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Abstract
New markers may improve prediction of diagnostic and prognostic outcomes. We review various
measures to quantify the incremental value of markers over standard, readily available
characteristics. Widely used traditional measures include the improvement in model fit or in the
area under the receiver operating characteristic (ROC) curve (AUC). New measures include the
net reclassification index (NRI) and decision–analytic measures, such as the fraction of true
positive classifications penalized for false positive classifications (‘net benefit’, NB).

For illustration we discuss a case study on the presence of residual tumor versus benign tissue in
544 patients with testicular cancer. We assessed 3 tumor markers (AFP, HCG, and LDH) for their
incremental value over currently standard clinical predictors. AUC and R2 values suggested
adding continuous LDH and AFP whereas NB only favored HCG as a potentially promising
marker at a clinically defendable decision threshold of 20% risk. Results based on the NRI fell in
the middle, suggesting reclassification potential of all three markers.

We conclude that improvement in standard discrimination measures, which focus on finding
variables that might be promising across all decision thresholds, may not detect the most
informative markers at a specific threshold of particular clinical relevance. When a marker is
intended to support decision making, calculation of the improvement in a decision–analytic
measure, such as NB, is preferable over an overall judgment as obtained from the AUC in ROC
analysis.
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1. Introduction
Novel markers are being identified in large numbers nowadays following technological
advances in basic research, including genomics, proteomics, and noninvasive imaging.
These markers hold the promise of improving the prediction of diagnostic and prognostic

Correspondence: E.W. Steyerberg, PhD, Dept of Public Health, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands,
31 - 10 - 703 8470 (tel); e.steyerberg@erasmusmc.nl.

NIH Public Access
Author Manuscript
Eur J Clin Invest. Author manuscript; available in PMC 2013 March 05.

Published in final edited form as:
Eur J Clin Invest. 2012 February ; 42(2): 216–228. doi:10.1111/j.1365-2362.2011.02562.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



outcomes, and bring personalized medicine closer (1). Despite their importance to medical
care, methods for evaluation of the performance of markers are still underdeveloped (2).

It has been emphasized before that the incremental value of a marker over standard, readily
available diagnostic characteristics is of key interest (3) (4). Ideally, a previously published
prediction model is available as a reference model in the analysis. For example, the value of
markers for cardiovascular disease may be studied in a statistical model that includes
predictors identified in the Framingham study (5). A recent review however found that the
exact definition of the reference model varied substantially across studies that claimed to
adjust for ‘Framingham predictors’, with better performance for markers when added to
poorer performing reference models (6).

In this paper, we aim to review the properties of a number of traditional and relatively novel
measures to evaluate the predictive performance of a marker. We use a case study on
markers for testicular cancer patients to illustrate the behavior of different performance
measures and to highlight some general methodological challenges in assessing the
incremental value of a diagnostic marker.

2. Clinical example
Men with metastatic non-seminomatous testicular cancer can nowadays often be cured by
cisplatin-based chemotherapy. After chemotherapy, surgical resection is a generally
accepted treatment to remove remnants of the initial metastases, since residual tumor tissue
(residual cancer cells or mature teratoma) may still be present. In the absence of tumor
tissue, resection has no therapeutic benefits, while it is associated with hospital admission,
and risks of morbidity and mortality. Currently, resection is usually advised if the
postchemotherapy size of a residual tumor mass exceeds 10mm. More diagnostic
characteristics have however been described, including the reduction in mass size, the
histology of the primary tumor, and 3 tumor markers (AFP, HCG, and LDH) (7). We focus
on the incremental value of these 3 markers in predicting the residual histology of 544
patients, where 299 had residual tumor and 245 benign tissue (8).

All analyses were performed in R version 2.11.1 (R Foundation for Statistical Computing,
Vienna, Austria), using the Design library. The syntax and data are publicly available at
www.clinicalpredictionmodels.org.

3. Statistical modeling
We consider the situation that we are interested in the value of a test or marker in predicting
the presence or outcome of a disease. We aim to determine the incremental value of the
marker over other predictors, including e.g. demographics (age, sex) and other basic
characteristics (e.g. history, presenting signs and symptoms) (9). For dichotomous outcomes,
multivariable logistic regression analysis is a standard statistical technique to achieve this
aim (10). The basic effect measure from a logistic regression model is the odds ratio (OR).
Predictions of the outcome can be calculated based on the odds ratios of the predictors in the
model and the model intercept (11).

Several methodological issues arise in such multivariable regression analyses, including the
coding of a marker and the choice of the reference model. The specific focus of this paper is
on measures of overall predictive performance, improved classification (“discrimination”)
and improved decision-making (“clinical usefulness”, see Table 1).
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Coding of continuous markers
Markers measured on an ordinal or continuous scale are often dichotomized, such that we
can consider them as ‘positive’ vs ‘negative’. Although this practice makes interpretation of
the effect of a marker straightforward, it implies a loss of information (12). The alternative
of considering continuous versions of a marker poses the challenge of careful handling
potential non-linearity in the relationship between the marker and the disease. One common
transformation is to take the logarithm of a marker value, which may especially be useful for
skewed distributions. Alternatives include polynomials such as the square root, square, or
cubic transformations. More flexible functions may also be considered, such as ‘fractional
polynomials’ (13), or spline functions (14). Especially restricted cubic spline functions are
attractive, since these provide a family of flexible forms without capitalizing on chance
findings in the data under study (using few degrees of freedom) (15).

