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Abstract

We report on the construction of sex-specific linkage maps, the identification of sex-linked markers and the genome size
estimation for the brine shrimp Artemia franciscana. Overall, from the analysis of 433 AFLP markers segregating in a 112 full-
sib family we identified 21 male and 22 female linkage groups (2n = 42), covering 1,041 and 1,313 cM respectively. Fifteen
putatively homologous linkage groups, including the sex linkage groups, were identified between the female and male
linkage map. Eight sex-linked AFLP marker alleles were inherited from the female parent, supporting the hypothesis of a
WZ–ZZ sex-determining system. The haploid Artemia genome size was estimated to 0.93 Gb by flow cytometry. The
produced Artemia linkage maps provide the basis for further fine mapping and exploring of the sex-determining region and
are a possible marker resource for mapping genomic loci underlying phenotypic differences among Artemia species.
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Introduction

Artemia, known as brine shrimp, is a genus of small planktonic

crustaceans found worldwide in natural salt lakes and salterns [1].

Their larvae (nauplii) are the most commonly used live food in

aquaculture activities, specifically for larval growth of more than

85% of the marine species reared in aquaculture [2,3]. Adult

Artemia survive extreme salinities, while their encysted embryos

(cysts), produced under stressful conditions, have a unique

tolerance for high doses of UV and ionizing radiation, anoxia,

thermal extremes and desiccation-hydration cycles [4–6]. Cysts

remain viable for years and produce nauplii within 24 h after

hydration.

An overview of Artemia cytogenetics, DNA content and available

molecular tools is provided. Six different sexually dimorphic

species can be found in the Artemia genus, among which Artemia

franciscana Kellogg, 1906 [4] and several obligate parthenogenetic

Artemia populations ranging in ploidy from 2n to 5n [7]. All

sexually dimorphic Artemia species are diploids with 2n = 42,

except A. persimilis (2n = 44) [8]. The Artemia genome size has been

assessed with two different techniques producing discordant

estimates: 2.93 Gb (3 pg) by Feulgen densitometry [9] and 1.47

Gb (1.5 pg) by DNA reassociation kinetics [10]. Despite the use of

flow cytometry in the most recent evaluations of crustacean

genome size [11–13], so far no flow cytometry-based estimates of

the Artemia genome have been published. To date, genomic

resources for Artemia have been limited to RAPD [14,15], RFLP

[16], AFLP [17,18], microsatellite markers [19] and the 15,822 bp

mitochondrial genome sequence [20,21].

In crustaceans, three major genetic sex determination systems

have been suggested by cytogenetics and sex-linked markers: WZ-

ZZ (females are the heterogametic sex), XX-XY (males are the

heterogametic sex) and androdioecy (a mix of ZZ males and WZ

hermaphrodites, as in Eulimnadia texana) [22]. Examples of

crustaceans with an XX-XY sex-determining system are decapods

such as the Chinese mitten crab Eriocheir sinensis [23,24], terrestrial

isopods and the amphipods Orchestia cavimana and O. gammarellus

[25]. However, a WZ-ZZ sex-determining system has been found

in decapods such as Litopenaeus vannamei [26], tiger shrimp Penaeus

monodon [27], Macrobrachium rosenbergii [28], kuruma prawn Penaeus

japonicus [29], Australian red claw crayfish Cherax quadricarinatus

[24] and in isopods like Armadillidium vulgare and all Valvifera,

except Saduria entomon [30]. In bisexual Artemia, female heterogam-

ety has been suggested previously by observation of sexual

heterochromosomes in A. salina [31], A. franciscana and A. persimilis

[8]; by crossing experiments with A. franciscana showing a recessive

sex-linked trait called ‘‘white eye’’ [32] and by karyotyping and

heterochromatin experiments showing one heterochromatic block

in female and two in male A. persimilis [8].

