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A hybrid multiscale and multilevel image fusion algorithm for green fluorescent protein (GFP) image and phase contrast image of
Arabidopsis cell is proposed in this paper. Combining intensity-hue-saturation (IHS) transform and sharp frequency localization
Contourlet transform (SFL-CT), this algorithm uses different fusion strategies for different detailed subbands, which include
neighborhood consistency measurement (NCM) that can adaptively find balance between color background and gray structure.
Also two kinds of neighborhood classes based on empirical model are taken into consideration. Visual information fidelity (VIF)
as an objective criterion is introduced to evaluate the fusion image. The experimental results of 117 groups of Arabidopsis cell
image from John Innes Center show that the new algorithm cannot only make the details of original images well preserved but also
improve the visibility of the fusion image, which shows the superiority of the novel method to traditional ones.

1. Introduction

The purpose of image fusion is to integrate complementary
and redundant information frommultiple images of the same
scene to create a single composite that contains all the impor-
tant features of the original images [1]. The resulting fused
image will thus be more suitable for human and machine
perception or for further image processing tasks in many
fields, such as remote sensing, disease diagnosis, and biomed-
ical research. In molecular biology, the fluorescence imaging
and the phase contrast imaging are two common imaging
systems [2]. Green fluorescent protein (GFP) imaging can
provide the function information related to the molecular
distribution in biological living cells; phase contrast imaging
provides the structural information with high resolution by
transforming the phase difference which is hardly observed
into amplitude difference. The combination of GFP image
and phase contrast image is valuable for function analyses
of protein and accurate localization of subcellular structure.
Figure 1 shows one group of registered GFP image and
phase contrast image for Arabidopsis cell; it is obvious that
there is a big difference between the GFP image and the
phase contrast image. Due to low similarity between the

originals, various fusion methods that had been widely used
in remote image fusion [3–5], such as Wavelet/Contourlet-
based ARSIS fusion method [6], will result in spectral and
color distortion, dark and nonuniform background, and
poor ability of detailed preservation. Recently, Li and Wang
have proposed SWT-based (stationary wavelet transform) [7]
and NSCT-based (nonsubsampled Contourlet transform) [8]
fusion algorithms which utilize the translation invariance of
two kinds of transform to reduce the artifacts of fused image,
but complicated procedure, high time-consumption, and low
robustness hinder its fusion capability. In order to overcome
these disadvantages, we bring sharp frequency localization
Contourlet transform (SFL-CT) [9] into the fusion of GFP
image and phase contrast image, in the manner of SFL-
CT’s merit of excellent edge expression ability, multiscale,
directional characteristics, and anisotropy.We propose a new
hybrid multiscale, and multilevel image fusion method com-
bining intensity-hue-saturation (IHS) transform and SFL-
CT. Different fusion strategies are utilized for the coefficients
of different subbands in order to keep the localization
information in GFP image and detailed information of high
resolution in phase contrast image. The research conducts
a fusion test of 117 groups of Arabidopsis cell images from
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(a) GFP image (b) Phase contrast image

Figure 1: Arabidopsis cell images.
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Figure 2: Block diagram of Contourlet transform with 2 levels of multiscale decomposition.

the GFP database of John Innes Center [10]. Visual infor-
mation fidelity (VIF) [11] is also introduced to quantify the
similarity inside and outside the fluorescent area between the
fused image and original ones.

The outline of this paper is as follows. In Section 2,
the SFL-CT and IHS transforms are introduced in detail.
Section 3 concretely describes our proposed fusion algo-
rithm based on the neighborhood consistency measurement.
Experimental results and performance analysis are presented
and discussed in Section 4. Section 5 gives the conclusion of
this paper.

2. SFL-Contourlet Transform and
IHS Transform

2.1. Traditional Contourlet Transform. In 2005, Do and Vet-
terli [12] proposed the Contourlet transform as a directional
multiresolution image representation that can efficiently
capture and represent smooth object boundaries in natu-
ral images. The Contourlet transform is constructed as a
combination of the Laplacian pyramid transform (LPT) [13]
and the directional filter banks (DFB) [14], where the LPT

iteratively decomposes a 2D image into low-pass and high-
pass subbands, and the DFB are applied to the high-pass
subbands to further decompose the frequency spectrum into
directional subbands.

