corresponding PC
(Table S1), followed by (2) the molecular size of the fragment in
nucleotides as estimated by AFLP-QuantarPro, and (3) a tag
referring to the type of marker. Parental AFLP markers
segregating 1:1 in the F; progeny are heterozygous in either the
female (female marker, tagged as “F”) or the male parent (male
marker, tagged as “M”) and homozygous absent in the other
parent. AFLP markers heterozygous in one of the parents and
homozygous present in the other were not included in the linkage
analysis, because heterozygotes could not be reliably discriminated
from individuals homozygous for the “band present” allele. No tag
was used for biparental markers, which are heterozygous in both
parents and thus, segregate 1:2:1 in the I'; progeny. Parental and
biparental AFLP markers were scored co-dominantly based on
relative fragment intensities resulting in more genetic information
compared to dominant (present/absent) scoring and hence,
speeding up the mapping process [55]. However, biparental
markers were scored dominantly when the heterozygotes could not
reliably be discriminated from the individuals homozygous for the
“band present” allele.

Linkage and segregation analyses were performed using the
software package Joinmap 4 [56]. The mapping population type
was set to CP (i.e. a population resulting from a cross between two
heterogeneously heterozygous and homozygous diploid parents,
linkage phases originally unknown). The segregation type was
encoded according to Joinmap 4 recommendations [56]. A
logarithm of the odds (LOD) threshold range between 2.0 and
14.0 was initially used to group parental markers. Only linkage
groups containing at least three markers were considered for map
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Figure 2. Artemia franciscana autosomal male linkage groups. Twenty linkage groups representing the Artemia franciscana autosomal genome
containing markers originating from male parental strain San Francisco Bay (ARC1364). Each AFLP marker is represented by (1) a code referring to the
corresponding PC (Table S1), followed by (2) the molecular size of the fragment in nucleotides and (3) the type of parental marker (male marker,

tagged as “M”). Cumulative marker distances are indicated on the left (cM).

doi:10.1371/journal.pone.0057585.g002

construction. Segregation distortion of markers was tested by using
a -test as implemented in Joinmap 4. Graphical presentation of
linkage groups was done with the software MapChart [57].

Artemia genome size estimation by flow cytometry

The haploid genome size (GS) of Artemia was assessed against the
rainbow trout (haploid GS 2.4-3.0 pg or 2.35—2.93 Gb [58]) and
the chicken genome (haploid GS 1.07 pg or 1.05 Gb [59]), both
used as internal standards.

The consistency of the used method was assessed by calibrating
rainbow trout nuclei (2 pl of freshly drawn heparinized Oncorynchus
mykiss blood) against chicken erythrocyte nuclei (2 pl of 10x diluted
BioSure®CEN singlet, Gallus gallus domesticus, Rhode Tsland Red
female).

Each of the four Artemia individuals (i.e. four full-sib males from
the VC (@) x SFB (") cross) were chopped together with internal
standard material using a razor in 1 ml of Galbraiths buffer as
described in Dolezel and Bartos [60]. Cell suspensions were
filtered through a 30 um mesh, put on ice and nuclei were co-
stained in the dark for 2 min with 50 pl of fluorescent DNA stain
Propidium Iodide (Sigma-Aldrich PI solution in water 1 mg/ml).
The use of PI staining on A. franciscana (GC% 32) [61], O. mykiss
(GC% 42) [58] and G. domesticus (GC% 47) [62] was chosen to
avoid a GC content-linked bias, as occurs with DAPI staining [60].
At least 5,000 nuclei were analyzed for each co-stained sample,
using a Modular Flow cytometer and cell sorter (MoFlo Legacy,
Cytomation) with a 488 nm Argon laser and PI emission bandpass
filter of 580/30 nm. Instrument calibration was performed using
Flow-check Fluorospheres (Beckman Coulter) and internal stan-
dards. Fluorescence of the nuclei was recorded linearly with the
software Summit v4.3. For each co-stained sample, fluorescence
histograms were generated and mean fluorescence values were
calculated with the flow cytometry data analysis software Cyflogic

Table 1. Statistics for the female and male linkage maps.

1.2.1. The haploid GS of for each Artemia sample was calculated
Fsx F;
according to the following formula [13]: GS = % , where F{
is
is the mean fluorescence of the sample and F; is the mean
fluorescence of the internal standard.

Results

Segregation analysis and linkage mapping

A total of 65 AFLP PCs resulted in a total of 531 markers, of
which 433 were parental (239 female, 194 male) and 98 markers
were biparental. Based on only four primer combinations (PCs)
yielding 180 AFLP fragments, 36% of the fragments segregated
between both parents.