Over the last decade, linkage maps have been developed for a

number of crustaceans such as Daphnia pulex [33], D. magna [34],

Tigriopus californicus [35], P. monodon [36–38], L. vannamei [39–41],

Fenneropenaeus chinensis [42,43] and P. japonicus [44]. Sex-linked

markers have been found in males of the isopod Mysis relicta [45]

and of Triops cancriformis [46]. In female crustaceans, sex-linked
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markers have been found in the isopods Paracerceis sculpta [47] and

Jaera ischiosetosa [48], in the crab Cancer setosus [49], in penaeid

shrimps L. vannamei [41] and P. monodon [27] and in giant

freshwater prawn M. rosenbergii [50]. Moreover, a hermaphrodite-

determining allele has been studied in the androdioecious

branchiopod E. texana [51]. So far, neither linkage maps, nor

trait-linked markers including sex-linked markers have been

identified in Artemia [8].

Genetic linkage maps are invaluable in forward genetic analyses

for the identification of the genomic loci responsible for

phenotypic differences. From this perspective, Artemia offers a

number of major advantages for time-effective generating of

experimental mapping populations and for mapping natural allelic

variation. They have a short generation time (2–4 weeks),

offspring production of several hundred individuals per brood,

storability of cysts for years, easy breeding in large numbers and

levels of genetic variability that are among the highest within

crustaceans [16,41,52]. In addition, we expect that forward

genetic approaches in Artemia are not only restricted to Artemia-

specific traits, but are also valuable for mapping traits such as sex,

Vibrio pathogen resistance and growth rate, segregating in

commercially important crustaceans. We believe therefore, that

Artemia could be a useful model species for other crustaceans.

In the present study, we report on a first AFLP-based linkage

map of A. franciscana. We additionally present eight sex-linked

markers that disclose the linkage group corresponding to the W

chromosome and confirm female heterogamety in A. franciscana.

Finally, we report on the estimation of the A. franciscana genome

size by flow cytometry.

Materials and Methods

Mapping population
Cyst material of the A. franciscana strains from San Francisco

Bay, USA (SFB; ARC1364) and Vinh Chau, Vietnam (VC;

ARC1349) was obtained from the Laboratory of Aquaculture &

Artemia Reference Center cyst bank (http://www.aquaculture.

ugent.be). The SFB strain was first introduced in Vinh Chau,

Vietnam in 1982, eventually resulting in the new VC strain in the

late 1980̀s [53]. First, cysts from both strains were hatched

separately in aerated seawater (28uC, salinity 35 g.l21). The instar

I nauplii of each strain were then harvested and reared for a week

in aerated seawater with added sea salt (Instant OceanH, 28uC,

final salinity 70 g.l21) and fed with Tetraselmis suecica, a marine

unicellular green alga. The Artemia were subsequently transferred

to individual Falcon tubes and kept there under the same

conditions for seven days until sexual maturation. A controlled

cross between VC (R) and SFB (=) was then made, resulting in F1

progeny that was collected over a sieve every two days and grown

until maturity under the same conditions as the parental

generation. Adult F1 progeny was rinsed with sterile distilled

water and the phenotypic sex of each F1 offspring individual was

determined visually. For gut evacuation before DNA extraction,

the offspring and parents were starved during 24 h, followed by

removal of the brood pouch in females. Parents and progeny were

stored individually at 220uC.

DNA extraction
DNA was extracted from parents and their 112 F1 offspring

according to a modified CTAB-method for shrimp tissue [54].

Briefly: to each sample, ground in liquid N2, 150 ml of CTAB

buffer was added. After homogenization, 750 ml of extra CTAB

buffer was added and the mix was left at 25uC for 30 min. PCA

solution was added (600 ml; 25:24:1 phenol/chloroform/isoamy-

lalcohol). After centrifugation, 800 ml of the upper aqueous phase

was added to 600 ml of CA solution (24:1 chloroform/isoamy-

lalcohol) and the mix was homogenized. To 700 ml of the upper

aqueous phase, 630 ml of isopropanol was added. The mix was

incubated for 1 h at 270uC. After centrifugation, the pellet was

washed with 600 ml of ethanol 70%, air-dried in a 60uC oven and

resuspended in 20 ml of sterile distilled water. DNA quality and

concentration were assessed on a 1% agarose gel.

Segregation analysis and linkage mapping
AFLP analysis with fluorescent dye detection was performed on

a LI-COR long read-IR2 4200 (LI-COR Biosciences) as described

by Vuylsteke et al. [55]. Sixty-five EcoRI+3/MseI+3 primer

combinations (PCs) listed in Table S1 were used. AFLP analysis

of parents and 112 offspring was done on two separate 64-lane gels

per PC.

