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  The production and subsequent secretion of glucoco-
rticoids by adrenocortical cells of the zona fasciculata is 
dependent on the availability of the steroidogenic precursor 
cholesterol. Unesterifi ed cholesterol is converted to gluco-
corticoids through a series of side-chain modifi cations by 
cytochrome P450 enzymes and hydroxysteroid dehydroge-
nases ( 1 ). The intramitochondrial transfer of unesterifi ed 
cholesterol by the enzyme steroidogenic acute regulatory 
protein is considered to be the rate-limiting step in the basal 
synthesis of glucocorticoids. In vitro studies using isolated 
adrenocortical cells have suggested that HDL and apoB-
containing lipoproteins are able to provide cholesterol as 
source for the synthesis of glucocorticoids ( 2–5 ). We and 
others have shown that under conditions where glucoco-
rticoids are physiologically relevant (i.e., under stress), the 
exogenous uptake and intracellular processing of lipopro-
tein-associated cholesteryl esters becomes of crucial impor-
tance to maintain optimal adrenal glucocorticoid function 
in vivo. Probucol-induced depletion of plasma cholesterol 
associated with HDL and LDL in C57BL/6 wild-type mice is 
associated with a lower stress-induced glucocorticoid level 
( 6 ). In addition, a defect in the hydrolysis of lipoprotein-
associated cholesteryl esters in hormone-sensitive lipase 
knockout (KO) mice is associated with adrenocortical hypo-
function ( 7 ). Furthermore, apolipoprotein A1 (APOA1) 
KO mice that virtually lack HDL particles and scavenger re-
ceptor BI (SR-BI) KO mice that exhibit an impaired uptake 
of cholesteryl esters from HDL show a parallel diminished 
adrenal glucocorticoid function ( 8–10 ). Combined, these 
fi ndings suggest that the uptake of HDL-cholesteryl esters 
by the adrenals is essential to maintain optimal glucoco-
rticoid production in vivo. 

      Abstract   In vitro studies have suggested that HDL and 
apoB-containing lipoproteins can provide cholesterol for 
synthesis of glucocorticoids. Here we assessed adrenal glu-
cocorticoid function in LCAT knockout (KO) mice to deter-
mine the specifi c contribution of HDL-cholesteryl esters 
to adrenal glucocorticoid output in vivo. LCAT KO mice ex-
hibit an 8-fold higher plasma free cholesterol-to-cholesteryl 
ester ratio ( P  < 0.001) and complete HDL-cholesteryl ester 
defi ciency. ApoB-containing lipoprotein and associated trig-
lyceride levels are increased in LCAT KO mice as compared 
with C57BL/6 control mice (44%;  P  < 0.05). Glucocorticoid-
producing adrenocortical cells within the zona fasciculata in 
LCAT KO mice are devoid of neutral lipids. However, adre-
nal weights and basal corticosterone levels are not signifi -
cantly changed in LCAT KO mice. In contrast, adrenals of 
LCAT KO mice show compensatory up-regulation of genes 
involved in cholesterol synthesis (HMG-CoA reductase; 
516%;  P  < 0.001) and acquisition (LDL receptor; 385%; 
 P  < 0.001) and a marked 40–50% lower glucocorticoid response 
to adrenocorticotropic hormone exposure, endotoxemia, or 
fasting ( P  < 0.001 for all).   In conclusion, our studies show 
that HDL-cholesteryl ester defi ciency in LCAT KO mice is 
associated with a 40–50% lower adrenal glucocorticoid out-
put. These fi ndings further highlight the important novel 
role for HDL as cholesterol donor for the synthesis of gluco-
corticoids by the adrenals.  —Hoekstra, M., S. J. A. Korpo-
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 Plasma tumor necrosis factor- �  analysis 
 Tumor necrosis factor- �  (TNF- � ) protein levels were deter-

mined in plasma by ELISA (OptEIA kit, BD Biosciences Pharmin-
gen, San Diego, CA) using the standard protocol. 