We considered the relationship of the marker LDH to the presence of residual tumor in the
case study. We first examined nonlinearity with a flexible spline function (Fig 1). Lower
values of LDH are associated with a higher likelihood of residual tumor at resection. The
logarithm of LDH was subsequently used, since a linear effect of the log-transformed LDH
reasonably approximated the spline function. A dichotomization of LDH as lower vs higher
than the upper limit of normal was also considered for comparison of how much information
is lost by dichotomization.

Multivariable analysis and the choice of reference model
A simple first step is to perform a univariate analysis for the marker, i.e. without any further
adjustment for patient or disease characteristics. We should however be more interested in
the incremental value of a marker, on top of predictors that are readily available (3). It is
common to consider additional value over a set of ‘established predictors’, preferably in a
previously published prediction model. In cardiovascular disease, it is common to consider
prediction models developed with the Framingham cohort (5), although several other models
are available. Other models are common to take as a reference in other fields, e.g. the Gail
model in breast cancer research (16).

We consider 2 reference models in the case study to illustrate the relevance of using a more
extensive reference model rather than a limited one. These reference models are a
multivariable combination of postchemotherapy size, reduction in size and primary
histology versus postchemotherapy size alone. The odds ratios of AFP and HCG were
between 2 and 3, either in univariate or adjusted analyses, and always highly statistically
significant (Table 2). Since AFP and HCG are commonly considered as elevated vs normal,
we did not attempt to model these markers are continuous predictors, in contrast to LDH.
The odds ratio for normal LDH was relatively small in univariate analysis (OR=1.5,
p=0.055), and larger when adjusted for postchemotherapy size (OR=2.6, p<0.001) or 3 other
characteristics (OR=1.9, p=0.013). A similar pattern was noted for the continuous version of
LDH, where odds ratios were calculated for the 25 vs the 75 percentile to allow for a fair
comparison to the dichotomized markers. P-values were lower for the continuous version of
LDH, reflecting the fuller use of information in the statistical analysis.

4. Assessing overall incremental value
The distance between the predicted outcome (Ŷ) and actual outcome (Y) is central to
quantify overall model performance from a statistical modeler’s perspective (17, 18). For
binary outcomes, we define Y as 0 or 1, and Ŷ as the predicted probability p. A model with a
marker added should have a smaller distance between predicted and observed outcomes.
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Explained variation (R2) can be calculated for generalized linear models (19). One common
option is to use Nagelkerke’s R2 (11) (20). This measure is based on a rescaling of the fit of
the model according to the −2 log likelihood. Another option is to simply calculate Pearson
R2. This R2 measure considers the squared distances between predictions p and the outcome
Y. Pearson R2 is hence related to measures such as the Brier score, which also considers
such squared distances (17).

The area under the Receiver Operating Characteristic (ROC) curve (AUC) is the most
commonly used performance measure to indicate the discriminative ability of a prediction
model. The ROC curve is a plot of the sensitivity (true positive rate) against 1 – specificity
(false positive rate) for consecutive cut-offs for the probability of the outcome. AUC is
identical to the concordance statistic (c), which is a rank order statistic for predictions p
against actual outcomes Y (11). The AUC or c can be interpreted as the probability that the
patient with a higher predicted probability has the disease, when we consider a pair of
patients of one with and one without the underlying disease. Useless predictions such as a
coin flip result in an AUC of 0.5, while a perfect prediction has an AUC value of 1.

To assess incremental performance, the difference in R2 or c statistics are commonly
considered, comparing a model with the marker to a model without (6) (9) (21). We studied
uncertainty in the differences with a bootstrap procedure, where patients were sampled with
replacement to estimated the standard error (SE) of the distribution (18). We calculated 95%
confidence intervals around the original estimates as +/− 1.96 SE. These intervals do not
include zero for statisticaly significant differences at the 0.05 level.

R2 and AUC in the case study
The increases in Nagelkerke R2 values for dichotomized markers were up to 8% in
univariate analyses and around 3% in adjusted analyses. As expected, the continuous version
of LDH had larger R2 values than its dichotomized version in all analyses. The best
performance was noted for AFP in univariate and fully adjusted analyses, while continuous
LDH performed best when adjustment was only for postchemotherapy size (Table 3A).

ROC curves were constructed for models with and without tumor markers (Fig 2). Larger
improvements in AUC are noted when only postchemotherapy size was modelled as a
reference (Fig 2A) compared to taking the model with the 3 predictors postchemotherapy
size, reduction, and primary histology as a reference (Fig 2B). This illustrates that the
reference model is an important issue in judging the incremental value of a diagnostic
marker.

