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Indoleamine 2,3-dioxygenase 1 (IDOL), the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects
on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in
tumorigenesis, the activity of IDOI seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity
of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the
subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper,
current knowledge about the role of IDOI and its metabolites during various infectious diseases is presented. Particularly, the
regulation of type I interferons (IFNs) production via IDOLI in virus infection is discussed. This paper offers insights into new
therapeutic strategies in the modulation of viral infection and several immune-related disorders.

1. Introduction

Inflammation is the physiological response of the body to
harmful stimuli, such as injury, pathogens, damaged cells,
or irritants. Inflammatory response can be either acute or
chronic, which leads to pathology. The major function of
innate immune cells is identification and recognition of
the injurious and/or foreign substances causing the defense
response. Macrophages are actively involved in all phases of
inflammation, and their role as effector and regulatory cells
is now widely recognized. Another interesting and important
role of macrophages is their high level of specialization and
tissue specificity. While all tissue-bound macrophages dif-
ferentiate from circulating monocytes, they acquire distinct
characteristics and functions locally due to their response
profiles. One of the major factors for this diversity is the
complexity of microbial load as well as tissue architecture.
Thus, it is not a surprise that some of the most sophisticated

interactions between the host and parasites also dictate the
most evolved phenotypic characteristics of the macrophage.

Indoleamine 2,3-dioxygenase 1 (IDO1) has been identi-
fied as an enzyme endowed with powerful immunomodula-
tory effects, resulting from its enzymatic activity that leads
to catabolism of the essential amino acid L-tryptophan (L-
TRP) [1, 2]. This enzyme is expressed in epithelial cells,
macrophages, and dendritic cells (DCs) induced by proin-
flammatory cytokines [3-5]. The initial observation suggest-
ing the immunoregulatory role of IDOI dates back to the
finding that its inhibition by 1-methyl-DL-tryptophan (1-MT)
during pregnancy would cause rejection of semiallogeneic,
but not syngeneic, fetuses in mice [6]. A second observation
expanding upon that initial finding was that IDO1 medi-
ates a bidirectional flow of information between cytotoxic-
T-lymphocyte-associated-antigen-4- (CTLA-4-) expressing
T cells and accessory cells of the immune system; IDOI
activation in antigen-presenting cells (APCs) by CTLA-4


http://dx.doi.org/10.1155/2013/391984

ligation of CD80/CD86 “counterreceptors” on those cells
represents an important effector pathway for regulatory T
(Treg) cells, to induce and maintain peripheral tolerance [7,
8]. Third, it was later found that, in T cells, the general control
nonderepressing-2 (GCN2) protein kinase, with a putative
binding site for free acyl-transfer RNAs (tRNAs), acts as a
molecular sensor for intracellular TRP, participating in the
integrated stress response (ISR) pathway, which controls cell
growth and differentiation [9]. Finally, IDOI was found to
possess signaling activity in DCs, which are stably turned
into regulatory DCs by its activation. Thus, IDO1 may
contribute to long-term immune homeostasis and immune-
related functions not only in pregnancy, but also in infectious,
allergic, autoimmune, and chronic inflammatory diseases,
as well as in transplantation and immune-escaping tumoral
mechanisms [7,10-12]. The aim of this paper is to summarize
the current knowledge about the physiological role of IDO1
following certain immune-related disorders. Further, new
therapeutic targets via regulation of IDOI are discussed
against macrophage-related inflammatory diseases.