 Real-time quantitative PCR 
 Gene expression analysis was performed essentially as described 

( 15 ). Equal amounts of RNA were reverse transcribed, and real-
time quantitative PCR analysis was executed on the cDNA using 
an ABI Prism 7500 apparatus (Applied Biosystems, Foster City, CA) 
according to the manufacturer’s instructions. Beta-actin and 
GAPDH were used as housekeeping genes for normalization. 

 Data analysis 
 Statistical analysis was performed using Graphpad Instat soft-

ware (San Diego, CA). Normality of the experimental groups was 
confi rmed using the method of Kolmogorov and Smirnov. The 
signifi cance of differences was calculated using a two-tailed un-
paired  t -test or two-way ANOVA where appropriate. Probability 
values less than 0.05 were considered signifi cant. 

 RESULTS 

 LCAT KO mice exhibit isolated HDL-cholesteryl ester 
defi ciency 

 In accordance with a prominent role for LCAT in the 
esterifi cation of free cholesterol ( 16 ), LCAT KO mice ex-
hibited an almost complete absence of cholesteryl esters 
( � 86%;  P  < 0.001) in plasma with unchanged plasma free 
cholesterol levels (  Table 1  ).  As a result, the free choles-
terol to cholesteryl ester ratio was 8-fold higher ( P  < 0.001) 
in plasma from LCAT KO mice as compared with C57BL/6 
wild-type control mice ( Table 1 ). Fast-protein liquid chro-
matography lipoprotein analysis revealed that free choles-
terol and cholesteryl ester levels in C57BL/6 wild-type 
mice were primarily associated with the HDL fraction 
(65% and 78%). As anticipated, virtually no cholesteryl 
esters were present in the HDL fraction in plasma of LCAT 
KO mice, whereas the non-HDL cholesteryl ester content 
was essentially unaffected (  Fig. 1  ).  The HDL-associated 
free cholesterol level was also markedly lower in LCAT KO 
mice as compared with C57BL/6 mice ( Fig. 1 ). In contrast, 
the level of free cholesterol associated with apoB-contain-
ing lipoproteins was 2.9-fold higher in plasma of LCAT KO 
mice ( Fig. 1 ). In line with an increased amount of triglyc-
eride-rich apoB-containing VLDL and LDL particles cir-
culating in plasma of LCAT knockout mice, as previously 
already noted by Sakai et al. ( 13 ), we detected a sign-
ifi cantly higher level of plasma triglycerides (44%;  P  < 
0.05) in LCAT KO mice ( Table 1 ). 

 LCAT KO mice show a diminished adrenal corticosterone 
output 

 The basal secretion of glucocorticoids by adrenals in 
mice is relatively low and is generally assumed to be inde-
pendent of the acquisition of extracellular cholesterol 
pools because endogenous de novo production of choles-
terol from acetyl-CoA should be suffi cient to maintain 
basal levels. However, although the effect failed to reach 

 The HDL-associated enzyme lecithin-cholesterol acyl-
transferase (LCAT) mediates the synthesis of HDL-cholesteryl 
esters. Human subjects with a deleterious mutation on 
both alleles of the LCAT gene present with HDL defi -
ciency, whereas heterozygotes typically have HDL choles-
terol levels that are half of normal HDL cholesterol ( 11,12 ). 
Heterozygous and homozygous LCAT KO mice show a 
similar dose-dependent decrease in plasma HDL levels 
( 13 ) and thus represent a good mouse model to study the 
consequences of HDL-cholesteryl ester defi ciency on general 
physiology. To delineate the quantitative contribution of 
HDL-associated cholesteryl esters to the adrenal glucoco-
rticoid output, here we assessed adrenal glucocorticoid 
function in LCAT KO mice. 

