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Using models to simulate and analyze biological networks requires principled approaches to
parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to
recover the full probability distributions of free parameters (initial protein concentrations and rate
constants) for mass-action models of receptor-mediated cell death. The width of the individual
parameter distributions is largely determined by non-identifiability but covariation among
parameters, even those that are poorly determined, encodes essential information. Knowledge of
joint parameter distributions makes it possible to compute the uncertainty of model-based
predictions whereas ignoring it (e.g., by treating parameters as a simple list of values and variances)
yields nonsensical predictions. Computing the Bayes factor from joint distributions yields the odds
ratio (B20-fold) for competing ‘direct’ and ‘indirect’ apoptosis models having different numbers of
parameters. Our results illustrate how Bayesian approaches to model calibration and discrimination
combined with single-cell data represent a generally useful and rigorous approach to discriminate
between competing hypotheses in the face of parametric and topological uncertainty.
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Introduction

Mathematical models that capture the dynamics of protein
modification, assembly and translocation are effective tools
for studying biochemical networks involving many concurrent
reactions (Kholodenko et al, 1999; Schoeberl et al, 2002;
Danos et al, 2007; Gaudet et al, 2012). However, even the best-
characterized networks are ambiguous with respect to
patterns of protein–protein interaction and the sequence of
specific reactions (the so-called ‘reaction topology’). In
principle, such ambiguities can be resolved by constructing
alternative models and then determining which ones exhibit
the best fit to data. Such comparisons are usually performed
using a set of parameters thought to fall near the global
optimum for the original model (based on goodness-of-fit to
data). However, given the kinds of data that can be collected
from cells, parameters in realistic biochemical models are
often non-identifiable, and refitting alternative models often
uncovers a new set of parameters having an indistinguishably
good fit. In this case, it is not clear whether the two models are
equally valid. Uncertainty about parameters arises from non-
identifiablility, whose ultimate origins are a dearth of
quantitative data on the rates of biochemical reactions. Sethna

and colleagues have pointed out that even a complete set of
time-course data on the concentrations and states of all species
in a biochemical model are usually insufficient to constrain the
majority of rate constants, a property known as ‘sloppiness’
(Brown and Sethna, 2003; Brown et al, 2004; Frederiksen et al,
2004; Gutenkunst et al, 2007). In addition, models having
different reaction topologies often differ in the numbers of free
parameters. Thus, a scheme for rigorously comparing compet-
ing biochemical models must account for parametric uncer-
tainty and potential differences in parameter numbers.

This paper describes a general-purpose framework for
parameter estimation and model discrimination based on
well-established Bayesian methods (Battogtokh et al, 2002;
Press, 2002; Flaherty et al, 2008; Klinke, 2009; Xu et al, 2010)
and applies it to a previously described ODE-based model of
receptor-mediated (extrinsic) apoptosis in human cells
treated with the death ligand TRAIL (the extrinsic apoptosis
reaction model, EARM1.3) (Fussenegger et al, 2000; Chen
et al, 2007a; Albeck et al, 2008b; Spencer et al, 2009; Ho and
Harrington, 2010; Neumann et al, 2010). EARM1.3 is useful in
understanding apoptosis in multiple cell types and is similar
to many other models of signal transduction with respect to
the numbers of parameters and amount of training data
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(Nelson et al, 2002; Schuster et al, 2002; Kearns and
Hoffmann, 2009).

Modeling the biochemistry of apoptosis using ODEs has
several justifications. The proteins involved are sufficiently
abundant and their modes of interaction well enough known
that ODE networks effectively describe dynamics under a range
of conditions, including protein overexpression or RNAi-
mediated depletion (Fussenegger et al, 2000; Hua et al, 2005;
Aldridge et al, 2006, 2011; Bagci et al, 2006; Rehm et al, 2006;
Chen et al, 2007a; Albeck et al, 2008b; Lavrik et al, 2009; Spencer
et al, 2009; Spencer and Sorger, 2011). Mass-action models also
make it straightforward to translate findings obtained with
purified components to the context of multi-protein networks in
living cells (Lovell et al, 2008; Chipuk et al, 2010).