2. Tryptophan and Its Degradation Pathways

TRP is an essential starting point of two biochemical path-
ways: (1) the enzyme tryptophan 5-hydroxylase converts TRP
into 5-hydroxytryptophan, which is subsequently decarboxy-
lated to 5-hydroxytryptamine (5-HT, serotonin), an essential
neurotransmitter, and (2) two atoms of oxygen are inserted
into TRP to form N-formylkynurenine, the first and rate-
limiting step in the kynurenine (KYN) pathway (Figure 1). It
is estimated that only 1% of dietary TRP can be converted
into 5-HT [13]. The remaining 99% of TRP is metabolized
via the KYN pathway. TRP is catalyzed by three different
enzymes: tryptophan 2,3-dioxygenase (TDO), IDOI], and
IDO2. While the expression and function of IDO2 have
been well explored in the mouse model, there is a lack of
knowledge about its expression and functional significance in
human tissue. Human IDO1 and IDO2 seem to have different
kinetic parameters and inhibition profiles. The Km for L-
TRP of human IDO2 protein is approximately 500-1000-
fold higher than that of mammalian IDOI1 enzymes [14], and
IDO2 is especially inhibited by 1-methyl-D-tryptophan (1-
D-MT) [15, 16]. In contrast to both IDOs, TDO is a highly
substrate-specific dioxygenase and deoxygenates only L-TRP
and some TRP derivatives. The expression of TDO is nor-
mally restricted to mammalian liver cells where it is believed
to regulate systemic TRP concentrations [17]. Although TDO
has been identified in the brain and epididymis of some
species recently [18], it has been found that TDO is expressed
in human malignant glioma cells of the brain [19]. On the
other hand, IDOLI is expressed in a broad variety of mam-
malian cells related to immune function, such as activated
macrophages and DCs. IDO1 is induced by proinflammatory
cytokines such as tumor necrosis-« (ITNF-a) and IFN-y
[20]. The enzymatic activity of IDOL is restricted to specific
tissues, including lungs, cecum, colon, and epididymis [21].
In addition, Takikawa et al. found that immune activation,
such as an endotoxin, lipopolysaccharide (LPS) injection,
could induce IDOI1 enzyme activity only in specific tissue;
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however, this local induction of TRP metabolism resulted in
a threefold increase in KYN concentrations in serum [22].
Thus, these findings have suggested that TRP metabolism can
be initiated in local tissues, whereas KYN may diffuse into
the bloodstream. Therefore, increased KYN concentration in
the serum can indicate increased TRP metabolism taking
place in a specific tissue. While TDO and IDO1 alter local
and systemic TRP concentrations and initiate the production
of neuroactive and immunoregulatory TRP metabolites; the
known immunologic function of TRP degradation is largely
dependent on IDOL. In addition, the biological function of
IDO2 is still unclear and needs clarification. Therefore, in
this paper, we describe IDO1 and immune regulation, unless
specifically noted.

3. Signal Pathways related to IDO1

IDOLI is induced by IFN-y-mediated effects of the signal
transducer and activator of transcription la (STATlx) and
interferon regulatory factor-1 (IRF-1). The IDOI1 gene has two
interferon-stimulated response elements (ISREs) and IFN-
y-activated site (GAS) element sequences in the 5'-flanking
region [23-25]. IDO1 induction is also mediated by an IFN-
y-independent mechanism under certain circumstances [26-
28]. Fujigaki et al. demonstrated that IDO1 induction by LPS
is not mediated by STAT1« or IRF-1 binding activities that
induce IDOI transcriptional activity by IFN-y in many cells
[28]. LPS stimulation of human monocytes and macrophages
activates several intracellular signaling pathways, including
the IkappaB kinase-nuclear factor-«B (NF-xB) and mitogen-
activated protein kinase (MAPK) pathways. These pathways,
in turn, activate a variety of transcription factors that include
NF-«B and activator protein-1 (AP-1). A part of the induction
of IDOI1 by LPS is mediated by a signal from NF-«B or
p38-MAPK pathways. A homology search of the 5'-flanking
region of the IDOI1 gene shows consensus sequences for
transcriptional factors such as AP-1, NF-xB, and NF-IL-
6, which are activated by LPS and other proinflammatory
cytokines: TNF-a, IL-6, and IL-1p3. Therefore, the IDO1
gene could be upregulated by LPS or these cytokines in a
synergistic manner.

