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Reduced activity of two genes in combination often has a more detrimental effect than expected.
Such epistatic interactions not only occur when genes are mutated but also due to variation in
gene expression, including among isogenic individuals in a controlled environment. We
hypothesized that these ‘epigenetic’ epistatic interactions could place important constraints
on the evolution of gene expression. Consistent with this, we show here that yeast genes with
many epistatic interaction partners typically show low expression variation among isogenic
individuals and low variation across different conditions. In addition, their expression tends to
remain stable in response to the accumulation of mutations and only diverges slowly between
strains and species. Yeast promoter architectures, the retention of gene duplicates, and the
divergence of expression between humans and chimps are also consistent with selective pressure to
reduce the likelihood of harmful epigenetic epistatic interactions. Based on these and previous
analyses, we propose that the tight regulation of epistatic interaction network hubs makes an
important contribution to the maintenance of a robust, ‘canalized’ phenotype. Moreover, that
epigenetic epistatic interactions may contribute substantially to fitness defects when single genes

are deleted.
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Introduction

Mutations do not have the same effects in all individuals. One
reason for this is that the outcome of a mutation can depend on
other genetic variation in a genome. Such genetic—or
epistatic—interactions between mutations have been exten-
sively mapped in model organisms, and contribute to disease
phenotypes in humans (Lehner, 2007, 2011; Costanzo et al,
2011). Indeed in model organisms the effects of loss-of-function
mutations in most genes can be enhanced by deletions in other
loci (Costanzo et al, 2010). However, systematic genetic
interaction mapping projects have also revealed that genes
differ widely in the number of genetic interaction partners that
they have (Pan et al, 2004; Tong et al, 2004; Schuldiner et al,
2005; Lehner et al, 2006; Costanzo et al, 2010). Although the
inactivation of a typical gene only enhances the effects of
mutations in a relatively small number of other loci, reduced
activity of genes referred to as genetic interaction hubs (or
buffers or capacitors) can enhance the phenotypic conse-
quences of mutations in many different loci encoding genes
with diverse functions (Costanzo et al, 2010, 2011).
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Mutations are, however, just one cause of variation in gene
activity. Two individuals may also differ in the activity of a
particular gene simply because of differences in gene expres-
sion. For example, genes change in expression in response to
the environment and during development. Moreover, gene
expression also varies—often substantially—among isogenic
individuals or cells in a common environment (Newman et al,
2006; Lopez-Maury et al, 2008). Both these environmentally
triggered (Casanueva et al, 2012) and stochastic (Burga et al,
2011) changes in gene expression can also cause epistatic
interactions with mutations: one protein’s activity is reduced
because of mutation and the other because of insufficient gene
expression, so triggering an epistatic interaction. We refer to
these interactions as ‘epigenetic interactions’ or ‘epigenetic
epistasis’ (Figure 1A).

We hypothesized that epigenetic epistasis could place an
important constraint on gene expression and evolution. In
particular, we hypothesized that the more genetic interaction
partners a gene has, the stronger the selective constraint will
be to maintain stable expression of that gene (Figure 1B). This
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is because, as a first approximation, the more genetic
interaction partners a gene has, the higher the likelihood that
at least one of them carries a detrimental mutation. Moreover,
with more interaction partners there is also an increased
likelihood that at least one interaction partner will have low
expression in a particular individual. In short, the more genetic
interaction partners a gene has, the greater the chance of an
epigenetic interaction when the expression of that gene varies
(Figure 1B).

In budding yeast, genome-wide measurements of gene
expression can be used to quantify expression variation at
many different scales, ranging from variation in expression
levels among isogenic individuals in a common environment
(‘noise’), through the responsiveness of expression to changes
in conditions (‘plasticity’), to the divergence in expression
between species (‘evolution’). This large resource of expres-
sion measurements allows us to test whether genes with more
genetic interaction partners do indeed have less variable gene
expression. We show here that at each of these scales this is the
case and that genetic interaction network hubs have particu-
larly tightly controlled and slowly evolving expression. We
discuss the implications of this for the evolution of robust (or
‘canalized” (Waddington, 1942)) phenotypes, and how the
tight regulation of genetic network interaction hubs may both
constrain short-term phenotypic evolution and facilitate it over
a longer timescale.