First, a parental map including only parental markers was
constructed. Summary statistics for the parental maps are listed in
Table 1. The grouping of parental markers at a LOD score
ranging from 5.0 to 6.0 resulted in a number of linkage groups
corresponding with the haploid chromosome number (n=21).
The female map, containing 225 markers (Figure 1), resulted in 22
“female” linkage groups (LG) spanning 1,312.9 cM; the male
map, containing 181 markers (Figure 2), resulted in 21 “male” LG
spanning 1,041.3 cM. Twenty-eight percent of the analyzed
parental markers showed significant ($<<0.05; % test) segregation
distortion. Male markers were more often distorted than female
markers (31% resp. 25%). Some larger genomic regions did not
contain any markers (e.g. 32.5 cM in LG Female_6, Figure 1;
38.0 cM in LG Male_2, Figure 2), despite the low median inter-
marker distances of 3.9 and 3.1 c¢cM for the female and the male
linkage map (Table 1).

Next, an integrated map was created including the 98
biparental markers and 406 previously mapped parental markers
(Figure 3). By including biparental markers, groups consistent with

Female (Vinh Chau) Male (San Francisco Bay)

No. of linkage groups

No. of markers mapped per linkage group Min
Max
Median
Mean
Total

Size of linkage groups (cM) Min
Max
Median
Mean
Total

Intermarker distance (cM) Min
Max
Median

Mean

22 21

3 3

19 17

12 8

10 9
225 181
15.1 9.5
104.4 123.8
63.7 444
59.7 52.1
13129 1041.3
0.0 0.0
325 38.0
39 3.1
6.5 6.6

doi:10.1371/journal.pone.0057585.t001
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Figure 3. Artemia franciscana homologous autosomal male and female linkage groups. Fourteen homologous autosomal linkage group
pairs. Each AFLP marker was identified by (1) a code referring to the corresponding PC (Table S1), followed by (2) the molecular size of the fragment
in nucleotides and (3) the type of marker (female marker, tagged as “F”, male marker, tagged as “M”, biparental marker, no tag). Common biparental

markers are indicated in blue. Cumulative marker distances are indicated on the left (cM).

doi:10.1371/journal.pone.0057585.g003

linkage groups of the parental map were obtained at a LOD
threshold ranging between 6 and 10. Sixty-nine percent of the
biparental marker loci showed significant (p<<0.05; %> test)
segregation distortion. These loci were still included in map
construction and evaluated for quality afterwards, since significant
segregation distortion is inherent to relatively small experimental
mapping population sizes of ~100 individuals. Forty-nine
biparental markers (50%) could be mapped in the female as well
as in the male map, identifying 15 homologous linkage groups
including the sex linkage groups (Figure 3, Iigure 4).

Mapping of the sex locus

Staelens et al. [27] described segregation patterns of sex-linked
AFLP markers that unequivocally differentiate the WZ-ZZ and
XX-XY sex-determination system. We observed eight AFLP
markers, spanning a region of 0.2 ¢cM on LG Female_1 (markers
in green, Figure 4) segregating according to pattern 1 and a single
marker (E112M122M167.3F) according to pattern 2. Both
segregation patterns are expected under the assumption of female
heterogamety. None of the markers segregated according to
patterns 6, 7 and 8, expected under the assumption of male
heterogamety. The male linkage group Male_10 was identified as
homologous to Female_1 (Figure 4). In conclusion, the observed
segregation patterns of sex-linked AFLP markers strongly favour
female over male heterogamety in Artemia.

A. franciscana genome size estimation by flow cytometry

Using trout blood as the internal standard, the haploid female
chicken genome size (GS) determined by flow cytometry was 1.05
Gb (1.07 pg) as previously reported for female chicken [59]. We
preferred rainbow trout nuclei as the internal standard in the

assessment of the Artemia GS because their fluorescence values did
not overlap with those of Artemia, as was the case with fluorescence
values obtained from chicken nuclei. Using rainbow trout nuclei as
the internal standard, the 4. franciscana haploid genome size was
estimated to 0.93%£0.09 Gb (0.97%0.09 pg; n=4). Fluorescence
histograms for each sample and for chicken are shown in Figure 5.
Fluorescence peaks were relatively broad due to cell debris from
the previously frozen Artemia individuals, but average DNA content
estimates were consistent throughout the different samples, shown
by the small standard error.

Discussion

We present the first sex-specific AFLP linkage maps and sex-
linked markers as well as a consistent genome size (GS) estimation
for the brine shrimp A. franciscana.

The linkage analysis of 433 parental AFLP markers segregating
in a 112 full-sib family identified 21 male and 22 female linkage
groups, corresponding very well with the haploid chromosome
number in A. franciscana (2n = 42) [8]. Most likely, the markers in
small linkage groups (LG) such as Female_20 (Figure 1) would join
one of the other 21 LG by adding more markers to the female
map. More female than male markers were generated, suggesting
that maternal A. franciscana strain Vinh Chau (VC) has more
unique alleles compared to the paternal strain San Francisco Bay
(SFB). This seems a logical consequence of the SFB origins of VC.
The level of polymorphism between the two A. franciscana parental
strains was estimated at 36%, which is in the range of 9-50%
estimated previously by Kappas et al. [53]. Given their high
marker density, the produced genetic maps are adequate for the
anchoring of Artemia genome sequences to facilitate the future
construction of physical maps for each of the 21 chromosomes.