The increase in AUC followed the same pattern as for the R2 values. Increases were between
0.01 and 0.02 for the fully adjusted analyses, where measurement of AFP and
continuousLDH contributed most to improving discrimination between those with and
without residual tumor (Table 3B).

5. Reclassification and clinical usefulness
Novel measures related to reclassification

A ‘reclassification table’ shows how many subjects are reclassified by adding a marker to a
model (22). For example, a model with traditional risk factors for cardiovascular disease was
extended with the predictors ‘parental history of myocardial infarction’ and ‘CRP’. The
increase in c statistic was minimal (from 0.805 to 0.808). However, when the predicted risks
were categorized with three cut-offs into four groups (0–5, 5–10, 10–20, >20% 10-year
CVD risk), about 30% of individuals changed category when comparing the extended model
with the traditional one. Change in risk categories, however, is insufficient to evaluate
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improvement in risk stratification; the changes must be appropriate. An ‘upward’ movement
in categories for subjects with the outcome implies improved classification, and any
‘downward movement’ indicates worse reclassification. The interpretation is opposite for
subjects without the outcome. The overall improvement in reclassification can be quantified
as the sum of differences in proportions of individuals moving up minus the proportion
moving down for those with the outcome, and the proportion of individuals moving down
minus the proportion moving up for those without the outcome, which has been referred to
as the Net Reclassification Index (NRI) (23).

The NRI was introduced with an example in cardiovascular disease prevention, where three
risk categories are commonly considered (0–6, 6–20, >20%) (23). A category-free version
has advantages if categories are less strongly defined, and when comparisons are to be made
between studies (24). The formulas remain the same when using the category-less NRI(>0)
but the definition of upward or downward movement is simplified to indicate any increase
or decrease in probabilities of event. Another option is to calculate the integrated
discrimination improvement (IDI), which also considers improvements over all possible
categorizations. IDI is identical to the difference in Pearson R2 values, and relates to the
difference in discrimination slopes of predictions based on models with and wthout the
marker (23) (25).

Novel measures related to clinical usefulness
In the calculation of the NRI with two categories (high risk vs low risk), the improvement in
sensitivity (true-positives) and the improvement in specificity (true-negatives) are summed.
This implies relatively more weight for detecting disease if disease was less common than
no disease. For example, if the prevalence of a disease is 50%, the improvement in true-
positives is weighted the same as the improvement in true-negatives (see Appendix). Hence,
weighting is based on the prevalence of disease and not on clinical consequences. It is hence
informative to study the individual components of the NRI (one for events and one for non-
events), and not only their sum (26).

The Net Benefit (NB) is a measure that explicitly incorporates weights for detecting disease
(true-positives, TP) vs overdiagnosing non-disease (false-positives, FP) (27). NB is defined
as: NB = (TP – w FP) / N, where N is the total number of patients and w is the relative
weight for overdiagnosis (FP) vs appropriate diagnosis (TP) (27) (28). The NB can be
interpreted as the fraction of TP classifications penalized for FP classifications. The NB
indicates how many more TP classifications can be made with a model for same number of
FP classifications, compared to not using a model (27).

In the case of a marker, classifications may sometimes be pre-defined as positive vs
negative. But when a marker is added to a reference model, we will usually obtain a risk
function with probabilities for the presence of disease. Classification of individuals is then
based on a decision threshold on the probability scale, pt. The additional value of a marker
can then be summarized as the difference in NB (ΔNB) at pt for predictions made with and
without using the marker in the risk function.

Interestingly, the threshold pt by definition reflects the relative weight for false positive vs
true positive classifications (28). Hence, the weight w in the NB formula then directly
corresponds to the decision threshold pt. More specifically, w equals pt/(1−pt), implying that
w is equal to the odds of the decision threshold pt . For example, a decision threshold of
20% implies that false positives are valued at 1/4th of detecting disease or another outcome,
and w = 0.25. Such a low threshold implies that the harm of a false-positive classification is
relatively limited. In practice, it may be difficult to specify the threshold pt exactly. A range
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of potential decision thresholds may hence need to be considered. This is done in a decision
curve (www.decisioncurveanalysis.org) (27) (29).

Discrepancies between NRI and ΔNB are possible when the threshold pt is not equal to the
prevalence of disease. A detailed hypothetical example is discussed in the Appendix. As a
reconciliation between NRI and NB, a weighted variant of NRI has been proposed (wNRI,
see Appendix). This wNRI weights the improvement in sensitivity and specificity by the
consequences of TP and FP reclassifications, and hence is identical to the NB except its
scaling (24). The relationship is that wNRI = ΔNB / pt. So in Table 4, wNRI is 5 times NB.

Reclassification and Net Benefit in the case study
Reclassifications were first calculated for any change in risk estimate, i.e. a category-free
version (denoted as NRI(>0), Table 4). Compared to postchemotherapy size alone the
continuous version of LDH contributed the most, which is in agreement with the results
obtained using AUC and R2. When the contribution over a more complete reference model
was studied (including size, reduction, and primary histology), LDH seemed of less
relevance, with lower NRI(>0) values, while AFP had the highest NRI(>0) value, again in
agreement with AUC and R2. Of note, however, NRI(>0) indicated reasonable potential for
correct reclassification using HCG regardless of the baseline model, which was not
supported by AUC or R2.