Free parameters in mass-action ODE models such as EARM1.3
include initial protein concentrations, which can be determined
with reasonable precision using quantitative western blotting or
mass spectrometry (set in the current work to previously
estimated values (Albeck et al, 2008b)) as well as forward,
reverse and catalytic rate constants. Some information on kinetic
parameters can be gleaned from in vitro experiments or the
literature, but rate constants are usually much less certain than
protein concentrations either because no in vitro data are
available or because the peptidyl substrates used in vitro are
poor mimics of the large protein complexes found in vivo. It is
therefore necessary to estimate parameters (Mendes and Kell,
1998) by minimizing the difference between model trajectories
and experimental data using methods such as genetic algorithms
(Srinivas and Patnaik, 1994), Bayesian sampling (Battogtokh
et al, 2002; Flaherty et al, 2008; Klinke, 2009; Xu et al, 2010) or
Kalman filtering (Lillacci and Khammash, 2010).

The problem of parameter identifiability has been tackled in
four conceptually distinct ways (leaving aside algorithmic
specifics). The first is to consider only simple processes or
small reaction networks for which identifiable models can be
constructed (Bandara et al, 2009; Kleiman et al, 2011).
Alternatively, for non-identifiable models, a single set of
best-fit parameter values can be used. This is the approach we
and others have applied in the past to model extrinsic
apoptosis (White et al, 2002; Rodriguez-Fernandez et al,
2006; Singer et al, 2006; Albeck et al, 2008b). A third approach
is to identify a family of B102–103 fits whose discrepancy from

a best fit is less than or equal to estimated experimental error.
Properties of the model that are invariant across sets of
parameters are assumed to be of the greatest interest (Ingolia,
2004; Daniels et al, 2008; Chen et al, 2009). A fourth and more
rigorous approach involves sampling the complete probability
distribution of parameters, accounting for both experimental
error and model non-identifiability, and then using the
distribution in model-based prediction or model discrimina-
tion (Duran and White, 1995; Reis and Stedinger, 2005).

In this paper, we implement the fourth approach using
EARM1.3 as an example. Cell death is triggered in EARM1.3 by
binding of death ligands, such as FasL and TRAIL, to
transmembrane receptors (Figure 1). This leads to activation
of initiator pro-caspases-8/10 (C8) causing cleavage and
activation of effector pro-caspases-3/7 (C3), which in turn
leads to proteolysis of essential cellular substrates and
activation of CAD nucleases, ultimately killing cells
(Kaufmann and Earnshaw, 2000; Gonzalvez and Ashkenazi,
2010). Active C8 also cleaves the Bcl2-family member Bid to
form tBid, which promotes pore formation and mitochondrial
outer membrane permeabilization (MOMP). Sudden translo-
cation of Smac and cytochrome c through MOMP pores into
the cytosol is followed by inactivation of XIAP (the X-linked
inhibitor of apoptosis protein), thereby relieving negative
regulation of C3 activity and releasing active effector caspase.
EARM1.3 is simplified insofar as proteins having similar
activities are combined into single species as a means to
reduce the number of free parameters (e.g., both caspase-3 and
caspase-7 are represented in EARM1.3 by C3).

With the addition of appropriate sampling procedures,
EARM1.3 is also effective at modeling cell-to-cell variability in
apoptosis (Rehm et al, 2009; Spencer et al, 2009). When a
uniform population of cells is exposed to TRAIL, substantial
differences in the time of death are observed from one cell to the
next: some cells die soon after ligand exposure (o1h), others
wait 12h or more and some cells survive indefinitely (Rehm et al,
2003). Variability arises from transiently heritable differences in
protein concentrations (extrinsic noise) rather than inherently
stochastic reaction kinetics (intrinsic noise), and can be modeled
with ODE networks by sampling initial protein concentrations
from experimentally measured log-normal distributions and
running many simulations (Gaudet et al, 2012). However,

Figure 1 Schematic representation of the extrinsic apoptosis model EARM1.3. Binding of death ligand TRAIL, formation of death-inducing signaling complex (DISC),
cleavage of caspases-3, -6 and -8 (C3, C6 and C8), formation of mitochondrial pores, assembly of the apoptosome and cPARP cleavage are shown. Activating
interactions such as caspase cleavage and induction of conformational changes are shown as sharp-tipped arrows; inhibitory interactions by competitive binding of
proteins such as FLIP, BCL2 and XIAP are shown as flat-tipped arrows. The three fluorescent reporters IC-RP, EC-RP and IMS-RP used in experiment are denoted as
yellow lozenges. Specific sets of reactions are called out in red boxes and are keyed to features discussed in subsequent figures.
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understanding the origins rather than the consequences of
extrinsic noise still requires stochastic simulation (Gillespie,
1977; Zheng and Ross, 1991; Hilfinger and Paulsson, 2011).