The block diagram of the Contourlet transform with two
levels of multiscale decomposition is shown in Figure 2(a),
followed by angular decomposition. Note that the Laplacian
pyramid shown in the diagram is a simplified version of
its actual implementation. Nevertheless, this simplification
serves our explanation purposes satisfactorily. By using the
multirate identities, we can rewrite the filter bank into its
equivalent parallel form, as shown in Figure 2(b), where
𝐻
𝐵

𝑖
(𝜔), 𝑖 = 1, 2, 3, is the equivalent filter of LPT for

each decomposition level [15]. Obviously, using ideal fil-
ters, the Contourlet transform will decompose the 2D fre-
quency spectrum into trapezoid-shaped regions as shown in
Figure 2(c).

Due to the periodicity of 2D frequency spectrums for
discrete signals and intrinsic paradox between critical sample
and perfect reconstruction of DFB, it means that we cannot
get perfect reconstruction and frequency domain localiza-
tion simultaneously by a critically sampled filter bank with
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Figure 3: Frequency support of one channel for Contourlet transform and desired scheme.
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Figure 4: Block diagram of SFL-CT.

the frequency partitioning of the DFB. When the DFB is
combined with a multiscale decomposition as in the Con-
tourlet transform, the aliasing problem becomes a serious
issue. For instance, Figure 3(a) shows the frequency support
of an equivalent directional filter of the second channel in
Figure 2(b). We can see that Contourlets are not localized in
the frequency domain, with substantial amount of aliasing
components outside of the desired trapezoid-shaped support
as shown in Figure 3(b).

2.2. Sharp Frequency Localization Contourlet Transform. In
order to overcome the aliasing disadvantage of Contourlet
transform, Lu proposed a new construction scheme which
employed a new pyramidal structure for the multiscale
decomposition as the replacement of LPT [15]. This new
construction is named as sharp frequency localization Con-
tourlet transform (SFL-CT) [9], and its block diagram is
shown in Figure 4.

In the diagram,𝐻(𝜔) represents the high-pass filter, and
𝐿(𝜔) represents low-pass filter in the multiscale decompo-
sition, with 𝜔 = (𝜔

0
, 𝜔
1
). The DFB which is the same as

in Contourlet transform (CT) is attached to the high-pass
channel at the finest scale and bandpass channel at all coarser
scales.The low-pass filter 𝐿(𝜔) in each levels is downsampled
by matrix 𝑀, with 𝑀 normally being set as diagonal matrix

(2,2).Tohavemore levels of decomposition, we can iteratively
insert at point 𝑎

𝑛+1
a copy of the diagram contents enclosed

by the dashed rectangle. As an important difference from
the LPT shown in Figure 2, the new multiscale pyramid
can employ a different set of low-pass and high-pass filters
for the first level and all other levels, and this is a crucial
step in reducing the frequency-domain aliasing of traditional
Contourlet transform. We leave the detailed explanation for
this issue as well as the specification of the filters 𝐻(𝜔) and
𝐿(𝜔) to [9].

Figure 5 shows one Contourlet basis image and its
corresponding SFL-Contourlet part in the frequency and
spatial domains. As we can see from Figure 5(a), the original
Contourlet transform suffers from the frequency nonlo-
calization problem. In sharp contrast, SFL-Contourlet pro-
duces basis image that is well localized in the frequency
domain, as shown in Figure 5(b). The improvement in the
frequency localization is also reflected in the spatial domain.
As shown in Figures 5(c) and 5(d), the spatial regular-
ity of SFL-Contourlet is obviously superior to the one of
Contourlet.

2.3. IHS Transform. The intensity-hue-saturation (IHS)
transform substitutes the gray image for the intensity
component of the color image and thus handles the fusion
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(a) Frequency support of Contourlet (b) Frequency support of SFL-Contourlet

(c) Spatial basis image of Contourlet (d) Spatial basis image of SFL-Contourlet

Figure 5: Comparison of basis image.

of the gray and color images [1] and defines three color
attribute based on the human visual mechanism, that is,
intensity (𝐼), hue (𝐻), and saturation (𝑆). 𝐼 stands for the
information of the source image, 𝐻 stands for the spectrum
and color attributes, and 𝑆 stands for the purity relative to the
grayscale of some color. In IHS space, 𝐻 component and 𝑆

component are closely tied to the way that people feel about
color, while 𝐼 component almost has nothing to do with the
color component of the image.