Further analyses considered a binary classification, based on a clinically relevant threshold
for the risk of tumor. This threshold was based on a previously performed formal decision
analysis, where estimates from literature and from experts in the field were used to weight
the harms of missing tumor against the benefits of resection in those with tumor (30). This
decision analysis indicated that a risk threshold of 20% would be clinically defendable.

With a 20% threshold, the reclassification analysis suggested that continuous LDH
measurements, abnormal AFP and abnormal HCG offered reasonable improvement when
added to a model with postchemotherapy size alone (NRI(0.20)s around 0.10). The decision-
analytic measure picked AFP and HCG (ΔNB +.64% and +.60% more true positives for the
same number of false positives for abnormal AFP and HCG, respectively) as the best
markers but not dichotomized or continuous LDH (ΔNB +0.14% and +0.23% more true
positives for the same number of false positives for dichotomized and continuous LDH
respectively). When we considered the model with 3 standard predictors (postchemotherapy
size, reduction, and primary histology), ΔNB was only positive for adding abnormal HCG
whereas NRI(0.20) suggested that both abnormal HCG and AFP might improve
reclassification. The weighted NRI followed the exact same pattern as the NB analyses.

We note that in many instances the differences between improvements in model
performance for the three markers were relatively small (see e.g. Figure 3), and that all
differences were quite uncertain. Most 95% confidence intervals included zero for the
reclassification and clinical usefulness measures at the 20% threshold (NRI(0.20), wNRI
0.20, ΔNB(0.2)), while most NRI(>0) results were all statistically significant, in line with
the odds ratios (Table 2) and continuous measures of improvement in model performance
(ΔAUC, ΔR2, Table 3).

Additional interesting insights can be derived by examining the components of NRI(0.20)
and NRI(>0) presented in Table 4. When using NRI(0.20) with a single classification
threshold at 0.20, we notice that the observed improvement in reclassification (where
present) is almost exclusively due to improvements in specificity. This is in apparent
contrast to the category-less NRI(>0) for which large values are driven primarily by increase
in event probabilities for cases. This suggests that a different choice of threshold could offer
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different conclusions about the relative usefulness of the markers considered. It also helps
explain the observed disagreement between ΔAUC, ΔR2, and NRI(>0) versus measures of
improvement in clinical usefulness (wNRI, ΔNB): the continuous measures pick markers
that have the greatest potential for model improvement across all potential thresholds but
this potential may not be realized for a given particular threshold that is the most clinically
relevant in a particular setting (as in our example).

6. Discussion
Various traditional and novel approaches are available to assess the incremental value of a
marker, but they led to different conclusions in a case study considering 3 tumor markers for
testicular cancer patients. The application to a real data set highlighted some of the
challenges in the assessment of the value of a marker.

Challenges in assessing markers
An important issue is the coding of continuous marker values. In our case study of testicular
cancer patients, we found that LDH, as expected, performed better with a continuous coding
than with a dichotomized coding. Next to a linear transformation, at least a logarithmic
transformation should be examined in marker studies. More flexible approaches are readily
available nowadays, including various variants of spline functions. Graphical illustrations
will often be necessary when non-linear relationships are modeled, making the mathematics
underlying the relationships less relevant.

Note that the interpretation of an OR is straightforward for a binary marker, where the OR
reflects the effect of a positive marker value vs a negative marker value. A high OR does
however not directly mean that a marker has high additional value, since a positive marker
value may be quite rare. A marker with an OR of 2 and a 50:50 distribution of positive and
negative values may hence be considered to be far more important for prediction than a
marker with an OR of 10 and a 1:99 distribution of positive and negative values (31, 32) .

For a continuous marker, the OR may often appear to be very small when the marker has a
wide range of values. Sometimes, standardized effects may be shown, i.e. the effect per
standard deviation change in marker value. For example, the effect of CRP in predicting
cardiovascular disease is often expressed per SD change in log(CRP) value (33). A general
approach for continuous markers is to express the effect for the interquartile range, e.g.
comparing the effect for the 75 percentile vs the 25 percentile of the marker distribution (9)
(11).

Next, the choice of reference model was essential when assessing predictive value. A simple
model with one key diagnostic characteristic (postchemotherapy mass size) led to an overall
quite positive appraisal of the value of LDH. We consider this misleading, since a full
adjustment for 3 characteristics made that AFP or HCG looked more valuable.