The degree of polymorphism between the two parental strains

was estimated based on AFLP fragments amplified by four PCs

(E112M212, E112M213, E112M233 and E112M234).

AFLP markers were scored using the specific image analysis

software AFLP-QuantarPro (http://www.keygene-products.com)

as described in Vuylsteke et al. [55]. Each AFLP marker was

identified by (1) a code referring to the corresponding PC

(Table S1), followed by (2) the molecular size of the fragment in

nucleotides as estimated by AFLP-QuantarPro, and (3) a tag

referring to the type of marker. Parental AFLP markers

segregating 1:1 in the F1 progeny are heterozygous in either the

female (female marker, tagged as ‘‘F’’) or the male parent (male

marker, tagged as ‘‘M’’) and homozygous absent in the other

parent. AFLP markers heterozygous in one of the parents and

homozygous present in the other were not included in the linkage

analysis, because heterozygotes could not be reliably discriminated

from individuals homozygous for the ‘‘band present’’ allele. No tag

was used for biparental markers, which are heterozygous in both

parents and thus, segregate 1:2:1 in the F1 progeny. Parental and

biparental AFLP markers were scored co-dominantly based on

relative fragment intensities resulting in more genetic information

compared to dominant (present/absent) scoring and hence,

speeding up the mapping process [55]. However, biparental

markers were scored dominantly when the heterozygotes could not

reliably be discriminated from the individuals homozygous for the

‘‘band present’’ allele.

Linkage and segregation analyses were performed using the

software package Joinmap 4 [56]. The mapping population type

was set to CP (i.e. a population resulting from a cross between two

heterogeneously heterozygous and homozygous diploid parents,

linkage phases originally unknown). The segregation type was

encoded according to Joinmap 4 recommendations [56]. A

logarithm of the odds (LOD) threshold range between 2.0 and

14.0 was initially used to group parental markers. Only linkage

groups containing at least three markers were considered for map

Figure 1. Artemia franciscana autosomal female linkage groups Twenty-one linkage groups representing the Artemia franciscana
autosomal genome containing markers originating from female parental strain Vinh Chau (ARC1349). Each AFLP marker is represented
by (1) a code referring to the corresponding PC (Table S1), followed by (2) the molecular size of the fragment in nucleotides and (3) the type of
parental marker (female marker, tagged as ‘‘F’’). Cumulative marker distances (cM) are indicated on the left.
doi:10.1371/journal.pone.0057585.g001
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construction. Segregation distortion of markers was tested by using

a x2-test as implemented in Joinmap 4. Graphical presentation of

linkage groups was done with the software MapChart [57].

Artemia genome size estimation by flow cytometry
The haploid genome size (GS) of Artemia was assessed against the

rainbow trout (haploid GS 2.4–3.0 pg or 2.3522.93 Gb [58]) and

the chicken genome (haploid GS 1.07 pg or 1.05 Gb [59]), both

used as internal standards.

The consistency of the used method was assessed by calibrating

rainbow trout nuclei (2 ml of freshly drawn heparinized Oncorynchus

mykiss blood) against chicken erythrocyte nuclei (2 ml of 10x diluted

BioSureHCEN singlet, Gallus gallus domesticus, Rhode Island Red

female).

Each of the four Artemia individuals (i.e. four full-sib males from

the VC (R) x SFB (=) cross) were chopped together with internal

standard material using a razor in 1 ml of Galbraith̀s buffer as

described in Dolezel and Bartos [60]. Cell suspensions were

filtered through a 30 mm mesh, put on ice and nuclei were co-

stained in the dark for 2 min with 50 ml of fluorescent DNA stain

Propidium Iodide (Sigma-Aldrich PI solution in water 1 mg/ml).

The use of PI staining on A. franciscana (GC% 32) [61], O. mykiss

(GC% 42) [58] and G. domesticus (GC% 47) [62] was chosen to

avoid a GC content-linked bias, as occurs with DAPI staining [60].

