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Abstract
Technology is driving the field of human genetics research with advances in techniques to
generate high-throughput data that interrogate various levels of biological regulation. With this
massive amount of data comes the important task of using powerful bioinformatics techniques to
sift through the noise to find true signals that predict various human traits. A popular analytical
method thus far has been the genome-wide association study (GWAS), which assesses the
association of single nucleotide polymorphisms (SNPs) with the trait of interest. Unfortunately,
GWAS has not been able to explain a substantial proportion of the estimated heritability for most
complex traits. Due to the inherently complex nature of biology, this phenomenon could be a
factor of the simplistic study design. A more powerful analysis may be a systems biology
approach that integrates different types of data, or a meta-dimensional analysis. For this study we
used the Analysis Tool for Heritable and Environmental Network Associations (ATHENA) to
integrate high-throughput SNPs and gene expression variables (EVs) to predict high-density
lipoprotein cholesterol (HDL-C) levels. We generated multivariable models that consisted of
SNPs only, EVs only, and SNPs + EVs with testing r-squared values of 0.16, 0.11, and 0.18,
respectively. Additionally, using just the SNPs and EVs from the best models, we generated a
model with a testing r-squared of 0.32. A linear regression model with the same variables resulted
in an adjusted r-squared of 0.23. With this systems biology approach, we were able to integrate
different types of high-throughput data to generate meta-dimensional models that are predictive
for the HDL-C in our data set. Additionally, our modeling method was able to capture more of the
HDL-C variation than a linear regression model that included the same variables.
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1. Introduction
1.1. A Case for Meta-dimensional Analysis

Over the past decade, high-throughput technology has become considerably more efficient
and less expensive1. The human genetics field has reaped the benefits of these advancements
via extensive exploratory analyses largely in the form of GWAS. These studies have led to
the discovery of thousands of SNPs that are significantly associated with hundreds of
common, complex human traits2. However, for many of these traits, a large proportion of
the estimated heritability remains unexplained by these DNA variants3.

One of the leading hypotheses regarding this “missing heritability” is that GWAS may not
be robust to the inherent complexity of biological processes, and, therefore, may be missing
large chunks of the underlying etiology4. Two areas where this complexity might lie are in
non-additive interactions (gene-gene or gene-environment) and within the different levels of
biological regulation. First, because traditional GWAS specifically identify SNPs with large
main effects, interactions without large main effects would be missed. Next, complex
phenotypes could be under the influence of more than one level of biological regulation.
Various types of –omic data (i.e. transcriptomic and methylomic) analyzed simultaneously
could take into account trait variation that would be missed by SNP data alone5. In order to
account for complex etiology, a more powerful meta-dimensional analysis would have to be
performed. A meta-dimensional analysis is one that integrates different types of high-
throughput data while allowing for non-linear interactions in order to identify multi-variable
prediction models that include data from from different levels of biological regulation6. For
example, analyzing microarray gene expression data and SNP genotypes data
simultaneously to identify models that predict a complex human disease, such as breast
cancer.

In order to successfully perform a meta-dimensional analysis, computational tools need to be
able to perform the following tasks successfully: sift through the high level of noise inherent
to high-throughput data in order to identify true signals, simultaneously analyze continuous
and categorical predictor and outcome variables, and identify main and interaction effects in
order to generate a final predictive model. Currently, no single analysis method performs all
of these tasks at once. Some candidates that may come together to create a successful
analysis pipeline include tree-based methods (i.e. Random Forests7), Bayesian networks,
computational evolution methods, and various types of clustering and correlation
techniques. For this paper, we propose a meta-dimensional analysis tool called ATHENA
that combines a tree-based filtering method with a computational evolution modeling
method in order to integrate SNP genotypes and gene expression variables to predict HDL-C
levels.

1.2. The Genetics of HDL Cholesterol
HDL particles are small, dense lipoproteins that circulate throughout the body. Many anti-
atherogenic properties have been ascribed to HDL, and low HDL-C levels are strongly and
independently associated with increased risk for cardiovascular disease8. HDL-C has a
relatively large genetic component with heritability estimates between 40–80%8,9. Many
common variants have been found to be significantly associated with HDL-C in humans, but
collectively they only explain a small proportion of the estimated heritability. A recent study
used significant GWAS SNPs to perform polygenic scoring and found that the best model
only explained ~4.75% of the variation in the HDL-C trait10. Some groups have begun to
examine a more complex genetic architecture to explain the missing heritability and several
gene-gene interactions have been identified11–13. In this study, we aim to go a step further
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by integrating SNPs and gene expression data to find complex models that predict HDL-C
levels.

