
TagGD: Fast and Accurate Software for DNA Tag
Generation and Demultiplexing
Paul Igor Costea, Joakim Lundeberg, Pelin Akan*

KTH – Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Solna, Sweden

Abstract

Multiplexing is of vital importance for utilizing the full potential of next generation sequencing technologies. We here report
TagGD (DNA-based Tag Generator and Demultiplexor), a fully-customisable, fast and accurate software package that can
generate thousands of barcodes satisfying user-defined constraints and can guarantee full demultiplexing accuracy. The
barcodes are designed to minimise their interference with the experiment. Insertion, deletion and substitution events are
considered when designing and demultiplexing barcodes. 20,000 barcodes of length 18 were designed in 5 minutes and
2 million barcoded Illumina HiSeq-like reads generated with an error rate of 2% were demultiplexed with full accuracy in
5 minutes. We believe that our software meets a central demand in the current high-throughput biology and can be utilised
in any field with ample sample abundance. The software is available on GitHub (https://github.com/pelinakan/UBD.git).

Citation: Costea PI, Lundeberg J, Akan P (2013) TagGD: Fast and Accurate Software for DNA Tag Generation and Demultiplexing. PLoS ONE 8(3): e57521.
doi:10.1371/journal.pone.0057521

Editor: Panayiotis V. Benos, University of Pittsburgh, United States of America

Received November 7, 2012; Accepted January 22, 2013; Published March 4, 2013

Copyright: � 2013 Costea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by SSF- nanopore (Swedish Foundation for Strategic Research) and EU- digital seq (Digital Sequencing, EU FP7 grant agreement
number 222913). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pelin.akan@scilifelab.se

Introduction

Parallel processing of samples is a powerful method to perform

multiple experiments in time and cost-effective manner. Next

generation sequencing technologies provide the necessary platform

to achieve this [1,2]. Given the current developments in

sequencing platforms, the scale of multiplexing will grow requiring

larger numbers of barcodes due to high sequence throughput [3].

Generating unique barcodes is challenging in a number of ways.

Firstly, barcodes should conform to particular constraints such as

length, GC-content, cross-hybridisation with experimental se-

quences, absence of particular restriction enzymes to minimise

their interference with the actual experiment. Secondly, they

should be unique enough to allow correct assignment of sequences

to their original samples. This can be problematic since there can

be errors introduced in the barcodes during both their synthesis

and sequencing, resulting in non-unique barcodes. Using longer

barcodes could partially solve this issue however they could

hamper the sequencing space for the actual sample. Therefore it is

imperative to design sufficient number of barcodes with optimal

length and maximal distance to each other.

A framework developed by Xu. al. (DeLOB) can generate large

numbers of barcodes that can then be printed on microarrays.

However uniqueness of barcodes is based on their cross-

hybridization and no demultiplexing step is implemented [4].

There are a number of available software tools to design and

demultiplex DNA barcodes but generation of longer ones

(.15mer) is not feasible using these tools [5,6]. A recent

publication provides a DNA barcode design framework based on

Hamming codes, however the design is limited since the sequence

uniqueness is determined only by base-changes (Hamming

distance) and does not take into account insertion and deletion

events [7]. It is possible to design barcodes that are capable of

detecting and correcting errors for optimal demultiplexing [5]. A

resource is available to generate error-correcting binary codes up

to length 30 (corresponding to 15mer DNA barcodes) after which

it is challenging to discover such optimal codes [8]. Such methods

may not provide sufficient number of barcodes especially after

applying user-specified constraints.

We here implemented a software package for designing large

numbers of barcodes of virtually any length that can be demultiplexed

with full accuracy. We employed Levenshtein distance to discriminate

between the barcodes [9] since insertions and deletions also occur in

DNA synthesis and sequencing steps [10,11].

TagGD is easy-to-use, fully customizable, memory-efficient, fast

software package and can also be run on a desktop computer. The

user needs to specify the number and length of the barcode and

the uniqueness based on the combined estimated error rate of the

platforms that synthesise and sequence the barcodes including the

error modality of the platform. Then the software provides the

user the unique barcodes that will give the maximal accuracy

within the allowed error rate. If the number of barcodes is not

sufficient, the user can then either increase the length of the

barcode or decrease the error rate. The user can also impose

constraints on the barcode sequences using the barcode configu-

ration file. In the demultiplexing step, the software takes FASTQ

files and outputs demultiplexed reads in a FASTQ file with the

optional third line containing the barcode of the reads.