There are various algorithms that can transform image
from RGB to IHS space, common transformation model
including sphere transformation, cylinder transformation,
triangle transform, and single six cones [16]. We use triangle
transform here. The formula of the forward and inverse
transforms are as follows.

From RGB to IHS space (forward transform),

𝐼 =
𝑅 + 𝐺 + 𝐵

3
,

𝑆 = 1 −
3

𝑅 + 𝐺 + 𝐵
[min (𝑅, 𝐺, 𝐵)] ,

𝐻 = {
0 𝐵 ≤ 𝐺

2𝜋 − 𝛼 𝐵 > 𝐺,

(1)

where

𝛼 = arccos
{

{

{

(1/2) [(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)
2
+ (𝑅 − 𝐵)(𝐺 − 𝐵)]

1/2

}

}

}

. (2)

The reverse transform

for 0 ≤ 𝐻 <
2𝜋

3
,

{{{

{{{

{

𝐵 = 𝐼 (1 − 𝑆)

𝑅 = 𝐼 × [1 +
𝑆 cos (𝐻)

cos (𝜋/3 − 𝐻)
]

𝐺 = 3𝐼 − (𝑅 + 𝐵) ,

for 2𝜋

3
≤ 𝐻 <

4𝜋

3
,

{{{

{{{

{

𝐵 = 𝐼 (1 − 𝑆)

𝑅 = 𝐼 × [1 +
𝑆 cos (𝐻 − 2𝜋/3)

cos (𝜋/3 − 𝐻)
]

𝐺 = 3𝐼 − (𝑅 + 𝐵) ,

for 4𝜋

3
≤ 𝐻 < 2𝜋,

{{{

{{{

{

𝐵 = 𝐼 (1 − 𝑆)

𝑅 = 𝐼 × [1 +
𝑆 cos (𝐻 − 4𝜋/3)

cos (𝜋 − 𝐻)
]

𝐺 = 3𝐼 − (𝑅 + 𝐵) .

(3)
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Figure 6: Schematic diagram of the proposed image fusion algorithm, where subscripts 𝐴, 𝐵, and 𝐹mean GFP image, phase contrast image,
and the fused image, respectively.

3. The Proposed Fusion Rule

From Figure 1(a), we can see that the background of the
GFP image is partially dark; in order to avoid the influence
of low contrast after fusion, the intensity component of the
original GFP image is extracted by IHS transform which
not only keeps most of the information from the original
one, but also entirely improves the brightness of the fused
image. In this way, we can explore a hybrid multiscale and
multilevel fusion algorithm for biological cell image. We
use SFL-CT to decompose the intensity components of GFP
image and phase contrast image; different fusion schemes
are used for different subband coefficients in order to keep
a balance between the localization information in GFP image
and detailed information of high frequency in phase contrast
image. To get the protein distribution information of GFP
image, the approximation (coarsest) subband coefficients
of fused image are obtained with maximum region energy
rule (MRE) [17]. To get structural information of the phase
contrast image, coefficients of the finest detailed subband
of fused image are based on maximum absolute value rule
(MAV) [17]. To balance structural information and color
molecular distribution information from the originals, a
locally adaptive coefficient fusion rule named neighborhood
consistency measurement (NCM) is adopted on coefficients
of other detailed subbands. The schematic diagram is shown
in Figure 6.

3.1. Maximum Region Energy (MRE) Rule. When GFP
image and phase contrast image are decomposed by the
SFL-CT, the coefficients of the coarsest subband repre-
sent the approximation component of the input images.
Considering approximate information of fused image is
constructed by the two kinds of approximation sub-
band coefficients; maximum region energy rule (MRE)
is a good choice for the fused approximation subband
coefficients.