One area in which the existing EARM1.3 model is
particularly simplistic is in its treatment of MOMP regulators.
The Bcl2 proteins that regulate MOMP can be divided into
three families: (1) pro-apoptotic BH3-only proteins, such as
Noxa, tBid and Bad, which promote pore formation, (2)
effectors proteins, such as Bax and Bak, which form
transmembrane pores and (3) anti-apoptotic proteins, such
as Bcl2, Mcl1 and BclXL, which inhibit pore formation.
Conflicting hypotheses exist in the literature about whether
MOMP is controlled in a ‘direct’ or ‘indirect’ manner (Lovell
et al, 2008; Chipuk et al, 2010). The direct model postulates
that BH3-only ‘activators,’ such as tBid and Bim, bind to Bax
and Bak and induce pore-promoting conformational changes
(a second class of BH3-only ‘sensitizers,’ such as Bad, are
postulated to function by binding to and neutralizing anti-
apoptotic proteins such as Bcl2). The indirect activation model
postulates that Bax and Bak have an intrinsic ability to form
pores but are prevented from doing so by association with anti-
apoptotic proteins; the sole role of BH3-only proteins in this
model is to antagonize anti-apoptotic proteins, thereby freeing
up Bax and Bak to assemble into pores. Considerable subtlety
exists with respect to the specifics of indirect and direct
mechanisms, implying that it will ultimately be necessary to
compare multiple versions of each model.

Bayesian estimation is well established in fields ranging from
climate control to economics (Briggs, 2001; Christie et al, 2005),
and its use with biochemical pathways has been pioneered by
Klinke (2009), Schuttler (Battogtokh et al, 2002), Kolch (Xu et al,
2010), Vyshemirsky (Press, 1995) and others. We extend earlier
work by applying Bayesian methods to the complex EARM1.3
model calibrated to time-course data from single cells. We
recover statistically complete joint probability distributions for
all 78 free kinetic parameters in the model using this method
allowing us to explore the shapes and covariance of the
distributions. We show how probabilistic model-based predic-
tions can be computed from parameter distributions to account
for experimental error and parameter non-identifiablility.
Estimated parameters exhibit a remarkably high degree of
covariation that appears to encode much of the information
derived from calibration. Thus, it is not valid to report
parameters as a simple table of values and variances. We also
compute the Bayes factors for MOMP models that have different
topologies (competing indirect and direct models EARM1.3I and
EARM1.3D), thereby estimating their relative likelihood while
accounting for different numbers of non-identifiable parameters.
The fact that Bayesian methods developed for relatively small
models in the physical sciences are effective with large
biochemical models opens the door to rigorous reasoning
about cellular mechanisms in the face of complexity and
uncertainty.

Results

Sampling parameter values using MCMC walks

EARM1.3 has 69 dynamical variables representing the
concentrations of proteins and protein complexes involved

in cell death. We concentrate on 78 free parameters (rate
constants) that control these variables (the total number of
free parameters in EARM1.3I and EARM1.3ID is different, as
described below). The 16 nonzero initial protein concentra-
tions in the model were assumed to be identical to previously
reported values, many of which have been measured
experimentally (Spencer et al, 2009) (initial protein concen-
trations can also be estimated, but adding parameters to the
procedure makes the calculation more time consuming;
Figure 1). Calibration data on initiator and effector caspase
activities were collected from single cells using two proteo-
lysis-sensitive reporter proteins: initiator caspase reporter
protein (IC-RP) measures the activity of initiator caspases-8/
10 and is a metric for formation of tBid; effector caspase
reporter protein (EC-RP) measures the activity of caspases-3/7
and is a metric for cleavage reactions accompanying cell death
(Cohen, 1997; Albeck et al, 2008a). The amount of time
between the addition of TRAIL and the activation of caspases
varies from one cell to the next (Spencer et al, 2009), and EC-
RP and IC-RP trajectories were therefore aligned by the time of
MOMP to eliminate most cell-to-cell variability (Albeck et al,
2008a). Thus, training data represent the behavior of a ‘typical’
single cell. A time-dependent value for the variance of the data
(s2

data) was obtained by comparing 40 single-cell trajectories
for each reporter protein.