 MATERIALS AND METHODS 

 Animals 
 LCAT KO mice ( 14 ) and C57BL/6 wild-type controls were 

bred in house and fed a regular chow diet ad libitum. Throughout 
the experiment both types of mice were housed in the same 
climate-controlled stable with a 12 h/12 h dark-light cycle and 
handled identically. Age-matched 10 to 12 week old C57BL/6 
mice (n = 10) and LCAT mice (n = 8) were switched to a new cage 
and fasted overnight ( � 18 h) before tail chop blood draws. After 
an additional 2 weeks, these mice were injected intraperitoneally 
with 200  � g human ACTH analog (ACTH [1–24]; tetracosactide) 
followed by tail blood draws at 1, 2, and 3 h after ACTH expo-
sure. Six weeks after the start of experiment, the mice received an 
intraperitoneal 50  � g/kg sublethal dose of lipopolysaccharide 
(LPS) (Salmonella minnesota R595) followed by tail blood draws 
at 1, 2, and 3 h after LPS exposure. Mice were euthanized and 
tissue was harvested at 4 h after LPS exposure. Before all three 
types of stress, mice were bled through tail chop to obtain an 
average basal plasma corticosterone value of each mouse. An ad-
ditional group of 12 week old LCAT KO (n = 4) and C57BL/6 
mice (n = 11) was subjected to overnight fasting (18 h) and sub-
sequently euthanized for tissue harvesting. Animal care and pro-
cedures were performed in accordance with the national 
guidelines for animal experimentation. All protocols were ap-
proved by the Ethics Committee for Animal Experiments of 
Leiden University. 

 Plasma lipid analyses 
 Plasma concentrations of free cholesterol, cholesteryl esters, and 

triglycerides were determined using enzymatic colorimetric assays. 
The cholesterol distribution over the different lipoproteins in 
plasma was analyzed by fractionation of 50  � l pooled plasma of each 
mouse genotype using a Superose 6 column (3.2 × 30 mm; Smart-
system, Pharmacia). Free cholesterol and cholesteryl ester content 
of the effl uent was determined using enzymatic colorimetric assays. 

 Adrenal neutral lipid visualization 
 Seven micrometer cryosections were prepared on a Leica 

CM3050-S cryostat. Cryosections were routinely stained with Oil 
red O for neutral lipid visualization. Nuclei were detected using 
a hematoxylin stain. 

 Plasma hormone analysis 
 Corticosterone levels in plasma were determined using the 

corticosterone  3 H RIA Kit from ICN Biomedicals according to 
the protocol from the supplier. 



360 Journal of Lipid Research Volume 54, 2013

exposure (365 ± 31 ng/ml vs. 584 ± 34 ng/ml;  P  < 0.001) 
( Fig. 2A ). In contrast to wild-type mice, the concentration 
of corticosterone rapidly declined in LCAT KO mice after 
1 h and returned to basal levels at 3 h ( Fig. 2A ). This suggests 
that the adrenals of LCAT KO mice are only capable of real-
izing a short attenuated glucocorticoid response upon acti-
vation of the hypothalamus-pituitary-adrenal axis. 

 Endogenous glucocorticoids protect against sepsis and 
other infl ammation-associated pathologies ( 17 ). In line 
with an essential role for glucocorticoids in the response 
to infection, exposure to a sublethal dose of endotoxin 
(lipopolysaccharide [LPS]; 50  � g/kg intraperitoneally) 
also induced a rapid increase in plasma corticosterone 
levels in C57BL/6 mice, which reached a plateau of 586 ± 
24 ng/ml at 2 h after endotoxin exposure ( Fig. 2B ). Plasma 
corticosterone levels did rise in LCAT KO mice upon en-
dotoxin exposure ( Fig. 2B ). However, LCAT KO mice dis-
played a more gradual increase up to 3 h after LPS 
exposure (341 ± 24 ng/ml), which was markedly lower as 
compared with the maximal level observed in C57BL/6 
mice (593 ± 31 ng/ml;  P  < 0.001) ( Fig. 2B ). The observed 
maximum plasma corticosterone levels ( � 600 ng/ml for 

statistical signifi cance ( P  = 0.073), we did observe a marked 
decrease in basal plasma levels of corticosterone—the pri-
mary glucocorticoid circulating in rodents—in response 
to LCAT defi ciency (96 ± 20 ng/ml for LCAT KO mice vs. 
148 ± 20 ng/ml for C57BL/6 mice). 