2. Methods
2.1. The Analysis Tool for Heritable and Environmental Network Associations (ATHENA)

ATHENA is a multi-functional software package designed by our lab to analyze various
types of high-throughput data in order to generate multi-variable models. ATHENA has
been tested extensively on simulated data and applied to biological data sets in order to
demonstrate its utility on “noisy” data14–17. Figure 1 shows the full current and future
functionality of ATHENA.

The main components of ATHENA are a filtering step and a modeling step. The filtering
step can be a statistical filter (Random Jungle18) or one that prioritizes variables based on
their known biological functions (Biofilter19). Currently, ATHENA has two different
computational evolution modeling techniques--Grammatical Evolution Symbolic Regression
(GESR) and Grammatical Evolution Neural Networks (GENN). For this analysis, we used
Random Jungle (RJ) as the statistical filter and Grammatical Evolution Neural Networks
(GENN) as the modeling technique.

2.1.1. ATHENA filtering: Random Jungle—RJ is a faster, parallelized version of the
tree-based variable selection method Random Forests (RF). Briefly, RF uses a bootstrap
sample of the data to grow a “forest” of decision or regression trees with no pruning. The
trees are then tested using the out-of-bag individuals not present in the bootstrap sample to
determine which variables are most important for outcome prediction. Importantly, RF can
identify main and interaction effects7. We chose RJ as the statistical filter because of its
capability to analyze millions of quantitative and categorical variables in a relatively
computationally efficient manner. Also, the output is a list of variables ranked by an
importance score. For this analysis, importance is defined as the percent increase in mean
squared error after permuting the variable values while taking into account correlation
patterns between the variables20. This output lends itself nicely to selecting a subset of
variables for input into a modeling technique that is less robust to noise.

2.1.2. ATHENA modeling: Grammatical Evolution Neural Networks—GENN uses
a variation of genetic programming (GP) called grammatical evolution (GE) to optimize
artificial neural networks to identify a model that predicts a given outcome21–23. GP is a
computational technique that uses concepts of survival of the fittest in order to evolve a fit
solution from an original population of random solutions24. GE is a more efficient version of
GP because the solutions are represented as binary strings, which can be translated into a
functional solution, or computer program, via grammar rules25. All of the evolutionary
operations that are applied to the solutions are done so at the level of the binary string.
Below is the algorithm that GENN uses to identify the “fittest” solution:

1. Divide the data into five equal parts for cross-validation (4/5 = training set; 1/5 =
testing set).

2. Generate random sub-populations, or demes, of binary strings across multiple
processors.

3. Calculate the fitness (i.e. balanced accuracy or mean squared error) of the solutions
using the training set.

4. Select the solutions with the highest fitness, which undergo crossover, mutation,
migration between demes, and reproduction to create the next generation of
solutions.
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5. Repeat Steps 3–4 for a user-defined number of generations.

6. Test the final best model using the testing set and save the model.

7. Repeat steps 2–6 for each the other four cross-validation data divisions.

8. Select the overall best model out of the five models using cross-validation
consistency first and then testing set fitness to break ties.

The solutions in GENN are artificial neural networks (ANNs). Briefly, ANNs are directed
graphs with an input layer (independent variables), hidden layer(s) (processing elements),
and an output layer that predicts the outcome of interest26. Figure 2 illustrates an example of
a two-layer ANN. ANNs are a good candidate for this type of analysis because they are able
to model complex, non-linear relationships between variables. Traditionally, ANNs are
optimized using a hill-climbing algorithm, such as back-propagation, which iteratively alters
the weights (or constants) until prediction no longer improves23. This optimization
technique is not ideal for a genetic analysis where the correct variables and the network
architecture are not known a priori. GENN addresses this issue by evolving the ANNs so
that the data drives the optimization of all aspects of the network. GENN has been tested on
simulated and biological data and was often found to outperform other prediction
techniques16,22,27.

2.1.3. ATHENA filtering-modeling pipeline—Figure 3 below summarizes the filtering-
modeling pipeline that was used for this analysis.

In Step 1, we filtered the ~2.7 million SNPs and ~24,000 EVs separately in RJ. This was
done because RJ has not been sufficiently tested to determine the effect of the
overwhelmingly larger number of SNPs versus EVs that were present in this data set (~112x
more SNPs). After filtering, we analyzed the filtered SNPs (Step 2.1), the filtered EVs (Step
2.3), and the filtered SNPs and EVs together (Step 2.2) in GENN. Because GENN has been
shown to outperform other methods specifically at prediction modeling when the noise in
the data is substantially reduced, we also assessed just the SNPs and EVs that were in the
best ANN models from Steps 2.1 and 2.3 in a final GENN analysis (Step 3).