Results

Epistatic interaction network hubs have low
expression noise and stable expression across
environmental conditions

We hypothesized that, in order to maintain phenotypic
stability, the expression of genes with many potential epistatic
interaction—hub genes in genetic interaction networks—
should be tightly regulated. If a gene has many genetic
interaction partners, then variation in the expression of that
gene is more likely to cause an ‘epigenetic’ epistatic interaction
(Figure 1). During evolution, therefore, the selective pressure
to reduce gene expression variation may be stronger for genes
with more genetic interaction partners.
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Genetic interactions have been systematically mapped in
budding yeast, identifying over 100000 high-confidence
negative genetic interactions between more than 4000 genes
(Costanzo et al, 2010). In this data set, the number of genetic
interactions for each gene ranges between 1 and 511, with a
median of 22 interactions per gene (Costanzo et al, 2010). To
relate the number of genetic interaction partners per gene to the
variability of gene expression, we compiled data from multiple
studies that analyzed genome-wide variation in gene expres-
sion at different scales (Figure 1B and Supplementary File 1).

We first considered how genes with different number of
genetic interactions vary in expression among isogenic cells in
a common environment—that is, their expression ‘noise’, as
quantified using a library of GFP-tagged fusion proteins
(Newman et al, 2006). As shown in Figure 2A, considering
measurements across more than 1300 genes, expression noise
is anticorrelated with genetic interaction degree (p= —0.18,
P=4.54E — 11). Thus, genes with many potential genetic
interaction partners have expression that is generally less
variable from cell to cell in a single environment.

Next, we considered how genes vary in expression in
response to changes in conditions. Thmels et al (2002)
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Figure 2  Genetic interaction hubs have low gene expression variation across
individuals (‘noise’, A) and reduced expression variation across different
environmental conditions (‘responsiveness’, B). All plots for quantitative variables
are shown for equally sized group of genes (n=100), ranked according to
the variable under consideration. Spearman’s rank correlation coefficients and
P-values are shown inset. As for the other measures of expression variation
considered here, there is no significant relationship between positive genetic
interaction degree and expression variation (Supplementary Figure 2).
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Epistatic interactions and gene expression variation. (A) Schematic representation of three classes of epistatic interactions. Epistatic interactions can occur

when two genes are mutated (genetic-genetic interaction), when one gene is mutated and the other gene varies in expression (genetic-epigenetic interaction), or when
two genes simultaneously vary in expression (epigenetic-epigenetic interaction). (B) The more potential epistatic interaction partners a gene has, the more its expression

variation should be constrained during evolution.
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quantified how much each gene’s expression changes in a
curated data set consisting over 1500 expression profiles
across different experimental conditions, that is, the expres-
sion ‘responsiveness’ or ‘plasticity’ following external pertur-
bations (Tirosh et al, 2006). As for expression noise, when
considering more than 3600 yeast genes, the responsiveness of
a gene’s expression is inversely related to the number of
genetic interaction partners (p= —0.17, P=4.67E—26;
Figure 2B). That is, genes with many genetic interaction
partners typically have expression that changes very little
across different environmental conditions. This result is also
upheld when using alternative measures of expression
plasticity (Supplementary Figure 1). Thus, the more genetic
interactions a gene has, the more tightly controlled its
expression is both within a condition and across different
conditions. As for all of the other expression properties
considered below, these relationships remain significant when
controlling for the individual fitness effects of each gene
deletion, gene expression levels, phenotypic capacity or
multifunctionality (Supplementary Figures 3 and 6).

Genes with many genetic interactions have
expression that is less responsive to genetic
change

The above results imply that the expression of genetic
interaction hubs responds less to stochastic and environmen-
tal stimuli. We next asked whether they also respond less to
genetic perturbations, that is, whether their expression is less
sensitive to mutation. We used two data sets: first, the variance
of expression across yeast cell lines that had been allowed to
accumulate random mutations during 4000 generations of
growth under conditions of minimal selection due to popula-
tion bottlenecks (mutational variance, Vm; Landry et al, 2007),
and second, a measure of the variance of each gene’s
expression caused by different trans-acting genetic loci in
recombinant inbred lines generated in a cross between two
strains (trans variability; Brem et al, 2002; Choi and Kim,
2008). In both cases we observe that genes with more genetic
interactions have expression that varies less across genotypes
(p=—0.15, P=440E-19 for mutation variation,
p= —0.15, P=4.96E—16 for trans variability; Figure 3A
and B). Thus, genetic interaction hubs also have expression
that is intrinsically less ‘evolvable’ when either random
mutations accumulate in a genome or in response to
combinations of natural variants.