To sample the posterior distribution of the EARM1.3
parameter space, we implemented a multi-start Markov Chain
Monte Carlo (MCMC) walk, using non-uniform priors and
imposing a Metropolis–Hastings (M–H) criterion at each step
(Box 1). Such a walk has the important property that the
number of visits to a particular position in parameter space is
proportional to the posterior probability, allowing parameter
vectors to be sampled with the correct statistical weight (Chib
and Greenberg, 1995). In Box 2 we illustrate how parameter
distributions can be recovered from an MCMC walk in the
auto-catalytic chemical kinetic system of Robertson (1966), a
classic example from the CVODES/Sundials suite and by
examining two-dimensional slices of the complex landscape of
EARM1.3. In both cases, axes for the landscapes correspond to
parameters and elevation corresponds to the negative log of
the posterior probability (the posterior is simply the likelihood
weighted by the prior; Box 1). For example, for parameters k1

and k2, which describe the binding of receptor R to ligand (to
form active receptor R*) and binding of the anti-apoptotic FLIP
protein to R*

LþR$
k32

k1
L : R �!k63

R� R� þ FLIP$
k33

k2
R� : FLIP

we observed an L-shaped valley in the objective function with
a nearly flat bottom bounded by steep walls (Figure 2). The
MCMC walk samples this landscape by making a random
series of movements along the valley floor and then estimating
the posterior probability of each position based on a sum of
squares error criterion. Estimated marginal distributions for
the parameters k1 and k2 can be recovered from the walk by
integrating out all other dimensions. We observe k1 and k2 to
be well-constrained relative to many other parameters in the
model, probably because the IC-RP reporter lies immediately
downstream of reactions controlled by k1 and k2 (Figure 1).
The two parameters balance each other out in a subtle way:
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k1 is the forward rate of the ligand-binding reaction (which
promotes cell death) and k2 is the forward rate of the FLIP-
binding reaction (which inhibits cell death). As a consequence,
the individual parameter distributions (marginal distribu-
tions) do not capture all of the information from the walk:

when the value of k1 is high, activated receptor R* is produced
more rapidly and this can be balanced by having k2 at a high
value so that formation of inactive R*:FLIP complexes is rapid.
Thus, a good fit to the IC-RP trajectory can be achieved for a
range of k1 and k2 values as long as their ratio is roughly
constant. In general, we observed that ratios of parameters (or
sums of the logs of parameters) were better constrained than
single parameters. This was particularly obvious in the case of
Robertson’s system, in which the k1 to k3 ratio is well
estimated but individual parameters are not (Box 2). The
phenomenon is also related to the fact that in simple catalytic
systems, such as those studied by Michaelis–Menten, it is the
ratio of kf and kr (i.e., KM) that is well estimated under standard
conditions, not forward and reverse rates themselves (Chen
et al, 2010). Examining other 2D slices of the posterior
landscape revealed a wide range of topographies and different
degrees of parameter constraint. True ellipsoidal minima were
relatively rare but they gave rise to the expected Gaussian
marginal parameter distributions; more common were dis-
tributions in which one parameter was constrained and the
other was not (in Supplementary Figure 1 we have assembled
a gallery of typical 2-D landscapes and the reactions they
represent, along with marginal distributions for all estimated
parameters). Many marginal posterior distributions were
narrower than the prior and were therefore well estimated
(k8 to k12 for example) but others resembled the prior, a
phenomenon we analyze in greater detail below. Relative to
values previously used for EARM1.3 (Albeck et al, 2008b)
Bayesian sampling yielded 33 parameters with modal values
differing by B10-fold and 11 by B100-fold from previous
estimates.

Bootstrapping (Press, 1995) is a more conventional and
widely used method for putting confidence intervals on model
parameters. In bootstrapping, statistical properties of the data
are computed and ‘resampling’ is used to generate additional
sets of synthetic data with similar statistical properties.
Deterministic fits are performed against the resampled data
to give rise to a family of best fits. Bootstrapping therefore
returns a family of optimum fits consistent with error in the
data, whereas MCMC walks used in Bayesian estimation
return the family of all possible parameter values that lie
within the error manifold of the data. It is possible that the
family of fits obtained through bootstrapping will identify
some non-identifiable parameters but, in contrast to Bayesian
estimation, there is no guarantee that parameter distributions
or their point-by-point covariation are completely sampled.

Properties of MCMC walks

Performing MCMC walks across many parameters is compu-
tationally intensive and we observed that walks through the
landscape of EARM1.3 proceeded slowly for either of two
reasons: at the start of most walks, the landscape was flat in
many directions, making it difficult to detect gradients
pointing toward minima. Later in the walk, when minima
were found, they were often valley like with many flat and few
steep directions. In this case, the MCMC walk was inefficient,
because many steps moved in directions of lower probability
(this is represented by a circle of proposed moves in Figure 2).