Furthermore, we found consistency between the performances as judged by R2 and the AUC
(or c statistic) values. This may generally be expected since both consider the full
distribution of predictions. Technically speaking, Nagelkerke’s R2 is a logarithmic scoring
rule, and c a rank order scoring rule (9). Pearson’s R2 (or the Brier score) is a quadratic
scoring rule. Each of these (Nagelkerke R2, and c) led to similar conclusions on the value of
a tumor marker in the case study. We could not study all overall measures of performance
that have recently been proposed. These include predictiveness curves (34) and Lorenz
curves (35), which are related to R2 and AUC measures. The category-less NRI(>0) was
generally consistent with R2 and the AUC.
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On the other hand, the conclusions derived using R2 and the AUC were different from those
derived using NB with a the specific decision threshold of 20%. The NB analysis with the 1
predictor reference model suggested abnormal AFP and HCG as the best markers, whereas
R2 and the AUC indicated that continuous LDH is the most useful. When the 3 predictor
model was used as a reference, NB favored HCG whereas R2 and the AUC picked AFP.
Interestingly, the two reclassification measures, NRI(>0) and NRI(0.20) fell in the middle,
suggesting relatively good reclassification potential for markers picked by the R2 and AUC
as well as NB analyses. Examining event and non-event reclassification components of the
NRIs offered additional valuable insights helping to explain why and how measures that
integrate across all thresholds may not agree with measures that focus on one particular
threshold.

We note however that random noise may explain a substantial part of these differences, as
reflected in wide confidence intervals in Table 3 and 4. Analyses were quite sensitive to the
specific threshold chosen (results not shown), and further research should consider stable
estimation of increases in NRI and ΔNB, e.g. using smoothing techniques.

Predictions versus decisions
Which measure to use when? It is essential to realize that the main separation is between the
assessment of the quality of predictions from a model versus the assessment of the quality of
decisions (or classifications) from a rule. The distinction between a prediction model and a
prediction rule is unclear in most of the current diagnostic and prognostic literature. The key
element is that going from a prediction model to a prediction rule requires the definition of a
decision threshold, or cut-off (36). ‘Prediction model’ and ‘prediction rule’ are hence not
synonymous. In a prediction rule, patients with predictions above and below the threshold
are classified as positive and negative respectively. We note that AUC, R2, category-free
NRI, and multiple category NRI deal with models and not rules. A good model is however
the first step in creating a good rule.

The threshold for a rule should be appropriate considering the consequences of the decision
(37). A false-positive classification (overdiagnosis) is often weighted less in medical
contexts than a false-negative classification (underdiagnosis of disease) (36). In the case
study, unnecessary surgery for a benign mass should be avoided, but is less an error than
withholding surgery in patient with residual tumor. The decision threshold of 20% reflects
the 1 to 4 relative weights of these errors. Once the relative weight is used to define the
decision threshold, it is logically consistent to also apply this relative weight in the
assessment of the quality of decisions. This principle is violated in the default NRI for 2
categories, but followed in the weighted NRI (24), the NB, and related measures such as the
relative utility (38). The 2 category NRI only is consistent to ΔNB if the decision threshold
is equal to the prevalence. This is because NRI then is the sum of the improvement in
sensitivity and specificity, and hence implicitly weights by prevalence of disease. Further
research should address the relationship between wNRI and NB in more detail.

Recommendations for marker assessment (Box 1)
For the evaluation of incremental value of a diagnostic or prognostic marker, the relevant
comparison is between a prediction model with and without the marker. For the overall
improvement in discriminative ability the currently standard measure, the AUC or c statistic
(Box 1), remains a valuable tool (39) (40). To overcome some of its limitations, (22) (41), it
may be useful to present increase in Nagelkerke’s R2 or the IDI as well as its “non-
parametric” version, the NRI(>0). All these measures have their limitations if we consider a
specific decision threshold, because a substantial or small increase in AUC or R2 achieved
by adding a marker to a model, may not translate to substantial or small clinical usefulness
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at a given threshold (42). As a next step we therefore should consider decision-analytic
measures, such as the NB, or the wNRI.

Box 1

Proposal for assessing incremental value of a diagnostic test or marker

Analysis of data where the marker is studied

• Calculate difference in AUC or related measures to indicate overall
improvement in discrimination

(AUC is a standard measure which considers the full range of potential decision
thresholds)

• Calculate difference in decision-analytic performance measures, such as the net
benefit or the weighted Net Reclassification Index to indicate clinical usefulness
over a smaller range of medically relevant thresholds

(Decision analytic measures consider the consequences of decisions explicitly)

Further studies

• Assess impact on decision making in prospective studies

(If decision making is not influenced by knowledge of the marker’s value,
patient outcomes can not improve)

• Assess impact on patient outcome in prospective studies, preferably randomized
trials, or cost-effectiveness modeling

(Impact on patient outcome proves the ultimate usefulness of a marker, while
finally the balance between incremental costs and incremental effects has to be
considered).

What distorts the relationship between AUC and NB? If assumptions, such as linearity of
continuous predictors and additivity, hold in a logistic regression model, the ROC curve of a
model with a marker is dominant to the ROC curve of a model without the marker. So, we
can always find a decision threshold where both sensitivity and specificity are better in the
model with the marker than the sensitivity and specificity in a model without the marker. If
model assumptions are not fully fulfilled, we may have non-concave or even crossing ROC
curves. This implies that the marker is especially useful for some parts of the ROC curve.
But generally speaking, a minor increase in ROC area will imply limited clinical usefulness.