The expression of genetic interaction hubs
diverges slowly within and between species

The reduced evolvability of the expression of genetic interac-
tion hubs predicts that their expression might also diverge
more slowly during evolution. We tested this in two ways—by
considering expression divergence (ED) among strains of one
species, and by considering ED among different yeast species.
In both cases, the levels of divergence inversely correlate with
the number of genetic interactions (p= —0.15, P=1.69E — 20
for inter-strain variation, p= —0.12, P=1.00E — 09 for ED
between species; Figure 4A and B). Genes with many genetic
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interaction partners, therefore, tend to have expression that
evolves slower than other genes.

Genetic interaction hubs have biased promoter
architectures

Taken together, these analyses show that genetic hubs have
more stable expression levels at many different scales: among
individuals, in response to environmental change, in response
to mutations and during evolution. These different timescales
of expression variability are correlated across genes
(Supplementary Figure 9; Tirosh et al, 2006; Landry et al,
2007; Choi and Kim, 2009; Lehner, 2010a). What are the
molecular mechanisms that underlie this constrained gene
expression? Previous studies have linked the presence of a
TATA box and high promoter nucleosome occupancy to
increased variability of expression (Tirosh et al, 2006;
Landry et al, 2007; Choi and Kim, 2009; Lehner, 2010a).
Consistent with this, we find that the more genetic interaction
partners a gene has, the less likely it is to have a TATA box
element in its promoter (Kolomogorov-Smirnov (KS) statistic,
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Figure 3 Genetic interaction hubs have expression with low sensitivity to
genetic change (‘evolvability’), as quantified in mutation accumulation lines
(‘mutation variation’, A) and across yeast strains in which single genes have been
deleted (‘trans variability’, B). All plots for quantitative variables are shown
for equally sized group of genes (n=100), ranked according to the variable
under consideration. Spearman’s rank correlation coefficients and P-values are
shown inset.
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Figure 4 The gene expression of genetic hubs diverges slowly during
evolution, as measured across yeast strains (‘inter-strain variation’, A) and
between different yeast species (‘expression divergence’, B). All plots for
quantitative variables are shown for equally sized group of genes (n=100),
ranked according to the variable under consideration. Spearman’s rank
correlation coefficients and P-values are shown inset.
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Figure 5 Tight regulation of gene expression variation is coupled to promoter
architecture. Genetic interaction hubs in yeast tend not to have TATA box (A) and
nucleosome-occupied (B) promoters. All plots for quantitative variables are
shown for equally sized group of genes (n=100), ranked according to the
variable under consideration. OPN, occupied proximal nucleosome, DPN,
depleted proximal nucleosome.

P=2.52E — 09; Figure 5A). Similarly, genes with many genetic
interaction partners are more likely to have nucleosome-free
upstream regions, whereas genes with few genetic interaction
partners tend to have high nucleosome occupancy upstream
of the transcription start site (KS statistic, P=1.53E —09;
Figure 5B). Consistent with previous work (Tirosh et al, 2006;
Landry et al, 2007; Choi and Kim, 2009; Lehner, 2010a), this
suggests that promoter architecture is an important cause of
the reduced expression variability of genetic interaction
network hubs.

Highly connected genes with variable expression
are enriched for gene duplicates

Despite the overall anticorrelation between genetic interaction
degree and variation in gene expression, some more highly
connected genes still show substantial variation in gene
expression. We were interested in whether these genes have
an alternative mechanism to reduce the detrimental effects of
variation in expression. One general mechanism to escape
from adaptive conflict is gene duplication (Hughes, 1994; Des
Marais and Rausher, 2008). Based on previous work (Lehner,
2010a), we hypothesized that the variable gene expression of
some highly connected genes might be compensated for by the
expression of partially redundant gene duplicates. Indeed we
find that highly connected genes with variable expression are
likely to have more gene duplicates than highly connected
genes with less variable expression (Figure 6). This suggests
that the highly variable expression of a subset of genetic hubs
may be tolerated because of the presence of duplicates.

Epistatic interactions may constrain gene
expression in other species

In yeast we observed that genes with more genetic interaction
partners have more constrained expression than other genes.
We were interested in whether this result also applies to other
species. Genetic interaction hubs appear to be well conserved
across species, as does the genetic interaction degree of
individual genes (Roguev et al, 2007; Dixon et al, 2008; Frost
et al, 2012; Koch et al, 2012; Ryan et al, 2012). Therefore, we
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Figure 6 Highly connected genes with high expression variation are more likely
to have gene duplicates than highly connected genes with low expression
variation. Ratios are shown for different genetic interaction degree cut-offs, at
which a gene is considered as a highly connected genes (A) and for different
expression variability cut-offs (B). P-values are calculated using the Mann-
Whitney U-test (**P<5.0E —3, *P<5.0E—2), see also Supplementary
Figure 4.
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Figure 7 Low expression divergence between human and chimpanzee of the
orthologs of yeast genetic hubs. (A) Distribution of human genes with respect to
the predicted number of genetic interactions. Human genes were assigned the
number of yeast genetic interactions by ortholog mapping. (B) Correlation
between the number of genetic interactions and the expression divergence of
human genes. Expression divergence is calculated between human and
chimpanzee. All plots for quantitative variables are shown for equally sized group
of genes (n=100), ranked according to the variable under consideration.
Spearman’s rank correlation coefficients and P-values are shown inset.