2.2. Cholesterol and Pharmacogenetics Dataset
The data for this study comes from the simvastatin clinical trial Cholesterol and
Pharmacogenetics (CAP)28. The characteristics of the 480 individuals in this analysis are
shown in Table 1. The genomic data consists of ~2.7 million SNP genotype dosages and
~24,000 gene expression levels. SNPs were genotyped on Illumina HumanHap 300K
BeadChip and Illumina HumanHap 610-Quad BeadChip and imputed to HapMap data using
the IMPUTE2 software29. Imputation probabilities were used to calculate genotype dosages.
Gene expression levels were measured in patient-derived immortalized lymphoblastoid cell
lines (LCLs) using the Illumina HumanRef8v3 BeadArray. The gene expression data was
corrected for potential confounders by extracting the residuals from a linear regression
model that included known covariates (day of assay, cell count, gender, and age) and the top
nine principal components for unknown covariates. Our outcome of interest was the mean
HDL-C level from the first and follow-up visit before any medication was administered.
HDL-C was adjusted for gender, age, body mass index (BMI), and smoking status. All of
the individuals in this subset of the cohort were European-American.
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3. Results
3.1. Random Jungle

Table 2 below lists the important parameter setting values that were used for RJ for each
analysis. Table 2 also displays the computation times and the number of variables that
remained after backward elimination. The values for bootstrap sample size and number of
trees were previously tuned for each data set as suggested by the method developers18.

In order to have a comparable threshold for both data sets, we chose an importance score
cut-off because it has the same statistical meaning for both the SNPs and EVs. The threshold
of 10 was chosen because it generated similar distributions of scores in both data sets. This
cut-off resulted in a filtered data set that consisted of 418 SNPs and 241 EVs.

3.2. GENN
The filtered EV and SNP variables were analyzed both separately and simultaneously by
GENN. In addition, the SNPs and EVs from the best GENN models were analyzed together.
Table 3 shows the GENN parameters that were used for these analyses. These parameters
were selected based on a tuning analysis where we swept over various settings and selected
based on prediction optimization. A detailed description of the parameters can be found in a
previous ATHENA publication14. The fitness function used by GENN for analysis of
quantitative outcomes is shown below:

(1)

where y is the observed value, y-hat is the predicted value, and y-bar is the mean value for
the quantitative outcome.

Figure 4 shows the resulting best ANN models from each of the following analyses: a. SNPs
only (Step 2.1), b. EVs only (Step 2.3), and c. SNPs and EVs together (Step 2.2). The r-
squared values from the testing cross-validation set for each of the models were 0.16, 0.11,
and 0.18, respectively.

Finally, we ran GENN with only the 6 SNPs and 5 EVs that were present in the top models
shown Figure 4a. and 4b. Figure 5 shows the resulting network from this analysis (Step 3).
The ANN consisted of 3/6 SNPs and 4/5 EVs from the best models and the testing r-squared
value was 0.32. This is substantially greater than the three previous networks (Figure 4).
Additionally, we tested the same variables using a more traditional statistical prediction
method--multivariable linear regression. The adjusted r-squared value from the regression
model that included all 6 SNPs and 5 expression variables was 0.23. The full regression
model was highly significant, with a p-value of 2.2×10−16.

4. Discussion
In this study, we demonstrate a filtering-modeling pipeline for integrating different types of
high-throughput data to generate meta-dimensional prediction models. We were able to
build a model that includes variables from different levels of biological regulation and
explained more variation than either data-type alone (Figures 4 and 5). Additionally, our
best model was more predictive than the commonly used additive modeling technique. Due
to its flexibility, this approach is easily extendible to other types of high-throughput data.
For example, another quantitative high-throughput measurement such as proteomic data
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could be added to this analysis by filtering the data using the same RJ method and then
adding in these filtered proteomic levels to the GENN analysis.

Notably, although the ANN from the integrated analysis had a higher r-squared value than
the analyses that only included SNPs or EVs (Figure 4), it was still less predictive than the
analysis that only included just the top SNPs and EVs (Figure 5). This could be a result of
the combined increase in pressure on variable selection due to the larger number of predictor
variables and on modeling due to the different scales of the EV and SNP values. When we
reduced the variable selection pressure by only including the top variables from the EV-only
and SNP-only best models, the r-squared value went up substantially. This highlights the
ability of GENN to model the variables in an informative way when presented with a limited
number of noise variables. Additionally, the GENN model was able to account for more
outcome variation than the linear regression model indicating that the more complex
modeling method of GENN identifies relationships between the variables that an additive
model does not.