Female_1 Male_10
0.0 ~~ E113M132M417.5
00 E113M132M417.5 1.4 E112M244M140.5M
5.7 r E112M224M110.3
6.4 ~J=~ E112M231M254.9M
8.6 ~J b E112M334M202.2M E112M123M253.4M
8.7 E112M423M88.1M
12.8 E112M224M110.3 9.0 E112M122M169.8M
101 E112M342M240.0M
26.6 E112M213M371.1F 121 E112M211M288.7
27.8 E112M311M288.7 15.5 4|\ E112M214M109.5M
28.2 E112M333M286.6F 20.0 - ™ E113M214M337.1M
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36.2 E112M322M415.9F
38.5 E112M223M277.7
40.3 E112M231M88.5F
417 E112M122M167.3F

Figure 4. Artemia franciscana sex linkage groups. Female linkage group Female_1 corresponds with the W chromosome. The homologous male
linkage group Male_10 corresponds with the Z chromosome. Each AFLP marker is represented by (1) a code referring to the corresponding PC
(Table S1), followed by (2) the molecular size of the fragment in nucleotides and (3) the type of marker (female marker, tagged as “F”, male marker,
tagged as “M”, biparental marker, no tag). Common biparental markers are indicated in blue. Markers fully linked to sex are marked in green.
Cumulative marker distances (cM) are indicated on the left.

doi:10.1371/journal.pone.0057585.g004
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atn
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A

Figure 5. Fluorescence histograms for Artemia franciscana and chicken DNA content estimation. Fluorescence histogram of four different
A. franciscana male individuals with trout as the internal standard (A, B, C, D) and of chicken CEN with trout as the internal standard (E).
doi:10.1371/journal.pone.0057585.9g005

This will be especially useful, considering the numerous reports of traits such as resistance to Vibro, the most common bacterial
repetitive sequences in Artemia [63]. Artemia linkage maps will also pathogen in worldwide marine fish and shellfish aquaculture.
allow future linkage studies in Artemia for important crustacean Fifteen homologous linkage groups, including the LG repre-

senting the sex chromosomes, were identified between the female
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and male linkage maps by including biparental markers in the
linkage analysis. This study identified eight sex-linked AFLP
marker alleles mapping to one locus and inherited from the female
parent, suggesting A. franciscana adopts a genetic WZ-Z7 sex-
determining system. Artemia sex-linked markers will enable the
study of nauplii sex ratios and their dynamic in natural Artemia
populations. They will also enable the further fine-mapping of the
sex-determining locus and the subsequent identification of the
primary sex-determining gene(s). Furthermore, based on sequence
homology with Arlemia, sex-determining genes might be identified
in commercially valuable crustaceans, enabling PCR-based allele-
specific assay development in the framework of the development of
mono-sex cultures in shrimp [64].

The clustering of eight sex-linked markers in a 0.2 cM region
suggests reduced recombination, which is often found in sex-linked
regions [65]. Genes from a region that stopped recombining in the
early evolution of sex chromosomes have a high sequence
divergence, allowing an estimate of when the W and Z
chromosomes first stopped recombining and thus, the age of the
sex chromosome system [65].

The estimated Artemia GS in this study (0.93 Gb) is smaller than
carlier estimates: 2.93 Gb by Feulgen densitometry [9] and 1.47
Gb by DNA reassociation kinetics [10]. “A. salina” used to be a
general name for all Arlemia species, presently confounding the
identity of the investigated Arfemia in many studies [1]. Because the
Artemia DNA content measured by Feulgen densitometry on “A.
salina” is almost a twofold of that measured by DNA reassociation
kinetics, Feulgen densitometry might have been performed on a
tetraploid A. parthenogenetica, as suggested by Vaughn [10]. Also, the
absolute A. franciscana karyotype size varies between 60.68 pm and
139.26 um [8], showing that significant intra-specific variation in
DNA content could explain the high Feulgen densitometry values
as well.

Vaughn [10] calculated the Artemia haploid GS by DNA
reassociation kinetics, based on an 4. franciscana GC content of
42%. More recent measurements however, show an A. franciscana
(SFB) GC content of 32% determined by CsCl centrifugation and
confirmed by direct chemical analysis and renewed thermal
denaturation [61]. An estimated GC content lowered by 1%
results in a 0.018% lower haploid DNA content estimated by
DNA reassociation kinetics [66]. Hence, based on a GC content of
32%, the corrected A. franciscana DNA content estimated by
Vaughn [10] is 1.23 Gb, approximating more closely the 0.93 Gb
Artemia GS estimated in this study.

Currently, out of the 50,000 known Crustacea species, the GS of
278 crustaceans has been determined, covering a 400-fold-wide
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