assigned the interaction degree of more than 2500 yeast genes to
their human orthologs (Figure 7A). This revealed that, just as
in yeast, these predicted genetic hubs in human also have
expression that is constrained during evolution, showing
reduced ED between human and chimpanzee (p= —0.10,
P=1.57E — 06; Figure 7B). This relationship remains significant
when controlling for the individual fitness effects of each gene
deletion (p= —0.05, P=1.47E — 02) or gene expression levels
(p= —0.09, P=2.17E—05) (Supplementary Figure 5). We
concluded that the principle that epistatic interactions constrain
expression variation is likely to be conserved across species.

Discussion

Evidence that epigenetic epistatic interactions
constrain the evolution of gene expression

We have shown here that genes with many genetic interaction
partners have less variable gene expression across multiple
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different timescales. Genetic interaction hubs have expression
that is less noisy, less responsive to changes in conditions, less
evolvable, and diverging more slowly during evolution. This
reduced expression variation is linked to differences in
promoter architecture, with interaction hubs having transcrip-
tion that is most likely intrinsically less ‘bursty’ (Hornung et al,
2012) and so less sensitive to perturbations.

The tight regulation of genetic hubs may
contribute to phenotypic robustness

An important concept in biology is phenotypic robustness or
canalization (Waddington, 1942; Wagner, 2000; Stelling et al,
2004). Based on our results, we propose that the stable
expression of genetic interaction hubs makes an important
contribution to this robustness. Of course, the relationship
between genetic interaction degree and expression variation
may also be indirect. However, other observations are also
consistent with our hypothesis, such as the tendency for two
genetic partners not to simultaneously have low expression
(Supplementary Figure 8). In addition, yeast strains in which
genetic interaction hubs have been deleted have highly
variable morphological phenotypes (Ohya et al, 2005; Levy
and Siegal, 2008; Lehner, 2010b), and strains in which genetic
hubs have been deleted are also more sensitive to environ-
mental perturbations (Lehner, 2010b). Both results are
consistent with a loss of robustness or a ‘de-canalization’—
in the absence of a hub, otherwise harmless fluctuations in
gene expression start to have phenotypic effects (Burga et al,
2011; Casanueva et al, 2012). Thus, the stable expression of
genetic interaction hubs may serve to buffer genetic, environ-
mental, and stochastic perturbations.

Epigenetic epistatic interactions may contribute to
single gene deletion phenotypes

It has been previously noted that there is a strong correlation
between the magnitude of the growth defect when a gene is
deleted and the number of genetic interaction partners that
gene has (Baryshnikova et al, 2010; Costanzo et al, 2010).
Based on this relationship and the arguments presented above,
we suggest that one important contribution to single gene
deletion phenotypes is likely to be epigenetic epistatic
interactions. If a gene with many genetic interaction partners
is deleted, then variation in the activity of many genes will now
have more severe effects on fitness. Consistent with this, genes
with more genetic interaction partners are more likely to be
haploinsufficient, i.e., to cause a growth defect when their
dose is reduced by 50% (Supplementary Figure 7). Thus,
although many cells in a population carrying a particular gene
deletion may show a growth defect, the actual causes of these
defects may vary among cells due to variation in gene
expression. In yeast, growth phenotypes are typically quanti-
fied at the population level, but such a model for the causes
of fitness defects in yeast is supported by experiments in
C. elegans, demonstrating that part of the individual-to-
individual variability in the outcome of mutations depends
on variation in the expression of genetic interaction partners
(Burga et al, 2011; Casanueva et al, 2012).
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Epigenetic epistasis and evolvability

In summary, the analyses presented here support a model in
which there has been a selective pressure to reduce the
variability of expression of genes with many genetic interac-
tion partners. Together with previous work showing that
expression variation can cause harmful epigenetic epistatic
interactions (Burga et al, 2011; Casanueva et al, 2012), and that
genetic hubs promote phenotypic stability (Levy and Siegal,
2008; Lehner, 2010b), this suggests that the tight regulation of
genetic interaction hubs is an important aspect of phenotypic
robustness or canalization. Thus, in the short term the tight
regulation of genetic hubs may therefore constrain evolution
by reducing phenotypic variation. However, it has also been
proposed that over long evolutionary periods increased
phenotypic robustness promotes evolution by facilitating a
wider exploration of viable genotypes (Wagner, 2005), and so
the tight regulation of epistatic interaction hub may facilitate
the evolution of complexity. Using laboratory evolution
experiments it might be possible to directly test some of these
ideas.