Materials and Methods

Design
First, a random barcode of the desired length and GC content is

generated, then it is checked for mono, di or tri-mer repeats,

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e57521

complexity, self-hybridisation, presence of restriction enzyme cut

motifs (if required) and edit distance to its reverse complement. It

is also hybridised with primers/adapters used in the experiment to

prevent its interference. Gibb’s free energy and melting temper-

ature of the self-hybridised barcodes were computed using the

DNA-fold algorithm [12] and sequences with strong secondary

structures are discarded. If the barcode passes these filters, it is

added to a barcode pool, and its uniqueness is checked. We use

Levenshtein distance to measure the distance of two barcodes in

the sequence space. We also allow wildcard position at the

beginning and end of the barcode to exclude barcodes that cannot

be discriminated as a result of an insertion/deletion. This option is

called ‘‘padding’’, when it is set to 0, the set will be resistant to

substitution errors but not to insertions/deletions to the same

extent. The user is recommended to use the same padding option

for demultiplexing that s/he used for barcode design. The

generated barcodes are printed in a text file, one line containing

each barcode. The edit distance distribution of pairs of barcodes is

also written in another file. Almost all parameters of TagGD can

be adjusted in the configuration file; an example is included within

the software package.

For demultiplexing, a hash map is built, containing all the k-

mers of a given length appearing in all barcodes. This map is filled

by searching against with overlapping k-mers of the putative

barcode sequence so that each barcode is related to the k-mers it

contains. This results in reducing the search space and thus greatly

improving the time necessary to identify the best hit. All barcodes

that have been found through the map search will be compared to

the putative sequence through a semi-global alignment that

ensures full overlap with the entire barcode. Also here we employ

a parallel strategy due to each barcode mapping being indepen-

dent. A given number of threads are created which consume the

input, and output the computed best mapping. Note that as a

result of this, the order of entries is not preserved between input

and output. The input and output of the demultiplexer is in

FASTQ format, the details of the best-hit barcode are added to the

optional third line of the output FASTQ file. TagGD supports

paired-end sequencing data.

Implementation
TagGD is implemented using C++ and parallelised using

POSIX Threads and OpenMP [13,14]. First, random DNA

sequences of desired length and GC content are generated.

Sequences are then filtered as specified in the previous section to

ensure least interference with each other and the experiment.

Each barcode has to be unique. Because of possible experi-

mental and sequencing errors, barcodes should be far away from

each other in sequence space to prevent their false classification.

Operations can be substitutions, insertions or deletions. The aim is

to find a set of sequences where each has an edit distance greater

than the desired threshold to the entire set. Thus, each new

sequence that passes all the above filters is checked against the

solution set and is accepted only if the edit distance to all

Figure 1. The generation of barcodes along with all the filtering steps are performed concurrently with the execution of the main
application. Each barcode that passes filtering is added to a pool and generation of more barcodes continues. This pool is in time drained by the
main application where the insertion into the solution set takes place.
doi:10.1371/journal.pone.0057521.g001

Table 1. Running times for generating different numbers of
barcodes of length 18 with different edit distances and
padding.

Padding Edit Distance
Number of
Barcodes Generation Time

0 3 5,000 18 seconds

0 4 19 seconds

0 3 20,000 4 minutes

0 4 5 minutes

0 3 100,000 1.5 hours

0 4 7 hours

1 3 1,000 1.4 seconds

1 4 2 seconds

1 3 5,000 16 seconds

1 4 46 seconds

1 3 10,000 1 minute

1 4 14 minutes

Benchmarking was performed on an 8 core 24 Gb machine.
doi:10.1371/journal.pone.0057521.t001

TagGD: Software to Generate & Demultiplex DNA Tags

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e57521

previously accepted elements is greater than the imposed limit. As

the two operations of filtering and insertion are independent, a

worker thread is created to handle the generation of barcodes and

push those to a common pool as shown in Figure 1. The insertion

operation imposes a growing cost, scaling with the size of the

solution set. Thus a parallelizing strategy is also employed here,

where all the available threads are used to concomitantly search

through non-overlapping subsets of the solution space. Table 1 lists

the running times for generating different numbers of barcodes

with and without padding option on.

Results

Assuring the uniqueness of the barcodes
Accuracy of the demultiplexing step depends on the combined

error rate of the platform processing the barcodes as well as the

nature of the error. We implemented TagGD to generate required

number of barcodes within reasonable run times while ensuring

maximal accuracy depending on the nature and the rate of the

errors. An error introduced within a barcode may cause a situation

that the error-containing barcode could have the same edit

distance to two or more barcodes in the set, hence cannot be

classified (Figure 2A). Worse case scenario is that if the error

containing barcode has a smaller edit distance to another barcode

than to its original, which leads to its misclassification (Figure 2B).

In our experience most of the wrongly classified barcodes were due

to insertion and deletion errors. Therefore we developed a strategy

that deals with the problem of shifting of the barcode within the

read due to insertions or deletions. To this end, we included wild

card positions (padding) at the start and end of the barcode,

resulting in a semi-global alignment strategy when calculating its

distance to another barcode. This step ensures exclusion of

barcodes that can be converted to another barcode in the set due

to positional errors, insertions and deletions. Additionally, to

eliminate cases where an error-containing barcode lie in equal

distance to two or more barcodes, we recommend setting the

minimal edit distance at least more than twice the number of bases

expected to be erroneous based on the estimated error rate

(Equation 1).