MRE rule is defined as follows:

𝑐
𝐹

𝐽
(𝑚, 𝑛) =

{

{

{

𝑐
𝐴

𝐽
(𝑚, 𝑛) , if 𝐸𝐴

𝐽
(𝑚, 𝑛) > 𝐸

𝐵

𝐽
(𝑚, 𝑛)

𝑐
𝐵

𝐽
(𝑚, 𝑛) , if 𝐸𝐴

𝐽
(𝑚, 𝑛) ≤ 𝐸

𝐵

𝐽
(𝑚, 𝑛) ,

(4)

where the regional energy 𝐸 is defined as

𝐸
𝑋

𝐽
(𝑚, 𝑛) = ∑

(𝑥,𝑦)∈Ω(𝑚,𝑛)

[𝑐
𝑋

𝐽
(𝑥, 𝑦) − 𝜇

𝑋

𝐽
(𝑚, 𝑛)]

2

,

𝑋 = 𝐴, 𝐵 or 𝐹,

(5)

where 𝐸
𝐴

𝐽
(𝑚, 𝑛), 𝐸𝐵

𝐽
(𝑚, 𝑛), and 𝐸

𝐹

𝐽
(𝑚, 𝑛) denote regional

energy of original image 𝐴, 𝐵, and fused image 𝐹 in the
coarsest scale 𝐽and location (𝑚, 𝑛). Ω(𝑚, 𝑛) represents a
square regionwith 3×3 sizewhose center is located at position
(𝑚, 𝑛). 𝑐𝑋

𝐽
(𝑚, 𝑛) denotes the coefficient of the images 𝑋 =

𝐴, 𝐵, or 𝐹 within the region Ω(𝑚, 𝑛) in the coarsest subband
𝐽 and location (𝑚, 𝑛). 𝜇𝑋

𝐽
(𝑚, 𝑛) means the average value of

coefficients withinΩ(𝑚, 𝑛).

3.2. Maximum Absolute Value (MAV) Rule. After decompos-
ing the input images using SFL-CT, the image details are
contained in the directional subbands in SFL-CT domain.
The directional subband coefficients with larger absolute
values, especially for subband coefficients at the finest scale,
generally correspond to pixels with sharper brightness in the
image and thus to the salient features such as edges, lines,
and regions boundaries.Therefore, we can use the maximum
absolute value (MAV) scheme to make a decision on the
selection of coefficients at the finest detailed subbands.

MAV fusion rule is defined as follows:

𝑑
𝐹

𝑗,𝑙
(𝑚, 𝑛) =

{

{

{

𝑑
𝐴

𝑗,𝑙
, if abs [𝑑𝐴

𝑗,𝑙
(𝑚, 𝑛)] > abs [𝑑𝐵

𝑗,𝑙
(𝑚, 𝑛)]

𝑑
𝐵

𝑗,𝑙
, if abs [𝑑𝐴

𝑗,𝑙
(𝑚, 𝑛)] < abs [𝑑𝐵

𝑗,𝑙
(𝑚, 𝑛)] ,

(6)
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where 𝑑
𝐴

𝑗,𝑙
(𝑚, 𝑛), 𝑑𝐵

𝑗,𝑙
(𝑚, 𝑛), and 𝑑

𝐹

𝑗,𝑙
(𝑚, 𝑛) denote the coef-

ficients of the images 𝐴, 𝐵, and the fused image 𝐹 in the
𝑗th scale,𝑙th directional subband, and location (𝑚, 𝑛). abs[⋅]
denotes absolute operator.

3.3. Neighborhood Consistency Measurement (NCM). Let
𝑁
𝑋

𝑗,𝑙
(𝑚, 𝑛) denote a region centered at coefficient 𝑑𝑋

𝑗,𝑙
(𝑚, 𝑛)

in 𝑗th level and 𝑙th directional subband of image 𝑋, and the
energy of this region is defined as 𝜌𝑋

𝑗,𝑙
(𝑚, 𝑛). Then,

𝜌
𝑋

𝑗,𝑙
(𝑚, 𝑛) = ∑

(𝑘,𝑝)∈𝑁
𝑋

𝑗,𝑙
(𝑚,𝑛)

[𝑑
𝑋

𝑗,𝑙
(𝑘, 𝑝)]

2

, 𝑋 = 𝐴, 𝐵 or 𝐹.

(7)

The NCM is defined as a threshold for directional coef-
ficients based on one region mentioned above. Let Ψ

𝑗,𝑙
(𝑚, 𝑛)

denote NCM as follows:

Ψ
𝑗,𝑙 (𝑚, 𝑛) =

2 × {∑
(𝑘,𝑝)∈𝑁

𝐴

𝑗,𝑙
(𝑚,𝑛)

[𝑑
𝐴

𝑗,𝑙
(𝑘, 𝑝)] × [𝑑
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𝐵

𝑗,𝑙
(𝑚, 𝑛)

.