At least 5,000 nuclei were analyzed for each co-stained sample,

using a Modular Flow cytometer and cell sorter (MoFlo Legacy,

Cytomation) with a 488 nm Argon laser and PI emission bandpass

filter of 580/30 nm. Instrument calibration was performed using

Flow-check Fluorospheres (Beckman Coulter) and internal stan-

dards. Fluorescence of the nuclei was recorded linearly with the

software Summit v4.3. For each co-stained sample, fluorescence

histograms were generated and mean fluorescence values were

calculated with the flow cytometry data analysis software Cyflogic

1.2.1. The haploid GS of for each Artemia sample was calculated

according to the following formula [13]: GS =
FS|Fis

Fis

, where Fs

is the mean fluorescence of the sample and Fis is the mean

fluorescence of the internal standard.

Results

Segregation analysis and linkage mapping
A total of 65 AFLP PCs resulted in a total of 531 markers, of

which 433 were parental (239 female, 194 male) and 98 markers

were biparental. Based on only four primer combinations (PCs)

yielding 180 AFLP fragments, 36% of the fragments segregated

between both parents.

First, a parental map including only parental markers was

constructed. Summary statistics for the parental maps are listed in

Table 1. The grouping of parental markers at a LOD score

ranging from 5.0 to 6.0 resulted in a number of linkage groups

corresponding with the haploid chromosome number (n = 21).

The female map, containing 225 markers (Figure 1), resulted in 22

‘‘female’’ linkage groups (LG) spanning 1,312.9 cM; the male

map, containing 181 markers (Figure 2), resulted in 21 ‘‘male’’ LG

spanning 1,041.3 cM. Twenty-eight percent of the analyzed

parental markers showed significant (p,0.05; x2 test) segregation

distortion. Male markers were more often distorted than female

markers (31% resp. 25%). Some larger genomic regions did not

contain any markers (e.g. 32.5 cM in LG Female_6, Figure 1;

38.0 cM in LG Male_2, Figure 2), despite the low median inter-

marker distances of 3.9 and 3.1 cM for the female and the male

linkage map (Table 1).

Next, an integrated map was created including the 98

biparental markers and 406 previously mapped parental markers

(Figure 3). By including biparental markers, groups consistent with

Figure 2. Artemia franciscana autosomal male linkage groups. Twenty linkage groups representing the Artemia franciscana autosomal genome
containing markers originating from male parental strain San Francisco Bay (ARC1364). Each AFLP marker is represented by (1) a code referring to the
corresponding PC (Table S1), followed by (2) the molecular size of the fragment in nucleotides and (3) the type of parental marker (male marker,
tagged as ‘‘M’’). Cumulative marker distances are indicated on the left (cM).
doi:10.1371/journal.pone.0057585.g002

Table 1. Statistics for the female and male linkage maps.

Female (Vinh Chau) Male (San Francisco Bay)

No. of linkage groups 22 21

No. of markers mapped per linkage group Min 3 3

Max 19 17

Median 12 8

Mean 10 9

Total 225 181

Size of linkage groups (cM) Min 15.1 9.5

Max 104.4 123.8

Median 63.7 44.4

Mean 59.7 52.1

Total 1312.9 1041.3

Intermarker distance (cM) Min 0.0 0.0

Max 32.5 38.0

Median 3.9 3.1

Mean 6.5 6.6

doi:10.1371/journal.pone.0057585.t001
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linkage groups of the parental map were obtained at a LOD

threshold ranging between 6 and 10. Sixty-nine percent of the

biparental marker loci showed significant (p,0.05; x2 test)

segregation distortion. These loci were still included in map

construction and evaluated for quality afterwards, since significant

segregation distortion is inherent to relatively small experimental

mapping population sizes of ,100 individuals. Forty-nine

biparental markers (50%) could be mapped in the female as well

as in the male map, identifying 15 homologous linkage groups

including the sex linkage groups (Figure 3, Figure 4).

Mapping of the sex locus
Staelens et al. [27] described segregation patterns of sex-linked

AFLP markers that unequivocally differentiate the WZ-ZZ and

XX-XY sex-determination system. We observed eight AFLP

markers, spanning a region of 0.2 cM on LG Female_1 (markers

in green, Figure 4) segregating according to pattern 1 and a single

marker (E112M122M167.3F) according to pattern 2. Both

segregation patterns are expected under the assumption of female

heterogamety. None of the markers segregated according to

patterns 6, 7 and 8, expected under the assumption of male

heterogamety. The male linkage group Male_10 was identified as

homologous to Female_1 (Figure 4). In conclusion, the observed

segregation patterns of sex-linked AFLP markers strongly favour

female over male heterogamety in Artemia.