Materials and methods

Genetic interactions

Genetic interactions were systematically identified by (Costanzo et al
(2010) for 3458 array genes. Only high-confidence negative interac-
tions with |¢| <0.08 and P-value <0.05 were considered, as suggested
by the authors (Costanzo et al, 2010). The fitness defects of the same
strains were determined by the same authors (Baryshnikova et al,
2010; Costanzo et al, 2010). For an independent test (Supplementary
Figure 10), all genetic interaction data sets, except Costanzo et al (2010)
and Tong et al (2004), were downloaded from the BioGRID
(www.thebiogrid.org, version 3.1) (Stark et al, 2011).

Gene expression data sets

Stochastic noise in protein expression was measured from single-cell
profiling of fluorescently tagged proteins by Newman et al (2006). To
exclude the influence of protein abundance, the coefficient of variation
was converted to the distance-to-median metric (DM) for each gene
(Newman et al, 2006). Responsiveness of mRNA expression to
environmental perturbations was derived from more than 1500 gene
expression profiles (Ihmels et al, 2002), and calculated as the sum of
squares of the log,-ratios over the conditions (Tirosh et al, 2006). A
second measure of expression variation across environmental condi-
tions was obtained from Edgar et al (2002) and Koch et al (2012). Each
gene’s percentile of variation was calculated and then assigned to the
average percentile across all microarray data sets. Responsiveness
across stress conditions was calculated as the variance in gene
expression (Gasch et al, 2000; Choi and Kim, 2009). Trans viability was
defined as the responsiveness to trans-acting genetic loci in
recombinant inbred lines (Brem et al, 2002) and was obtained from
Brem et al (2002) and Choi and Kim (2008). Mutational variance (Vm)
is a measure of expression variance among four mutation accumula-
tion lines by Landry et al (2007). Inter-strain variation was measured
across four natural isolates of S. cerevisiae (Townsend et al, 2003). ED
between closely related yeast species under controlled environmental
conditions was taken from Tirosh et al (2006). Gene expression levels
of yeast genes were obtained from Holstege et al (1998).

Promoter features

The presence and absence of TATA boxes was obtained from Basehoar
et al (2004), with TATA boxes identified in promoter regions
by scanning each gene’s promoter region (—70 to —310) for the
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commonly found site TATA(A/T)A(A/T)(A/G). A total of 1090 genes
initiating from TATA-box promoters and 4581 genes from non-TATA
box promoters are considered. Nucleosome occupancy in promoter
regions was taken from in vivo nucleosome occupancy data (Lee et al,
2007) in the 100 base pairs upstream of each gene, as defined in Tirosh
and Barkai (2008). According to this criterion, a total of 1082 ‘occupied
proximal nucleosome’ (OPN) promoters and 1940 ‘depleted proximal
nucleosome’ (DPN) proximal promoters are analyzed.

Yeast gene duplicates

Gene duplicates were defined using the SYNERGY algorithm (Wapinski
et al, 2007), which uses gene trees based on sequence similarity.

Expression divergence of human genes

Human orthologs of yeast genes were obtained from Ensembl
Compara through BioMart (Haider et al, 2009; Vilella et al, 2009).
ED of human genes was calculated as expression variation between
human and chimpanzee across five tissues, as reported in Tirosh et al
(20006) using gene expression from Khaitovich et al (2005).

Multifunctionality

Multifunctionality was defined as the number of ‘biological process’
terms of Gene Ontology (GO) as reported in Costanzo et al (2010),
which uses a multifunctionality index (Myers et al, 2006).

Phenotypic capacitance

The phenotypic capacitance was quantified morphological variability
(Ohya et al, 2005) upon deletion of nonessential genes and was used
directly from Levy and Siegal (2008).

Haploinsufficient genes

Overall, 184 haploinsufficient genes were identified by a heterozygous
deletion screen (Deutschbauer et al, 2005).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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