Another issue is that the decision threshold may be at the outside of the distribution of
predicted probabilities. This implies lower clinical usefulness compared to not using a
model. This was the case for the 20% decision threshold for the risk of residual cancer. A
higher threshold, closer to the prevalence of 55%, would imply much greater clinical
usefulness of any of the 3 tumor markers considered (AFP, HCG, or LDH, see Fig 3).
Generally speaking, a marker will be most clinically useful when the externally defined
decision threshold is close to the prevalence of disease, that is, in the middle of the risk
distribution (42). Note that the decision threshold is determined by the specific medical
context, and outside the influence of the modeler.

Some guidelines for marker assessment emphasize calibration (39). Calibration refers to the
agreement of predicted probabilities to observed outcome frequencies. This property of
model predictions is indeed essential when we consider application of a model in a new
setting to guide decision making (9). Calibration may however be less relevant when we
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consider the incremental value of a marker in the same data set as where we fit the reference
model. Further research should address the interrelationships between measures for
discrimination, calibration, and clinical usefulness. A specific issue is the challenge to find
an accessible presentation and communication format for such measures to a clinical
audience.

Common errors (Box 2)
Some errors are common in the assessment of the value of a test or marker (Box 2).
Dichotomizing continuous variables is common in the epidemiological literature, while such
a loss of information should be avoided (12). As discussed, we cannot interpret a large odds
ratio in a multivariable analysis as evidence of incremental value of a diagnostic marker. A
high odds ratio for a rare characteristic has limited value in diagnosing disease. Another
common error is to interpret a low p-value as evidence of incremental value. This is wrong
because the p-value depends not only on the effect size but also on the sample size. A low p-
value may easily be found in large studies. Instead, measures such as R2 or the c statistic
should be used to quantify predictive accuracy. For example, partial R2 values were highly
informative to indicate the relative importance of 26 prognostic markers of 6 month outcome
in traumatic brain injury (43). As discussed above, any serious evaluation of a diagnostic
marker should consider a full set of standard predictors such as demographic and other
simple characteristics as a reference to improve upon (3). Also, a large increase in AUC is
not sufficient evidence of good clinical usefulness, since clinical usefulness also depends on
where the decision threshold is in the distribution of predicted risks (42).

Box 2

Common errors in the assessment of the value of a diagnostic test or
marker

• Interpreting without considering standard predictors such as demographic and
other simple characteristics

(Wrong because incremental value over standard predictors is the key question)

• Dichotomizing continuous marker values

(Wrong because information is lost; dichotomizaton should only be done at the
end of the modeling process, for predictions that inform decision making)

• Interpreting a large odd ratio (OR) as evidence of incremental value

(Wrong because OR depends on coding; and OR value ignores distribution. A
high OR for a rare characteristic has limited value for diagnosing disease)

• Interpreting a low p-value as evidence of incremental value

(Wrong because p-value depends not only on effect size but also on sample size;
low p-values may easily be found in large studies).

• Interpreting a large value of AUC as evidence for good clinical usefulness

(Wrong because AUC values can not be interpreted without context; a value of
0.7 or 0.8 may imply clinical usefulness in some settings but not in others,
depending on where the decision threshold is in the distribution of predicted
risks; the same holds for increases in AUC by a diagnostic marker (by e.g. 0.01
or 0.02)).
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Validation and impact assessment
Final points to emphasize include validation and prospective assessment of impact on
clinical care (Box 1). It is common that initial studies of markers show promising results,
with disappointment in later evaluations. Hence, validation in independent data is generally
considered essential for confidence in the incremental value of a marker. Internal validation
with cross-validation or bootstrapping is a minimum requirement (44). Moreover,
performance measures may depend on outcome definitions, the types of patients (“case-
mix”), the setting, and the amount of prior testing (45). In our illustrative case study, we
only showed performance in the development data, and not in independent external
validation data. The relatively large sample size (n=544, 299 with residual tumor) made that
statistical optimism was small (no risk of overfitting). Moreover, external validation studies
have confirmed our results (46).

Next to validation and assessment of diagnostic value, prospective impact studies need to be
considered (47). First, we may study whether a model with a marker influences medical
decision making compared to a model without the marker. If decision making on further
diagnostic work-up or treatments is not different, patient outcomes cannot improve. An ideal
study would be a randomized trial on the impact of providing a marker’s value on patient
outcomes (morbidity, mortality, quality of life), with consideration of process outcomes
(diagnostic tests, treatments administered) as intermediate study endpoints (39). Since
randomized trials may often not be feasible in terms of required research funding and
required sample size, formal decision analytic modelling may also be relevant (48). In such
models we can combine estimates of the performance of the diagnostic model with and
without the marker with evidence on the effectiveness of treatments which are hopefully
more appropriately targeted to those who need it with a marker than without.