(8)

It is not hard to see that the NCM is smaller than 1. In fact,
NCM indicates whether the neighborhood is homogenous.
Bigger NCMmeans being more homogenous.

Taking the number of directions in each detailed subband
into consideration, we classify neighborhood into two classes:
Nhd I and Nhd II which are shown in Figures 7(a) and 7(b).
Nhd I is mainly used in horizontal and vertical subbands, and
Nhd II is in other subbands. For instance, if the direction
number is 8 or 16, we can use empirical distribution model
as Figure 8.

We define a threshold 𝑇 which is normally 0.5 < 𝑇 < 1.

If Ψ
𝑗,𝑙
(𝑚, 𝑛) < 𝑇, then

𝑑
𝐹

𝑗,𝑙
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{

{

{

𝑑
𝐴

𝑗,𝑙
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𝑑
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𝑗,𝑙
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𝐵

𝑗,𝑙
(𝑚, 𝑛) .

(9)

If Ψ
𝑗,𝑙
(𝑚, 𝑛) ≥ 𝑇, then

𝑑
𝐹

𝑗,𝑙
(𝑚, 𝑛) = Ψ

𝑗,𝑙 (𝑚, 𝑛) ×max [𝑑𝐴
𝑗,𝑙
(𝑚, 𝑛) , 𝑑

𝐵

𝑗,𝑙
(𝑚, 𝑛)]

+ [1 − Ψ
𝑗,𝑙 (𝑚, 𝑛)]

×min [𝑑𝐴
𝑗,𝑙
(𝑚, 𝑛) , 𝑑

𝐵

𝑗,𝑙
(𝑚, 𝑛)] .

(10)

3.4. Fusion Procedure. The fusion process, accompanied with
the proposed fusion rule, is carried out as in the following
steps.

(1) Define the register original images: GFP image as
image 𝐴, phase contrast image as image 𝐵, and fused
image as image 𝐹.

(2) Make IHS transform for image 𝐴, and calculate the
corresponding intensity components 𝐼

𝐴
, hue compo-

nent𝐻
𝐴
, and saturation component 𝑆

𝐴
.

1

1

C

1

1

3

2

4

4

2

3

2 2

(a) Nhd I

1

C

1

3

2

4

4

2

3

4

43

3

(b) Nhd II

Figure 7: Neighborhood coefficients of SFL-CT.
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Figure 8: Empirical distributionmodel for neighborhood selection.

(3) Decompose 𝐼
𝐴

and image 𝐵 by SFL-CT, and get
two approximation subbands {𝜑

𝐴
, 𝜑
𝐵
}, a series of the

finest detailed subbands {𝜃
𝐴
, 𝜃
𝐵
}, and other detailed

subbands {𝜀
𝐴
, 𝜀
𝐵
}.

(4) Combine transform coefficients according to the
selection rule: coefficients of approximation subbands
are based on MRE rule; coefficients of the finest
detailed subbands are based onMAVrule; coefficients
of other detailed subbands are based onNCM.We can
get the approximation subband 𝜑

𝐹
, detailed subbands

𝜀
𝐹
, and 𝜃

𝐹
of the fused image 𝐹.

(5) Reconstruct the intensity of the fused image 𝐼
𝐹
with

𝜑
𝐹
, 𝜀
𝐹
, and 𝜃

𝐹
by the inverse SFL-CT.

(6) Reconstruct the fused image 𝐹 with the hue 𝐻
𝐴
and

saturation 𝑆
𝐴
, together with the 𝐼

𝐹
by the inverse IHS

transform.

4. Experimental Results and Discussion

4.1. Dataset. All images used in this experiment come from
the GFP database of John Innes Center [10]. The original
size of images is 358 × 358 pixels. We resize and crop them
into 256 × 256 pixels in order to facilitate processing. The
experiment contains 117 sets ofGFP images (24-bit true color)
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(a) GFP image (b) Phase contrast image (c) T-IHS

(d) IHS + MRE and MAV (e) NSCT + PCNN (f) Hybrid NCM

Figure 9: Fused images using different methods.

and their corresponding phase contrast images (8-bit grey
scale) of the Arabidopsis. The former reveal the distribution
of the labeled protein, and the latter present cell structures
information.