Minimum Edit Distance

w2 � (ceil(Barcode Length � Total Error Rate))
ð1Þ

If most of the errors are expected to be due to substitutions then

there is no need to design the barcodes with the padding option on

so this can be set to zero. This will ensure to give the user the

maximal number of barcodes within the shortest running time

with full accuracy as long as equation 1 is satisfied. In other words,

the barcodes can have errors as half the number of minimum edit

distance in the set and can still be demultiplexed with 100%

accuracy (Table 2).

Figure 2. Let barcode 1 and 2 are the barcodes within the designed unique barcode set and another barcode containing errors
introduced during the experiment, and the edges of the triangles represent the Levenshtein edit distance between them. A) Barcode
1 can be converted to Barcode 3 with three operations. However two errors introduced either in barcode 1 or 2 can result in a new sequence, which
requires same number of operations to transform to either barcode 1 or 2. Therefore, it cannot be classified. B) Barcode 1 is incorrectly synthesised or
sequenced in such a way that it now has a smaller edit distance to barcode 2, which leads to its misclassification.
doi:10.1371/journal.pone.0057521.g002

Table 2. 20,000 unique barcodes of length 18 were generated with no padding option.

k-mer Length
Percentage of reads that
are wrongly classified

Reads that cannot be
uniquely classified

Running time
(seconds)

9 0.27% (537) 1.7% (3423) 1.5

8 0.14% (276) 0.38% (760) 2.1

7 0.11% (223) 0.13% (267) 5.9

6 0% (0) 0% (0) 27.8

Then 200,000 barcoded reads of length 18 are generated and errors are introduced with 2% probability, only substitutions errors are allowed. With k-mer length of 6, all
reads can be demultiplexed correctly in less than half a minute. Benchmarking is performed in an 8-core machine with 24 Gb memory.
doi:10.1371/journal.pone.0057521.t002

TagGD: Software to Generate & Demultiplex DNA Tags

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e57521

However if the user expects insertion and deletion events, then

the padding option must be used and the padding should be equal

to the expected number of insertion or deletion events within the

read. To ensure full accuracy in the demultiplexing step, equation

1 must still hold but this time errors can be substitutions, insertions

or deletions.

Demultiplexing of the barcodes
Systematic errors, in either the experiment or the sequencing

can cause substitutions, insertions or deletions in the sequence.

This necessitates an extra step for correctly identifying the

sequenced barcode. We have implemented a semi-global aligner,

in line with the edit distance definition used in generating the

barcodes. It ensures the best match of a given sequence to the set

of barcodes. The alignment is quality aware and will discriminate

between two equally good mappings (from an edit distance

perspective) based on the quality of the bases.

False negative rate of the demultiplexing depends on the k-mer

length. To achieve full accuracy, the k-mer size must be set such

that there will be at least one window of size k not containing an

erroneous base (Equation 2). However given the low probability of

having all the expected erroneous bases within the barcode, the k-

mer size can be increased at a low cost to the accuracy while

reducing the running time. To assess the effect of the k-mer length

on accuracy, we have designed 10,000 and 20,000 barcodes of

length 18 (with or without padding respectively) with a minimum

edit distance of 4. We used the default settings (GC content

between 45–65%, homopolymer limit 4, self hybridisation

temperature 50uC). On these we simulated 200,000 reads with

an error rate of 2%. Tables 2 and 3 shows the running times for

demultiplexing as well as the specificity relation to k-mer length.

The running times scales linearly with the number of reads

demultiplexed.

klenv
Barcode Length

Read Length � Estimated Error Rateð Þz1
ð2Þ

The user must provide the starting position of the barcode

within the read. We allow for some variation of this site (positional

error) considering that insertions or deletions may occur before the

barcode location. When setting the positional error during

demultiplexing, the user should consider the time cost of this

(Table 3) as well as the design step padding. For example,

designing with padding zero results in a fully global alignment,

which over-estimates the edit distances between barcodes. We

suggest the user to set the positional inaccuracy to the padding

used in design stage for maximal demultiplexing accuracy. Also

note that TagGD supports demultiplexing reads in which the

position of the barcode is unknown, by setting the positional error

to -1. This will be considerably slower and will result in less

accuracy.

Discussion

TagGD is can be downloaded from Github repository and it

can be run on Linux and Windows operating systems. We provide

user instructions and sample input files to ease to usage of the

package (Supplementary Information). We also provide a set of

scripts to test the accuracy and speed of the TagGD.