 Activation of the hypothalamus-pituitary-adrenal axis 
results in the secretion of glucocorticoids by the adrenals at 
levels that effectively activate downstream glucocorticoid 
receptor signaling, an essential part of the body’s response 
to physiological stressors. As anticipated, adrenocortical cell 
activation upon the administration of a synthetic mimetic 
of the pituitary-derived hormone ACTH (tetracosactide; 
200  � g intraperitoneally)—a potent activator adrenal 
steroidogenesis—was associated with an acute rise in plasma 
corticosterone levels in C57BL/6 wild-type mice. Plasma 
corticosterone reached a plateau concentration at 1 h after 
the tetracosactide injection, which remained maximal until 
3 h after the administration (  Fig. 2A  ).  Tetracosactide expo-
sure also increased plasma corticosterone levels in LCAT 
KO mice; however, the peak concentration of corticoster-
one in plasma of LCAT KO mice was 37% lower than the 
level detected in C57BL/6 mice after 1 h of tetracosactide 

 TABLE 1. Plasma lipids in wild-type C57BL/6 and LCAT KO mice 

C57BL/6 LCAT KO  P  Value

Free cholesterol (FC; mg/dl) 21 ± 1 20 ± 2 N.S.
Cholesteryl esters (CE; mg/dl) 50 ± 2 7 ± 1 <0.001
Total cholesterol (TC; mg/dl) 71 ± 3 27 ± 2 <0.001
FC/CE ratio 0.41 ± 0.01 3.31 ± 0.57 <0.001
Triglycerides (mg/dl) 93 ± 4 134 ± 18 <0.05

  Fig.   1.  Distribution of free cholesterol and cholesteryl esters over HDL and non-HDL VLDL and LDL frac-
tions in pooled plasma of wild-type C57BL/6 and LCAT KO mice.   
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quantitative real-time PCR, we measured gene expression 
levels in adrenals harvested from 18 h-fasted LCAT KO 
mice and C57BL/6 wild-type control mice ( Fig. 3C ). A 
6-fold stimulation of HMG-CoA reductase ( P  < 0.001) mRNA 
expression levels was detected in the adrenals of LCAT KO 
mice. The relative expression levels of enzymes crucially 
involved in synthesis (acetyl-CoA acetyltransferase 1) and 
hydrolysis (hormone-sensitive lipase) of cholesteryl esters 
within the adrenals were unaffected. Adrenal scavenger 
receptor BI (SR-BI) expression was unaltered, whereas the 
LDL receptor expression level was signifi cantly increased 
(384%;  P  < 0.001) in LCAT KO mice. It thus seems that 
adrenals of LCAT KO mice as compared with those of wild-
type control mice, probably as a compensatory response, 
attempt to synthesize more cholesterol and acquire in-
creased amounts of LDL-cholesterol through receptor-
mediated uptake. 

 LCAT KO mice display hepatocyte but not leukocyte 
glucocorticoid insuffi ciency 

 The glucocorticoid receptor is highly expressed in leu-
kocytes where it modulates infl ammatory responses ( 20 ) 
and in hepatocytes where it regulates glucose metabolism 
( 21 ). Because leukocyte glucocorticoid insuffi ciency is 
associated with an enhanced endotoxemia-associated 
cytokine profi le ( 22, 23 ), we determined the effect of LCAT 
defi ciency on the LPS-induced TNF- �  response. Plasma 
levels of the early response cytokine TNF- �  were not sig-
nifi cantly different at any time point measured after LPS 
(50  � g/kg intraperitoneally) exposure (0–3 h) (  Fig. 4A  ).  
It thus seems that LCAT KO and C57BL/6 wild-type 
mice reach a similar (optimal) anti-infl ammatory gluco-
corticoid receptor signaling level in leukocytes after LPS 
exposure. 