A. franciscana genome size estimation by flow cytometry
Using trout blood as the internal standard, the haploid female

chicken genome size (GS) determined by flow cytometry was 1.05

Gb (1.07 pg) as previously reported for female chicken [59]. We

preferred rainbow trout nuclei as the internal standard in the

assessment of the Artemia GS because their fluorescence values did

not overlap with those of Artemia, as was the case with fluorescence

values obtained from chicken nuclei. Using rainbow trout nuclei as

the internal standard, the A. franciscana haploid genome size was

estimated to 0.9360.09 Gb (0.9760.09 pg; n = 4). Fluorescence

histograms for each sample and for chicken are shown in Figure 5.

Fluorescence peaks were relatively broad due to cell debris from

the previously frozen Artemia individuals, but average DNA content

estimates were consistent throughout the different samples, shown

by the small standard error.

Discussion

We present the first sex-specific AFLP linkage maps and sex-

linked markers as well as a consistent genome size (GS) estimation

for the brine shrimp A. franciscana.

The linkage analysis of 433 parental AFLP markers segregating

in a 112 full-sib family identified 21 male and 22 female linkage

groups, corresponding very well with the haploid chromosome

number in A. franciscana (2n = 42) [8]. Most likely, the markers in

small linkage groups (LG) such as Female_20 (Figure 1) would join

one of the other 21 LG by adding more markers to the female

map. More female than male markers were generated, suggesting

that maternal A. franciscana strain Vinh Chau (VC) has more

unique alleles compared to the paternal strain San Francisco Bay

(SFB). This seems a logical consequence of the SFB origins of VC.

The level of polymorphism between the two A. franciscana parental

strains was estimated at 36%, which is in the range of 9–50%

estimated previously by Kappas et al. [53]. Given their high

marker density, the produced genetic maps are adequate for the

anchoring of Artemia genome sequences to facilitate the future

construction of physical maps for each of the 21 chromosomes.

Figure 3. Artemia franciscana homologous autosomal male and female linkage groups. Fourteen homologous autosomal linkage group
pairs. Each AFLP marker was identified by (1) a code referring to the corresponding PC (Table S1), followed by (2) the molecular size of the fragment
in nucleotides and (3) the type of marker (female marker, tagged as ‘‘F’’, male marker, tagged as ‘‘M’’, biparental marker, no tag). Common biparental
markers are indicated in blue. Cumulative marker distances are indicated on the left (cM).
doi:10.1371/journal.pone.0057585.g003

Figure 4. Artemia franciscana sex linkage groups. Female linkage group Female_1 corresponds with the W chromosome. The homologous male
linkage group Male_10 corresponds with the Z chromosome. Each AFLP marker is represented by (1) a code referring to the corresponding PC
(Table S1), followed by (2) the molecular size of the fragment in nucleotides and (3) the type of marker (female marker, tagged as ‘‘F’’, male marker,
tagged as ‘‘M’’, biparental marker, no tag). Common biparental markers are indicated in blue. Markers fully linked to sex are marked in green.
Cumulative marker distances (cM) are indicated on the left.
doi:10.1371/journal.pone.0057585.g004
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This will be especially useful, considering the numerous reports of

repetitive sequences in Artemia [63]. Artemia linkage maps will also

allow future linkage studies in Artemia for important crustacean

traits such as resistance to Vibrio, the most common bacterial

pathogen in worldwide marine fish and shellfish aquaculture.