One caveat to our approach is that we are not able to explore conditional relationships
between the different types of predictor variables. An example would be a model where a
SNP in a transcription factor binding site reduces the expression of the targeted gene, which,
in turn, affects the phenotype. These types of relationships could be tested by first
examining significant correlations between SNPs and EVs and then using this information to
guide the modeling analysis. Also, some groups are applying Bayesian networks (BNs) to
data integration studies because they are able to capture this type of directionality30. Future
work will involve incorporating BNs into ATHENA as one of the analysis methods. Other
study designs specifically address the hypothesis that SNPs are affecting the phenotype via
their association with gene expression levels, such as eQTLs31–34. These studies have
provided some interesting findings but would not identify SNPs and EVs that have an effect
on the phenotype independently of one another.

Interpreting the biological significance of statistical models is not a trivial task for several
reasons. First, due the correlation patterns that exist in SNPs and EV data, the variables in
the best models could be functional variables or variables that are highly correlated with the
functional variables. There is no simple way to determine which is the case. One initial
approach could be to map the top ranked SNPs and EVs back to genes to determine if the
variables in the best models are representative of any given biological pathway or have
similar biological function. We assessed this possibility by analyzing the RJ filtered SNPs
and EVs with an online annotation tool called DAVID35,36. The most significant biological
groups after accounting for redundant pathway information in the databases were those
related to immune function. This is interesting because HDL has been shown to play a role
in innate and adaptive immune responses37.

Notably, we did not identify any of the genes known to be highly associated with HDL-C.
The gene that is arguably most strongly associated with HDL-C is CETP38,39. To determine
if our method was not able to find the effects or if the effects were simply not there, we
performed a univariate linear regression analysis on each of the SNPs and then ranked the p-
values. None of the SNPs in CETP were significantly associated with HDL-C in our data set
(data not shown). This suggests that in this subset of individuals, other genes could be more
strongly contributing to the variation in HDL-C.

Once a meta-dimensional model has been identified and shown to be predictive, the next
step is to replicate the finding in an independent data set. For single SNPs, this process is
relatively straightforward. For meta-dimensional models, however, it becomes less trivial
due to the increased difficulty of replicating the exact effects of numerous data points
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simultaneously, especially if the identified variables are not completely correlated with the
functional variants. One part of model validation will be to determine if the model is
predictive in another data set. Additionally, the functionality of these genes could be tested
in vitro or in vivo to determine if perturbation has any phenotypic effect.

The ultimate goal of identifying models that explain the genetic variability of a trait is to use
this information to improve therapy or prediction and prevention in a clinical setting.
Methods robust to the true nature of complex traits, like the meta-dimensional analysis
pipeline presented here, are an initial step towards a more thorough understanding of the
genetic architecture of complex human traits like cardiovascular disease.
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Fig 1.
Components of the ATHENA software package
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Fig 2.
An example of a two-layer ANN. X=input variable; w=weight; AN=activation node;
y=predicted output
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Fig 3.
ATHENA filtering-modeling pipeline for this analysis. Step 1. RJ filtering of SNPs and
EVs; Step 2. GENN analysis of filtered SNPs only (2.1), EVs only (2.3), and SNPs and EVs
together (2.2); Step 3. GENN analysis of SNPs and EVs from the best GENN model from
Steps 2.1 and 2.3.
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Fig 4.
Best GENN models from the a. SNP, b. EV, and c. SNP and EV integrated analyses. The
asterisks in the integrated model denote variables that were present in at least one of the top
five cross validation models from the separate SNP and EV analyses. (w = constant and
variable are multiplied; PADD = additive activation node)
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Fig 5.
Best model GENN analysis of variables from best SNP and EV models. Testing r-squared
value = 0.32.
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Table 1

Data set characteristics

Clinical trait Value

Age in years (mean [sd]) 54.4 [12.7]

BMI (mean [sd]) 27.6 [5.3]

HDL-C in mg/dl (mean [sd]) 53.4 [16.3]

Smoker (% smoker) 13.2

Gender (% male) 54.1
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Table 2

RJ filtering parameter settings

Parameter EV analysis SNP analysis

Bootstrap Sample Size 11250 684342

Number of Trees 4000 4032

Tree Type Regression trees Regression trees

Importance Score Permutation-based Permutation-based

Backward Elimination Discard negative scores Discard negative scores

Number of Processors 4 (500 trees/processor) 64 (63 trees/processor)

Compute Time (hours) 0.6 52

Remaining Variables 1447 209346
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Table 3

GENN parameter settings

Parameter Steps 2.1, 2.3 Steps 2.2, 3

Number of demes (processors) 100 100

Population Size/Deme 3000 1000

Number of generations 1125 250

Number of migrations 45 10

Probability of Crossover 0.9 0.9

Probability of Mutation 0.01 0.01

Fitness r-squared r-squared

Analysis time (hours) 8 1
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