Conclusions
Reporting on the increase in discrimination (using ΔAUC or Δc statistic, ΔR2, IDI, or
NRI(>0)) is relevant to obtain insight in the incremental value of a marker. Decision-
analytic measures such as NB or weighted NRI should be reported if the prediction model
including the marker is to be used for making decisions. Although the standard NRI quickly
gained popularity in major medical journals, researchers need to be aware of the implicit
weighting of false-positive and false-negative decisions based on disease prevalence that it
contains. This weighting may not be appropriate in many medical applications (49). Hence,
the components of the NRI for diseased and non-diseased subjects should always be
reported, and wNRI may be considered as a better summary measure. In applications calling
for a prediction rule with two categories, decision–analytic measures, such as wNRI or NB,
and the corresponding decision curve, may provide the most informative metrics.
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Appendix
Relationship between net benefit (NB) and Net Reclassification Index (NRI), leading to a
weighted NRI (wNRI).

1. Hypothetical example to illustrate discrepancy between NRI and NB
Consider 1000 patients, 500 with and 500 without disease. Marker A correctly reclassifies
100 subjects without disease, and falsely reclassifies 50 subjects with disease. Marker B
falsely reclassifies 100 subjects without disease, and correctly reclassifies 50 subjects with
disease. The NRI for marker A is the sum of the improvements in sensitivity and specificity:
−50/500 + 100/500 = +0.10. In contrast, the NRI for marker B is +50/500 −100/500 = −0.10.
If the decision threshold is 20%, we should however weight the FP reclassifications as 0.25
times a TP reclassification. Hence the differences in NB are (−50 + 0.25*100)/1000 =
−0.025 for marker A and (50 − 0.25*100)/1000 = +0.025 for marker B. Hence, NRI and
ΔNB have opposite directions in this example. The NB calculation recognizes that marker B
is more clinically useful since 50 more TP reclassifications outweigh the 100 more FP
reclassifications.

2. Notation for further derivation of interrelationship
We assume a dataset of size N, with N+ diseased and N- non-diseased subjects such that N+
+ N− = N. The prevalence of the disease is denoted as P, and the probability threshold to
triage patients as low or high risk as pt. Using pt, TP represents the number of true positives
(diseased patients predicted to be at high risk), FP the number of false positives (non-
diseased patients predicted to be at high risk), TN the number of true negatives (non-
diseased patients predicted to be at low risk), and FN the number of false negatives
(diseased patients predicted to be at low risk).

If we have two diagnostic prediction models, one with standard predictors (model 1) and one
with standard predictors and new diagnostic marker (model 2). The true positives for these
models, for example, are denoted by TP1 and TP2, respectively.

3. Net Reclassification Improvement (NRI)
The NRI is computed as the sum of differences in proportions of individuals moving up
minus the proportion moving down for those with the outcome, and the proportion of
individuals moving down minus the proportion moving up for those without the outcome. In
case of a single cut-off, moving up means that adding the marker changes the prediction
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from low to high risk whilst moving down implies an opposite reclassification. Following
Pencina et al (23), the NRI is given as

For binary classification as low or high risk, this reduces to the sum of the improvements in
sensitivity and specificity, and the formula can be written as

Thus, the NRI implicitly weights TP and FP improvements by prevalence even though pt
conveys information about misclassification costs.

4. Net Benefit (NB)
The Net Benefit is a measure that explicitly incorporates weights for detecting disease (true-
positives, TP) vs overdiagnosing non-disease (false-positives, FP). The NB can be
interpreted as the fraction of TP classifications penalized for FP classifications, and its
formula is

This shows that NRI is consistent with the decision-analytic NB only if pt = P. Else, NRI use
weights that differ from the misclassification costs implicitly assumed through pt.

5. weighted NRI
Using Bayes’ rule, the original formulation of the NRI can be rewritten (24):

We denote the benefit when a diseased patient is reclassified upwards by model 2 relative to
model 1 by s1. Likewise, s2 is used to denote the benefit obtained when a non-diseased
patient is reclassified downwards. The weighted NRI, wNRI (24), equals

For binary classification, this can be reduced to
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The default values for the weights s1 and s2 are  and , respectively, which reduces
wNRI to the NRI. However, a decision-analytic perspective calls for weights based on pt
(37). For example, if pt is 0.20, it is implied that detecting disease is considered four times
more important than detecting non-disease. The definition of NRI implies that the harmonic
mean of s1 and s2 is 2. Hence s1 might be set to5 and s2 to 1.25 in this example (24).
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Fig 1.
Relationship of LDH to presence of residual tumor at resection in testicular cancer patients.
A restricted cubic spline function was used with 5 knots (shown with 95% confidence
intervals), a dichotomized version (LDH elevated vs normal), and a logarithmic
transformation. Note that the x-axis is log transformed such that a straight line is shown for
log(LDH). The distribution of LDH values is indicated by spikes at the bottom of the graph.
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Fig 2.
Receiver operating characteristic (ROC) curves for adjustment with postchemotherapy size
(A) or postchemotherapy size, reduction in size, and primary histology (B).
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Fig 3.
Decision curves showing the Net Benefit (NB) in comparison to a logistic regression model
with postchemotherapy size (A) or postchemotherapy size, reduction in size, and primary
histology (B).
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Table 1

Characteristics of some measures to quantify the incremental value of a diagnostic marker

Aspect Measure Characteristics

Independent association Odds Ratio (OR) Quantifies relative risk, either for the marker alone (univariate analysis) or
additional to other predictors of outcome (multivariable, or adjusted, analysis).
For a binary marker, the OR refers to the comparison of a positive vs a negative
marker value. For a continuous marker, the OR refers to a one unit increase in
marker value.