Posttranslational modifications (PTMs) of proteins per-
form crucial roles in the biological regulation of cells. PTMs
provide a dynamic mechanism for regulating protein func-
tion and potentially change physical or chemical properties,
activity, localization, or stability of proteins [29, 30]. Our
group demonstrated for the first time that IDO1 activity
is regulated by PTMs [31]. Peroxynitrite, a nitric-oxide-
(NO-) derived reactive species, inhibits IDO1 activity via
the nitration of tyrosine residues in IDO1 protein. This
inhibition occurs at the posttranslational level because per-
oxynitrite inhibits IDOI enzyme activity without affecting the
expression level of the IDOI protein. Activated macrophages
can simultaneously generate large fluxes of NO and super-
oxide anions [32, 33], which rapidly combine to produce
the far more reactive peroxynitrite anions. Peroxynitrite is
considered to be produced by inflammatory cells to defend
against infectious pathogens, such as parasites, viruses,
and bacteria [34-36]. Thus, an understanding of protein
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FIGURE 1: Schematic overview of the kynurenine pathway. It is estimated that only 1% of dietary tryptophan (TRP) can be converted
into serotonin (5-HT). The remaining 99% of TRP is metabolized via the kynurenine (KYN) pathway. Tryptophan hydroxylase (TH),
5-hydroxy TRP (5-HTP), N-acetylserotonin (NAS), indoleamine 2,3-dioxygenase 1 and 2 (IDO1/2), tryptophan 2,3-dioxygenase (TDO),
kynurenine 3-monooxygenase (KMO), kynurenine aminotransferase (KAT I, II, III), kynurenic acid (KA), anthranilic acid (AA), 3-
hydroxykynurenine (3-HK), xanthurenic acid (XA), 3-hydroxyanthranilic acid (3-HAA), 3-hydroxyanthranilic acid oxidase (3-HAO),
quinolinic acid (QUIN), quinolinic-acid phosphoribosyl transferase (QPRT), nicotinic acid mononucleotide (NaMN), nicotinamide
mononucleotide adenylyltransferase (NMNAT), nicotinamide adenine dinucleotide (NAD).

nitration and PTMs on IDOL1 will provide insight into the
pathogenic mechanisms of inflammatory diseases related to
macrophages and into novel therapeutic strategies for limit-
ing tissue inflammatory injury.

4. Immune Regulation by IDO1

IDO1 was first isolated from rabbit intestine in 1967 [37],
and it became rapidly clear that its induction serves the
mechanism of antimicrobial resistance. Infection by bacte-
ria, parasites, or viruses induces a strong IFN-y-dependent
inflammatory response. IFN-y-induced IDOI degrades TRP,
and the depletion of TRP results in the regulation of intra-
cellular pathogens [38-42]. On the other hand, Munn et al.
provided evidence for a much broader immunoregulatory
significance of TRP degradation by IDOI1. They demonstrated
that tolerance to allogeneic fetuses is regulated by IDOI-
expressing cells in the mice placenta [1]. They and others also
showed that a marked increase in IDO1 suppresses immune
responses by locally depleting TRP and hence preventing T-
lymphocyte proliferation using the IDO1 inhibitor, I-MT [43-
45]. These previous studies clearly showed that TRP degra-
dation by IDOLI substantially contributes to immunoregula-
tion, and therefore IDOI has been considered as a strong
immunoregulatory factor.

As shown in Figure 2, IDOL is predominantly expressed
in APCs of the immune system—the DCs, the monocytes,

and the macrophages (Figure 2(a)) [46, 47]. IDOI can be
introduced by soluble cytokines such as IFN-y, type I IFNs,
transforming growth factor- (TGF-f), TNF-«, or Toll-like
receptors (TLRs) ligands such as LPS [27]. In addition, KYN
and 3-hydroxykynurenine (3-HK) could be also involved in
exacerbation of TRP starvation in T cells. Kaper et al. have
proposed the existence of a positive feedback between IDO1-
mediated TRP metabolism in DCs and KYN-induced TRP
depletion in CD98-expressing T cells [48]. CD98 is expressed
on astrocytes and activated T cells. T cells are sensitive to low
levels of TRP and TRP metabolites in vitro. TRP deficiency
specifically activates the GCN2 kinase in murine and human
T cells, which leads to a halt in the G2 phase of T-cell
division and T-cell suppression (Figure 2(b)) [49]. Moreover,
a specific combination of TRP metabolites can inhibit anti-
CD3 antibody-induced T-cell proliferation and induce T-
cell apoptosis in vitro [50, 51]. The combination of low TRP
concentrations and specific TRP metabolites leads to the
generation of Tregs from naive T cells in vitro [52, 53]. Tregs
inhibit the activation, differentiation, and survival of effector
T cells through the induction of IDOI in APCs by ligation of
inhibitory ligands and cytokines from Tregs [54].