 As anticipated, LCAT mRNA expression was absent in 
livers of LCAT KO mice ( P  < 0.001) ( Fig. 4B ). The relative 
expression level of the hepatocyte-specifi c glucocorticoid-
induced gene APOA4 encoding apolipoprotein A4 ( 18 ), 
however, was also signifi cantly reduced in livers of over-
night-fasted LCAT KO mice ( � 66%;  P  < 0.01) ( Fig. 4B ). 

C57BL/6 mice vs.  � 300 ng/ml for LCAT KO mice) and 
the area-under-the-curve ( � 1400 ng/ml/h for C57BL/6 
mice vs.  � 800 ng/ml/h for LCAT KO mice) were similar 
for either genotype after tetracosactide and endotoxin 
exposure. It is therefore suggested that both treatments 
induced a maximal acute adrenal steroid output, which is 
apparently 40–50% lower in LCAT KO mice. 

 Because glucocorticoids, through activation of the nu-
clear glucocorticoid receptor, are important regulators of 
gluconeogenesis and glucose utilization, overnight fasting 
is associated with an obligatory stimulation of adrenal glu-
cocorticoid secretion to overcome hypoglycemia ( 10, 18, 19 ). 
In line with this observation, after  � 18 h of fasting we 
observed 51% lower ( P  < 0.001) corticosterone levels in 
LCAT KO mice as compared with C57BL/6 control mice 
( Fig. 2C ). Combined, these fi ndings suggest that HDL de-
fi ciency in LCAT KO mice is associated with a diminished 
adrenal corticosterone output in response to stress. 

 Adrenals of LCAT KO mice are deprived of neutral lipids 
despite compensatory up-regulation of genes associated 
with cholesterol acquisition 

 No signifi cant difference in the weight of the adrenals 
between LCAT KO mice and C57BL/6 mice during endo-
toxemia (i.e., 4 h after LPS exposure) or under fasting 
stress conditions was noted (  Fig. 3A  ).  Ng et al. ( 14 ) have 
previously described that adrenals from LCAT knockout 
mice are under normal conditions deprived of cholesteryl 
esters. In our group of LCAT KO mice, this defi ciency 
of neutral lipids in adrenocortical cells could be verifi ed 
using Oil red O neutral lipid staining. As evident from 
 Fig. 3B , specifi cally the glucocorticoid-producing adreno-
cortical cells within the zona fasciculata in LCAT KO mice 
lack the intense Oil red O staining as seen in the C57Bl/6 
mice. 

 The unesterifi ed cholesterol pool used for steroidogene-
sis can be supplied by ( 1 ) endogenous synthesis of choles-
terol in which HMG-CoA reductase catalyzes the rate-limiting 
step ( 2 ), hydrolysis of stored cholesteryl esters, or ( 3 ) up-
take of exogenous lipoprotein-associated cholesterol. To 
identify potential compensatory gene regulation, using 

  Fig.   2.  Plasma corticosterone levels in wild-type C57BL/6 (n = 10) and LCAT KO (n = 8) mice. Concentrations in plasma were measured 
after injection with the human ACTH analog tetracosactide (A), injection with a sublethal dose of LPS (50  � g/kg) (B), or  � 18 h of over-
night fasting (C). ** P  < 0.01 and *** P  < 0.001 versus C57BL/6 mice.   
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insuffi ciency but rather display hepatocyte-specifi c gluco-
corticoid insuffi ciency. 

 DISCUSSION 

 Although it is widely acknowledged that both HDL and 
non-HDL apoB-containing lipoproteins can be used as 
sources of cholesterol for the production of glucocorti-
coids by adrenocortical cells, the relative contribution of 

Furthermore, LCAT defi ciency was associated with a marked 
3.7-fold increase ( P  < 0.001) ( Fig. 4B ) in the relative he-
patic mRNA expression level of the glucocorticoid carrier 
protein corticosteroid binding globulin, whose gene ex-
pression level in hepatocytes is subject to negative feed-
back control by glucocorticoids ( 24 ). Thus, downstream 
glucocorticoid receptor signaling pathways appear to be 
relatively deactivated in hepatocytes within the liver of LCAT 
KO mice. Combined, these fi ndings suggest that LCAT 
KO mice do not suffer from total body glucocorticoid 