TagGD can generate large numbers of unique DNA sequences

that can be used for various biological applications. We believe

that TagGD can be used for any given application that requires

indexing of sequences and it is implemented in a flexible way so

that it can be adapted for various lengths, sequence content as well

as their interference with sequences used in the experiments can be

also checked against the index sequences. One may consider

sequencing a large number of single cells where each cell is

barcoded to provide the necessary transcriptome resolution or

generating barcodes for the recently developed massively parallel

gene reporter assay [15]. We also provide the algorithm to map

back the index sequences with full accuracy as long as the actual

error rate of the experiment does not exceed the estimated error

rate used for designing the barcodes.

Barcode design unit of TagGD can be adapted to design

multiplex PCR primers or microarray probes for a given genome.

This would require replacing the random generation of barcodes

step with given sequences from the genome of interest. Addition-

ally demultiplexing unit of TagGD can be adapted to retrieve

barcodes for multiplexed sequencing experiments to improve

accuracy and speed of sample identity recovery.

Acknowledgments

We thank Kristoffer Sahlin for his very valuable comments and suggestions

for improving the code and discussion of the manuscript.

Author Contributions

Conceived and designed the experiments: PA. Performed the experiments:

PA PIC. Analyzed the data: PA PIC. Contributed reagents/materials/

analysis tools: JL. Wrote the paper: PA PIC.

Table 3. 10,000 unique barcodes of length 18 were generated with padding option set to 1.

Indexes are mapped back using positional inaccuracy set to 1 Indexes are mapped back with no positional inaccuracy

k-mer
Length

% of reads that
are wrongly
classified

% of reads that
cannot be
uniquely classified

Running time
(seconds)

% of reads that
are wrongly
classified

% of reads that
cannot be
uniquely classified

Running time
(seconds)

9 0.26% (525) 1.64% (3280) 2 0.13% (256) 1.84% (3684) 1.8

8 0.13% (266) 0.33% (659) 2.7 0.07% (134) 0.49% (981) 1.6

7 0.05% (105) 0.05% (96) 6.9 0.06% (123) 0.20% (400) 3.7

6 0% (0) 0% (0) 27.3 0% (7) 0% (8) 15.5

Then 200,000 barcoded reads of length 18 are generated and errors are introduced with 2% probability, substitutions, insertions and deletions are allowed. With k-mer
length of 6, all reads can be demultiplexed correctly in less than half a minute, if the user uses positional inaccuracy set to 1 (equal to the padding option used in
designing the barcodes). Benchmarking is performed in an 8-core machine with 24 Gb memory.
doi:10.1371/journal.pone.0057521.t003

TagGD: Software to Generate & Demultiplex DNA Tags

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e57521

References

1. Erlich Y, Chang K, Gordon A, Ronen R, Navon O, et al. (2009) DNA Sudoku –

harnessing high-throughput sequencing for multiplexed specimen analysis.
Genome research 19: 1243–1253.

2. Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, Smith RP, et al. (2012)
Massively parallel functional dissection of mammalian enhancers in vivo. Nature

biotechnology 30: 265–270.

3. Stahl PL, Lundeberg J (2012) Toward the single-hour high-quality genome.
Annual review of biochemistry 81: 359–378.

4. Xu Q, Schlabach MR, Hannon GJ, Elledge SJ (2009) Design of 240,000
orthogonal 25mer DNA barcode probes. Proceedings of the National Academy

of Sciences of the United States of America 106: 2289–2294.

5. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting
barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature

methods 5: 235–237.
6. Frank DN (2009) BARCRAWL and BARTAB: software tools for the design and

implementation of barcoded primers for highly multiplexed DNA sequencing.
BMC Bioinformatics 10: 362.

7. Bystrykh LV (2012) Generalized DNA barcode design based on Hamming

codes. PloS one 7: e36852.

8. Grassl M (2007) Bounds on the minimum distance of linear codes and quantum

codes.

9. Levenshtein VI (1966) Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady 10: 707–710.

10. McDonald MJ, Wang WC, Huang HD, Leu JY (2011) Clusters of nucleotide

substitutions and insertion/deletion mutations are associated with repeat

sequences. PLoS biology 9: e1000622.

11. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nature biotechnol-

ogy 26: 1135–1145.

12. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization

prediction. Nucleic acids research 31: 3406–3415.

13. Butenhof DR (1997) Programming with POSIX threads: Addison-Wesley

Longman Publishing Co., Inc. 381 p.

14. Dagum L, Menon R (1998) OpenMP: An industry standard API for shared-

memory programming. Ieee Computational Science & Engineering 5: 46–55.

15. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, et al. (2012)

Systematic dissection and optimization of inducible enhancers in human cells

using a massively parallel reporter assay. Nature biotechnology 30: 271–277.

TagGD: Software to Generate & Demultiplex DNA Tags

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e57521