It is possibly the selective pressure by Tregs that drove
the evolution of the IDO1 mechanism from one operating in
innate and inflammatory responses to pathogens [55, 56] to
an effector mechanism of Treg function [57, 58]. Functional
plasticity in DCs allows these cells to present antigens in an
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FIGURE 2: T-cell immune regulation by IDOL. (a) IDOI is induced by IFN-y-dependent and/or -independent signal pathways, depending on
the variety of immune stimuli by macrophages and dendritic cells (DCs) [28, 83]. IDOI1 activity is suppressed by the formation of NO or the
competitive enzyme inhibitor, IMT. Marked increases in IDOI suppress immune responses by locally depleting L-TRP and preventing T-cell
proliferation [44]. Expression of IDO1 has been observed in certain types of activated macrophages and DCs. IDOl-expressing cells deplete
TRP from the extracellular milieu and secrete TRP metabolites, including KYN, 3-HK, 3-HAA, and QUIN, which induce T-cell apoptosis and
suppress immune responses in vitro. (b) CD19* plasmacytoid DCs (pDCs) express high levels of IDO1, which can activate mature regulatory T
(Treg) cells via activation of the protein kinase general control nonderepressing-2 (GCN2) pathway of protein synthesis inhibition [84]. pDC-
produced IDOI1 and activated Treg can convert naive T cells into new Treg. IDOI acts in an autocrine manner to suppress pDC production
of IL-6, which prevents the conversion of Treg into IL-17-producing Th17 proinflammatory cells [79]. IDOI1 also downregulates type I IFN
(IFN-a) production by pDC [80].
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immunogenic or tolerogenic fashion, largely contingent on
environmental factors [59]. Costimulatory and coinhibitory
interactions between DCs and T cells are pivotal in tipping
the balance between immunity and tolerance in favor of
either outcome. When CD80/CD86 molecules on DCs were
engaged to T cells, CTLA-4 (widely expressed by Tregs) was
later shown to behave as an activating ligand for CD80/CD86
receptors, resulting in intracellular signaling events. Through
an unidentified signal cascade, DCs release type I and type II
IFNs that act in an autocrine and paracrine fashion to induce
strong IDO1 expression and function [60]. KYN-dependent
T-cell differentiation would contribute to expand the pool
of Tregs [8]. However, in the long-term control of immune
homeostasis and tolerance to self, IDOL relies on different
regulatory stimuli and cytokines, providing a basal function
amenable to regulation by abrupt environmental changes
(Figure 3) [61].

In a TGF-f-dominated environment and in the absence
of IL-6, IDOLI activates a variety of downstream signaling
effectors that sustain TGF-f production, production of type I
IFNs, and a bias of plasmacytoid DCs (pDCs) toward a regu-
latory phenotype [62, 63]. IDOI enhances its own expression
and stably tips the balance between proinflammatory and
anti-inflammatory NF-xB activation.

5. Pathophysiologic Significance of
Kynurenine Pathway Metabolites

IDOl-expressed DCs are able to lower TRP concentration,
increase KYN concentration, and suppress the allogeneic T-
cell response [50]. The TRP metabolites KYN, 3-HK, and 3-
hydroxyanthranilic acid (3-HAA) inhibit T-cell proliferation
by a time-dependent cytotoxic action, an effect which con-
cerns mainly not only the activated T cells, but also B and nat-
ural killer (NK) cells. It has also been reported that KYN was
able to reduce proliferation of human peripheral blood lym-
phocytes (PBL) in vitro [64]. The cytotoxic action of 3-HK can
be attributed to the production of hydrogen peroxides which
results in the damaging action of free hydroxyl radical [65].
As with KYN, when 3-HK was administrated exogenously, it
effectively reduced symptoms in allergic inflammation [66].
The toxic action of 3-HAA is more complex. Although the
final effect of 3-HAA results in the cell death of T cells,
thymocytes [51] and monocyte-derived macrophages [67],
the mechanisms involved in the cell death, might depend
on the cell type. The formation of cytotoxic-free hydroxyl
radical may be involved in 3-HAA-induced cell death in
monocyte-derived macrophages [67]. L-KYN is considered
to be the end product of KYN pathway metabolism in most
extrahepatic cells, whereas macrophages produce the largest
amount of quinolinic acid (QUIN) in accordance with the
highest activities of kynurenine 3-monooxygenase (KMO)
and kynureninase [4, 68]. In fact, Heyes et al. showed that
macrophages stimulated with IFN-y may be an important
source of accelerated TRP conversion into KYN metabolites
in inflammatory diseases [69]. Further, they showed that
increased activities of KYN pathway enzymes, including
IDO1 and KMO following systemic immune stimulation and
HIV infection, in conjunction with macrophage infiltration,