Overall performance Difference in Nagelkerke R2,
Pearson R2, or Brier score
Integrated discrimination
improvement (IDI)

Better with lower distance between observed and predicted outcome.
IDI equals the difference in Pearson R2.

Discrimination Difference in area under the
ROC curve (AUC) or c statistic

AUC or c is a rank order statistic; Interpretation is as the probability of correct
classification for a pair of patients with and without the outcome

Reclassification Net Reclassification Index
(NRI)

Net fraction of reclassifications in the right direction by making decisions based
on predictions with the marker compared to decisions without the marker;
default weights are by prevalence of disease.

Clinical usefulness Difference in net benefit (NB)
and decision curve analysis
(DCA) Weighted NRI

Net fraction of true positives gained by making decisions based on predictions
with the marker compared to decisions without the marker at a single threshold
(NB) or over a range of thresholds (DCA); weights by consequences of
decisions (NB and weighted NRI).
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Table 2

Odds ratios for 3 tumor markers in logistic regression models in testicular cancer data set (n=544), without any
other predictors (univariate), with statistical adjustment for log(postchemotherapy size), and with statistical
adjustment for log(postchemothrapy size), reduction in size, and primary tumor histology (presence of
teratoma). The outcome was the presence of residual tumor at postchemotherapy resection (299/544, 55%).

Characteristic Univariate Adjusted for postchemotherapy
size

Adjusted for postchemotherapy size,
reduction, and primary histology

Prechemotherapy AFP elevated 2.8 [2.0 – 4.1] 2.2 [1.5 – 3.3] 2.7 [1.7 – 4.2]

Prechemotherapy HCG elevated 2.2 [1.5 – 3.1] 2.0 [1.3 – 2.9] 2.1 [1.4 – 3.2]

Prechemotherapy LDH normal 1.5 [1.0 – 2.1] 2.6 [1.7 – 4.1] 1.9 [1.1 – 3.0]

log(LDH/upper limit of local normal

value)*
1.4 [1.1 – 1.8] 2.9 [2.1 – 4.1] 2.1 [1.5 – 3.1]

*
Values are odds ratios with 95% confidence intervals for comparison of the 25 to the 75 percentile. LDH was first studied with a restricted cubic

spline function, which could be approximated well with a log transformation.
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Table 3

Performance of testicular cancer models with or without the tumor makers AFP. HCG, and LDH according to
Nagelkerke’s R2 (A) and c statistics (B).

A.

Characteristic Univariate Compared to postchemotherapy size Compared to postchemotherapy size,
reduction, and primary histology

Reference value 0% 22.9% [15.1 – 30.6%] 34.1% [26.3 – 41.9%]

AFP abnormal 7.7% (+7.7%) [4.7 – 10.7%] 26.0% (+3.1%) [0 – 6.2%] 37.8% (+3.7%) [0 – 6.9%]

HCG abnormal 4.7% (+4.7%) [2.0 – 7.4%] 25.4% (+2.5%) [−0.1 – 5.2%] 36.3% (+2.2%) [−0.2 – 4.7%]

LDH abnormal 0.9% (+0.9%) [−1.9 – 3.9%] 26.8% (+3.9%) [0 – 6.9%] 35.2% (+1.1%) [−0.2 – 2.9%]

continuous 1.5% (+1.5%) [−3.3 – 6.3%] 31.6% (+8.7%) [3.9% – 13.5%] 37.1% (+3.0%) [−0.1 – 5.8%]

B.

Characteristic Univariate Compared to postchemotherapy size Compared to postchemotherapy size,
reduction, and primary histology

Reference value 0.5 0.748 [0.707 – 0.790] 0.794 [0.756 – 0.832]

AFP abnormal 0.616 (+.116) [.068 – .164] 0.764 (+.016) [−.001 – 0.033] 0.814 (+.019) [0.001 – 0.035]

HCG abnormal 0.592 (+.092) [.043 – .140] 0.761 (+.013) [−.002 – 0.027] 0.804 (+.010) [−.003 – 0.021]

LDH abnormal 0.537 (+.037) [−.010 – .084] 0.769 (+.021) [0.004 – 0.039] 0.799 (+.005) [−.005 – 0.015]

continuous 0.550 (+.050) [.002 – .099] 0.793 (+.045) [0.019 – 0.072] 0.811 (+.017) [0.002 – 0.033]

*
Values are Nagelkerke’s R2 values (partial R2). Reference values for comparison are in the first row. Values between brackets are 95%

confidence intervals.

*
Values are AUC values (improvement in AUC). Reference values for comparison are in the first row. Values between brackets are 95%

confidence intervals.
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