  Fig.   3.  A: Adrenal weights in wild-type C57BL/6 (n = 10) and LCAT KO (n = 8) mice that either suffered from sublethal endotoxemia or 
were fasted overnight for  � 18 h. B: Representative Oil red O neutral lipid staining of cortical zones in adrenals from C57BL/6 and LCAT 
KO mice. ZF, zona fasciculata; ZG, zona glomerulosa. C: Relative mRNA expression levels of cholesterol metabolism-associated genes in 
adrenals of LCAT KO mice (n = 4) as fold compared with those found in C57BL/6 control mice (n = 11). *** P  < 0.001 versus C57BL/6 
mice.   

  Fig.   4.  A: Plasma TNF- �  levels in wild-type C57BL/6 
(n = 10) and LCAT KO (n = 10) mice. Concentrations 
in plasma were measured before and after injection 
with a sublethal dose of LPS (50  � g/kg). B: Relative 
mRNA expression levels of LCAT, APOA4, and CBG 
in livers of LCAT KO mice (n = 4) as fold compared 
with those found in C57BL/6 control mice (n = 11). 
** P  < 0.01 and *** P  < 0.001 versus C57BL/6 mice.   
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in LCAT KO mice. SR-BI is the sole molecule involved 
in the selective uptake of HDL-associated cholesteryl 
esters ( 31 ). Because both types of mice display hepatocyte-
specifi c glucocorticoid insuffi ciency, we anticipate that the 
HDL/SR-BI interaction is essential to generate the bulk of 
corticosterone needed to effectively activate the glucocor-
ticoid receptor in hepatocytes. However, the difference in 
leukocyte glucocorticoid insuffi ciency and endotoxemia 
susceptibility between the LCAT and SR-BI knockout mice 
seems to rely on a HDL-cholesteryl ester-independent cor-
ticosterone response. SR-BI knockout mice fail to increase 
their plasma corticosterone levels in response to LPS ex-
posure ( 9, 28 ), whereas the present study shows that LCAT 
KO mice are able to increase, albeit to a lower extent, their 
plasma glucocorticoid levels in response to endotoxemia. 
Both our LCAT KO mice and SR-BI KO mice ( 9 ) display 
an increase in the adrenal relative expression level of the 
LDL receptor, the primary protein involved in the clear-
ance of apoB-containing lipoproteins such as VLDL and 
LDL. Because previous fi ndings by Kraemer et al. ( 32 ) 
have suggested that the LDL receptor does not supply cho-
lesterol the steroidogenic pathway, a qualitative role for 
the LDL receptor/apoB-lipoprotein interaction in the syn-
thesis of this distinct corticosterone pool in LCAT KO 
mice can be excluded. Importantly, SR-BI is also able to 
clear apoB-containing lipoproteins ( 33–35 ). LCAT KO 
adrenals, in contrast to SR-BI KO adrenals, may thus ac-
quire cholesteryl esters from VDL/LDL particles through 
receptor-mediated uptake by SR-BI, which is suffi cient to 
maintain plasma glucocorticoid levels that effectively acti-
vate the glucocorticoid receptor in leukocytes (but not he-
patocytes). Future studies with specifi c SR-BI mutants that 
are selective for either only HDL or non-HDL binding and 
the associated selective uptake, as identifi ed by for exam-
ple the group of Gu et al. ( 36 ), will unequivocally show the 
possible contribution of the non-HDL/SR-BI interaction 
to total adrenal steroid production. 

 In conclusion, our studies show that HDL-cholesteryl 
ester defi ciency in LCAT KO mice is associated with a 
40–50% lower adrenal glucocorticoid stress response and, 
as a result, a hepatocyte-specifi c glucocorticoid insuffi -
ciency phenotype. These fi ndings further highlight the 
important novel role for HDL as cholesterol donor for the 
synthesis of glucocorticoids by the adrenals.  

 The authors thank Dr. Jeroen C. Rijk from the RIKILT - Institute 
of Food Safety of Wageningen UR in The Netherlands for his 
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