Kynurenine

FIGURE 3: IDOI induction and proinflammatory cytokines. IFN-y
drives intense enzymatic IDO1 activity, resulting in TRP depletion
and high-level production of immunoregulatory TRP metabolites,
KYNs, which may foster Tregs expansion. Induced Tregs use TGF-
B to maintain an IDOI-dependent regulatory environment, with
IDO1 mostly functioning as a signaling molecule. Both mechanisms
are interrupted by IL-6, which drives IDO1 degradation as potent
inflammatory stimuli enter the local environment [85].

resulted in acceleration of the local formation of KYN
metabolites, especially QUIN [21, 70]. Therefore, KMO is
considered as a secondary regulatory enzyme for the KYN
pathway, and macrophages, including monocytes, play a key
role in the production of KYN metabolites.

6. Type I IFNs Production and IDO1

IDOI activities in various tissues are induced by several
cytokines after viral infection. However, the role of IDOI
in vivo after parasitic or viral infection is not fully under-
stood. Recently, our group demonstrated that inhibition of
increased IDOI activity attenuates Toxoplasma gondii replica-
tion in the lung, and the inflammatory damage is significantly
decreased by the administration of the IDOI inhibitor after
infection [71]. Some in vitro studies indicated that IFN-
y-induced antitoxoplasma activities are involved in IDOI-
dependent mechanisms. These in vitro studies showed that
IFN-y-induced IDOI1 degraded TRP in the culture medium,
and the depletion of TRP resulted in the suppression of
the growth of the parasites [39]. However, our experiments
and the most recent study demonstrated that IDO1 ablation
reduced local inflammation and parasite burdens, as did
pharmacological inhibition of IDOL1 in vivo [72]. Although
IDOL1 is certainly not the only regulator that plays a role as
an antimicrobial, these studies show that the lack of the IDO1
gene or the inhibition of increased IDOLI activity suppressed
the parasites’ replication in vivo and that TRP degradation
and KYNs production are not the only mechanisms of host
resistance to early infection with these parasites. On the
other hand, Hoshi et al. investigated the role of IDOI in
chronic viral infection diseases in mice infected with LP-BM5
murine leukemia virus (MuLV), including both replication-
competent and replication-defective viruses, which resulted