4.2. Parameters Selection. For the proposed method, the
practical windows (Ω) in NCM rule are usually chosen to be
of size 3×3, 5×5, or 7×7.We have investigated these practical
windows and found that size 5 × 5 provides good results
considering fusion clarity and time consumption. Apart from
the sizes of the practical windows, the frequency parameters
of SFL-CT are also needed to choose for improving the
fusion performance. A larger number of experimental results
demonstrate that the passband frequency 𝜔

𝑝
and stopband

frequency 𝜔
𝑠
which should be 4𝜋/21 and 10𝜋/21, respec-

tively, can not only provide pleasing fusion performance in
most cases, but also keep good balance between fusion result
and computation complexity.

4.3. Results Comparison. We compare the proposed fusion
rule with the traditional methods or rules. They include
traditional IHS fusion method (T-IHS) [18], MRE and MAV
fusion method based on IHS space (IHS + MRE and MAV)
[1], and PCNN-based fusion method [19] in which all the
images are decomposed by the nonsubsampled Contourlet
transform (NSCT+PCNN), and ourmethod (HybridNCM).
Among them, MAV stands for the maximum absolute value
rules; MRE stands for maximum region energy rules; MRE
and MAV represents MRE rule for approximation subband
and MAV rule for detailed subbands. The parameters of the

above method are set as follows. For the rule of the fusion of
MRE, neighborhood window is of size 3 × 3 pixels. SFL-CT
makes a decomposition for 4 layers; the numbers of directions
of each layer are (4, 8, 16, and 16); the filter for DFB is “pkva”
filter; the set of NSCT + PCNN fusion algorithm is just the
same as that in [20].

The fusion results, shown in Figure 9, which are obtained
by four different methods demonstrate visual difference. It is
obvious to see that the fused image using T-IHS method is
unsatisfactory. The foreground and background are signifi-
cantly nonuniform, especially along the cell outlines as there
exist fuzzy blacks, so it is difficult to distinguish the inner
information. However, the brilliance shown in Figures 9(d)–
9(f) is largely improved, and the details of the images are
also clearer. All in all, the location information of the cell
structure in the phase contrast image and the distribution
information of the protein are largely retained. Nevertheless,
it is not easy to objectively judge the quality of the above
three methods. For better judging these fusion results, the
quantitative parameter that is visual information fidelity
(VIF) [11] is taken into consideration. In the recent studies,
large-scale subjective experiments assess VIF, a novel image
similarity criterion, and prove it to be a good substitution for
the subjective assessment. We know that there are two kinds
of traditional evaluations that are subjective evaluation and
objective evaluation. The former depends on the perception
of human eye vision; different people would have different
perception. The latter method has a little link with subjective
factor, but it does not well measure the difference between the
fusion image and the original image. As for the characteristic,
that is, the little similarity between GFP fluorescence image
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Figure 10: VIF algorithm flow chart.

and phase image, the VIF method, which is the combination
of human visual system (HVS) and image characteristic
statistics, is introduced into this paper to measure the quality
of fusion image. This method can tell us the similarity
between different regions of fusion image and the original
image in quantitative aspect. The VIF value (the range is
0∼1) is closer to 1; then it indicates that the fusion image
has more similarity to the original image. A number of
experimental results have proved that the VIF method and
the human subjective evaluation have a better similarity for
image quality than the traditional methods such as root
mean square error (RMSE), correlation coefficients (CCs),
and mutual information (MI).

Considering the difference in function orientation of the
two kinds of images, especially the corresponding relation-
ship between the fluorescence area in GFP images and the
protein distribution in cells, the fluorescence area is firstly
extracted from the original two images, then theVIF between
fused image and phase contrast image is calculate, and thirdly
theVIF between fused image and fluorescence image is calcu-
lated too. Fused image should keep high similarity with both
phase contrast image and fluorescence image in fluorescence
area. However, in the other area, only the similarity between
it and the phase contrast image is considered. Therefore,
this paper first segments both fused image and source image
into fluorescence area and nonfluorescence area with Otsu
method [20] and calculates VIF between fused image and
source image in fluorescence area and nonfluorescence area,
respectively.The calculation procedure is shown in Figure 10.
Table 1 displays the calculation result of VIF of the fused
image in Figure 9.