Fifteen homologous linkage groups, including the LG repre-

senting the sex chromosomes, were identified between the female

Figure 5. Fluorescence histograms for Artemia franciscana and chicken DNA content estimation. Fluorescence histogram of four different
A. franciscana male individuals with trout as the internal standard (A, B, C, D) and of chicken CEN with trout as the internal standard (E).
doi:10.1371/journal.pone.0057585.g005
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and male linkage maps by including biparental markers in the

linkage analysis. This study identified eight sex-linked AFLP

marker alleles mapping to one locus and inherited from the female

parent, suggesting A. franciscana adopts a genetic WZ-ZZ sex-

determining system. Artemia sex-linked markers will enable the

study of nauplii sex ratios and their dynamic in natural Artemia

populations. They will also enable the further fine-mapping of the

sex-determining locus and the subsequent identification of the

primary sex-determining gene(s). Furthermore, based on sequence

homology with Artemia, sex-determining genes might be identified

in commercially valuable crustaceans, enabling PCR-based allele-

specific assay development in the framework of the development of

mono-sex cultures in shrimp [64].

The clustering of eight sex-linked markers in a 0.2 cM region

suggests reduced recombination, which is often found in sex-linked

regions [65]. Genes from a region that stopped recombining in the

early evolution of sex chromosomes have a high sequence

divergence, allowing an estimate of when the W and Z

chromosomes first stopped recombining and thus, the age of the

sex chromosome system [65].

The estimated Artemia GS in this study (0.93 Gb) is smaller than

earlier estimates: 2.93 Gb by Feulgen densitometry [9] and 1.47

Gb by DNA reassociation kinetics [10]. ‘‘A. salina’’ used to be a

general name for all Artemia species, presently confounding the

identity of the investigated Artemia in many studies [1]. Because the

Artemia DNA content measured by Feulgen densitometry on ‘‘A.

salina’’ is almost a twofold of that measured by DNA reassociation

kinetics, Feulgen densitometry might have been performed on a

tetraploid A. parthenogenetica, as suggested by Vaughn [10]. Also, the

absolute A. franciscana karyotype size varies between 60.68 mm and

139.26 mm [8], showing that significant intra-specific variation in

DNA content could explain the high Feulgen densitometry values

as well.

Vaughn [10] calculated the Artemia haploid GS by DNA

reassociation kinetics, based on an A. franciscana GC content of

42%. More recent measurements however, show an A. franciscana

(SFB) GC content of 32% determined by CsCl centrifugation and

confirmed by direct chemical analysis and renewed thermal

denaturation [61]. An estimated GC content lowered by 1%

results in a 0.018% lower haploid DNA content estimated by

DNA reassociation kinetics [66]. Hence, based on a GC content of

32%, the corrected A. franciscana DNA content estimated by

Vaughn [10] is 1.23 Gb, approximating more closely the 0.93 Gb

Artemia GS estimated in this study.

Currently, out of the 50,000 known Crustacea species, the GS of

278 crustaceans has been determined, covering a 400-fold-wide

genome size range between Cyclops kolensis, a Cyclopoid copepod

(0.14 pg) and Ampelisca macrocephala, an Arctic Amphipod

(64.62 pg) [67,68]. In comparison, A. franciscana has a relatively

small genome of 0.97 pg. This makes it a potential new model

crustacean for which genome sequencing is currently feasible,

unlike for crustaceans with a much larger genome size. To date,

the only publicly accessible sequenced crustacean genome is the

branchiopod D. pulex, with an average genome size of 0.23 pg

[69].

Ultimately, the further development of genomic resources for

Artemia such as the whole genome sequence, will add a completely

new dimension to Artemia research and its use as live food in

aquaculture. Moreover, knowledge of the A. franciscana sex-

determining system will facilitate future evolutionary studies of

sex chromosomes in sexually dimorphic (WZ female/ZZ male)

and parthenogenetic Artemia. Considering the presence of sexual

and asexual reproduction strategies, the Artemia genus shows

promise as a model system for the study of asexuality, its evolution

and its evolutionary purpose. Finally, since Artemia is considered a

potential crustacean model species, increasing knowledge about

Artemia genetics and genomics in general and sex-related genetics

in particular, are expected to be valuable to crustacean aquacul-

ture, presently lacking in molecular breeding strategies despite

their contribution of 23% to the total aquaculture production

value [70].

Supporting Information

Table S1 List of the 65 primer combinations used for
AFLP analysis1 E: EcoRI primer with three selective
bases; M: MseI primer with three selective bases (1, 2, 3,
4 correspond to A, C, G, T).
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