in the development of a fatal immunodeficiency syndrome
in mice, known as murine AIDS [73]. Murine AIDS is
characterized by activation and proliferation of T and B cells,
impaired T- and B-cell function, an aberrant regulation of
cytokine production, hypergammaglobulinemia, decreased
NK cell function, the development of B-cell lymphoma, and
the susceptibility to opportunistic infections [74]. Hoshi et
al. used IDO1 gene-deficient (IDO1K.O.) mice and IDO
inhibitor to examine whether IDO1 is an important factor for
immune regulation against LP-BM5 infection and especially
whether the presence of IDOI is necessary for the induction
of cytokines and IDOI-related molecules, which are impor-
tant for viral clearance. Remarkably, they demonstrated that
absence of IDO1 upregulated type I IFNs and downregulated
virus replication in IDO1K.O. mice with LP-BM5 infection
[73]. Their finding is the first piece of evidence that the
absence of IDOI is involved in the clearance of murine
retroviral infection via upregulated type I IFNs (Figure 4).
Further, they also recently examined the roles of IDOL1 in
immune regulation in encephalomyocarditis virus (EMCV)
infection by using IDO1K.O. mice or the IDO inhibitor, 1-
MT. EMCYV, a member of the Picornaviridae family which
includes the Enterovirus genus, can cause acute myocarditis
in various animals. EMCV infection in mice is an established
model for viral myocarditis, dilated cardiomyopathy, and
congestive heart failure [75]. They demonstrated that type I
IENs are upregulated, resulting in suppressed EMCV replica-
tion by IDO1 knockdown or inhibition [76]. They also found
that treatment of IDO1K.O. mice with KYN metabolites
eliminated the effects of IDO1 knockdown on the improved
survival rates. These results suggested that KYN metabo-
lites regulate the production of type I IFNs by decreasing
the number of macrophages. Viruses initially activate the
innate immune system, which recognizes viral components
through pattern-recognition receptors (PRRs). Currently,
three classes of PRRs have been shown to be involved in the
recognition of virus-specific components in innate immune
cells, which are TLRs, retinoic-acid-inducible-gene-I- (RIG-
I-) like receptors (RLRs), and nucleotide-oligomerization-
domain- (NOD-) like receptors (NLRs). Of these, TLRs
and RLRs are especially important for the production of
type I IFNs and various cytokines [77]. Therefore, these
reports suggest that the enhancement of TRP breakdown by
IDOL1 regulates several signal pathways, which is related to
IENs production. TRP metabolites might contribute to the
function of IFNs producing cells, like macrophages and DCs.
The role of IDOI may be complex; it may depend on the
difference of disease stages (acute/chronic disease) and/or
the stimulus pathogens. Kumagai et al. showed that lung
infection with Newcastle disease virus (NDV) led to type I
IEN, IFN-« production in alveolar macrophages, and conven-
tional DCs (cDCs), but not in pDCs [78]. Specific depletion
of macrophages caused a marked defect in initial viral
elimination in the lung, and pDCs produced type I IFNs in
the absence of macrophage-mediated viral recognition. These
results suggest that pDCs work as immune regulators when
the first defense line by macrophages is broken. Macrophages
are important for the initial response to viral infection in the
lung. Besides, a subpopulation of CD19" pDCs produces high
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FIGURE 4: The mechanism of IDOI regulation on viral infectious
diseases. Innate defense occurs when pathogens contact or invade
host cells and elicit the production of cytokines and chemokines,
which in turn induce an influx of immune cells that affect pathogen
clearance. Type I IFNs are critical mediators of innate immunity
and limit disease caused by many viruses [73, 86]. The enhancement
of TRP breakdown by IDOI regulates the signal pathway for IFNs
production, and TRP metabolites might contribute to the function
of IFNs producing cells.

levels of the TRP-catabolizing enzyme IDO1 [44]. Production
of IDO1 by pDC has been linked directly to activation of
naturally occurring Foxp3™ Treg through modulation of the
GCN2 pathway, which leads to inhibition of protein synthesis
and Treg activation [63]. IDOL1 plays a dual regulatory role by
preventing conversion of these Tregs into proinflammatory
Th17 cells through autocrine inhibition of IL-6 production via
upregulation of GCN2 in pDC [79] and inhibited production
of type I IFN and IFN-«, which may limit their ability for
activating innate and adaptive antitumor immunity [80].
The mammalian target of rapamycin (mTOR) pathway is
also reported in regulating type I IFNs production by pDCs
[81]. Additionally, TRP breakdown by IDO1 may regulate
mTOR inhibition pathway [82]. Therefore, the degradation of
local TRP and increased TRP metabolites by activated IDO1
may stimulate several signal pathways and induce cell death,
resulting in the inhibition of IFNs production.

7. Conclusions

IDOL1 is not only pivotal in limiting potentially exaggerated
inflammatory reactions in response to danger signals and
in assisting the effector functions of Treg cells, but also an
important component of the regulatory system that presides
over long-term control of immune homeostasis. On the other
hand, TRP metabolism via KYN pathway is a good example of
how metabolism of small molecules can impact the immune
system. Therefore, induction of the KYN pathway and/or
controlling the systemic TRP concentrations by stimulation
of immune cells or by diet might be an effective strategy
for treatment of virus infection and immune diseases. In
addition, understanding the subsequent steps on the KYN
pathway and the physiological mechanisms responsible for
regulation of KYN and concentration of its metabolites in
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biological fluids may be important for development of drugs
in the future. We believe that further findings on the mech-
anism of immune regulation by IDO1 and TRP metabolites
might contribute to the implementation of a novel therapy
protocol, which would target several immune disorders.
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