In the table, superscript fl refers to the fluorescent area
while nfl refers to nonfluorescence area, 𝐴 represents GFP
fluorescence image, and 𝐵 represents phase contrast image.
VIF𝐴-fl refers to the similarity between fused image and GFP
fluorescence image in fluorescence area, and VIF𝐵-fl refers
to the similarity between fused image and phase contrast
image in fluorescence area, while VIF𝐵-nfl refers to the
similarity between fused image and phase contrast image in
nonfluorescence area.

From Table 1, VIF𝐵-fl and VIF𝐵-nfl of the other three
fusion methods are almost the same except T-HIS; the
similar results indicate that all the detailed information
of fused image comes from the phase contrast image no

Table 1: VIF computing result.

Fusion methods VIF𝐴-fl VIF𝐵-fl VIF𝐵-nfl

T-IHS 0.4368 0.2759 0.4975
IHS + MRE and MAV 0.3119 0.8318 0.8318
NSCT + PCNN 0.3188 0.8992 0.8992
Hybrid NCM 0.3112 0.9299 0.9299

matter in fluorescent area or nonfluorescent area. Compared
with other three methods, the proposed one we use in
this experiment gets the highest VIF𝐵-nfl ; it does coincide
with the observed results that the black background of
the GFP image gets repressed. With luminance improved,
the structural information will be well embedded in the
fused image, which contributes the increase of VIF𝐵-nfl . The
method we use can still get higher VIF𝐴-fl and VIF𝐵-fl , which
indicates that the function information in GFP image and
phase contrast image is well preserved in fluorescent area,
and also the highest VIF𝐵-fl explains that SFL-CT can cap-
ture the structural information of the phase contrast image
effectively.

VIF distribution histogram of 117 groups of Arabidopsis
cell fusion image is shown in Figure 11; the red squared line
represents the VIF𝐴-fl , and the blue dotted line represents
the VIF𝐵-fl . It is obvious that VIF𝐵-fl is higher than VIF𝐴-fl ,
which does coincide with the objective of using SFL-CT
to outstand the inner structural information of the phase
contrast image. With the increasing VIF within fluorescent
area, the VIF in nonfluorescent area also tends to improve;
this indicates the following: if the intensity in fluorescent
area is strengthening, VIF will increase with the function
information fully reflected; and once the brightness increases,
the high resolution structural information of the image can
be fully shown, and the corresponding VIF𝐵-fl will increase;
the phase image is affected by the intensity whereas low in
fluorescence area, structural information cannot be reflected
very well which reduces VIF’s numerical similarity.

5. Conclusions

This paper proposes a hybrid multiscale and multilevel
image fusion method based on IHS transform and SFL-CT
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Figure 11: 117 groups of VIF distribution histogram of Arabidopsis
cell fusion image.

to balance the gray structural information and molecular
distribution information for the fusion of GFP image and
phase contrast image. In manner of SFL-CT’s advantage of
directional and excellent detailed expression ability, we use
SFL-CT to decompose the intensity components of both
GFP image and phase contrast image, and different fusion
rules are utilized for coefficients of different subbands in
order to keep the localization information in GFP image and
detailed high-resolution information in phase contrast image.
Visual information fidelity (VIF) is introduced to assess the
fusion result objectively which quantifies the similarity inside
and outside the fluorescent area between the fused image
and original images. The experiment fusion results of 117
groups of Arabidopsis cell images from John Innes Center
demonstrate that the new algorithm can both make the
details of original images well preserved and improve the
visibility of the fusion image and also show the superiority
of the novel method to traditional methods. Although the
results of the proposed method and NSCT + PCNN look
similar, the former is much better in line with the image
of fused image similarity degree which means that this
algorithm has made full use of the advantages of SFL-CT to
keep the structural information of the phase contrast image
effectively. The complexity of the algorithm is obviously
lower than the latter and more advantageous to the actual
application.

It is also needed to point out that from the experiment
we find that VIF𝐵-fl is no longer equal with VIF𝐵-nfl when
we try to improve the intensity of the fluorescent image to
make a new fusion image reconstruction; this is partially due
to the nonlinear relationship between similarity and intensity
within fluorescent area and nonfluorescence area of the fused
image. Otsu segmentation method can also cause certain
disturbance to the calculation of VIF. One evaluationmethod
cannot be perfect for different kinds of images, and a suitable
fusion and evaluation method for biological cells is still a
further problem to be solved.
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