Box 1 Parameter estimation using a Bayesian MCMC walk

The deviation between data and model for a set of n parameters
(k1,y,kn) is computed using the sum of squared differences:

w2¼
X

t

X
i

1

2s2
dataðtÞ

½x i
modelðt ; YÞ�x i

dataðtÞ�
2 ð1Þ

where Y�(y1,y,yn) and yj�log10(kj). The index i runs over all
experiments, the index t runs over all times at which measurements are
made and the index j runs over the 78 parameters. The w2 function is a
conventional objective function and also the negative log of the likelihood
that the data will be observed for a given set of parameters assuming that
measurement errors at time t have a Gaussian distribution (with variance
s2

dataðtÞ). According to Bayes’ rule, given a set of data the conditional
distribution of a parameter vector Y is given by:

PðY j dataÞ¼ Pðdata j YÞPðYÞ
PðdataÞ ð2Þ

where the symbol ‘P’ indicates probability density functions rather than
probabilities as parameters are treated as continuous variables. The term
P(Y|data) is commonly known as the posterior and will be denoted as
post(Y); P(data|Y) is the likelihood of Y; and P(Y) the prior of Y. The
term P(data) on the right hand side of Equation 2 (also known as the
evidence for the model) is difficult to compute (in the current work we
tackle this using thermodynamic integration) but for parameter estimation
by MCMC sampling (see below) only the ratios of posterior values are
needed, not the posterior values themselves. We therefore treated
P(data) as a normalization constant yielding:

PðY j dataÞ / Pðdata j YÞPðYÞ ð3Þ

We have explored several priors (see text) but the most effective was
one in which the rate constants ki were independent log-normal random
variables, so that the yi are independent and normal, and

� lnðpriorðYÞÞ¼
X78

i¼1

1

2s2
i

yi � yih i½ �2þC ð4Þ

where /yiS and s2
i are the mean and variance, respectively, of the

distribution of yi, and C is an additive constant which does not affect
the MCMC algorithm and can be ignored. The value of the log posterior
for a particular parameter vector is then obtained by combining the log
likelihood and the log prior (Equation 3):

� ln postðYÞð Þ / � ln likelihoodðYÞð Þ � ln priorðYÞð Þ ð5Þ

This framework is commonly used to return single good-fit vectors Y
corresponding to MAP probability estimates for the parameter vector.
However, we seek to generate a rich set of vectors that sample the
posterior distribution of Y. To accomplish this, we implemented a
random walk in 78-dimensional parameter space using a multi-start
Markov Chain Monte Carlo algorithm (MCMC). The number of steps that
a particular position in parameter space is visited is proportional to the
posterior probability (Chib and Greenberg, 1995). At the jth step of each
MCMC walk, a Metropolis–Hastings (M–H) criterion was employed:

Yjþ1¼
Ytest with probability a
Yj with probability 1� a

�
ð6Þ

a¼min 1;
postðYtestÞ
postðYj Þ

� �
ð7Þ

where Yj is the current position in parameter space and Ytest is the
putative next position. A test position is accepted based on whether a
randomly and uniformly chosen number between 0 and 1 is less than
a (ap1).
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Box 2 A simple example of Bayesian estimation

To illustrate how MCMC-dependent Bayesian parameter estimation works, consider an ODE model of three species (A–C) that interact via three reactions (with rates k1 to
k3) corresponding to a classical example of an autocatalysis developed half a century ago by Robertson (Box 2 Figure A) (Robertson, 1966). First, we generate a set of
synthetic data corresponding to the time-dependent concentrations of species A to C by choosing reaction rates and setting the initial concentration of reactant A to A0¼ 1.0
(in non-dimensional units). The resulting trajectory is sampled periodically assuming a theoretical measurement error of ±10%, which enters into the 1/2s2

dataðtÞ term of
objective function (red bars, panel D; Box 1). We then hide knowledge of the parameter values and attempt to infer them from the synthetic measurements on all three
species. In the treatment of Sethna (Gutenkunst et al, 2007) this would correspond to a situation with ‘complete’ knowledge. We perform an MCMC search giving rise to a
joint posterior distribution whose marginal values and point-by-point covariation is shown in panel C. We see that the parameters of the system are non-identifiable despite
complete data and that k1 and k3 covary: neither parameter is particularly well estimated but their ratio is well determined. This ratio has an important role in determining the
trajectory of reactant C whose value can be predicted with good accuracy. Reflecting the non-identifiability of the system and the presence of experimental error, the
prediction has a manifold of uncertainty, depicted in panel D as 60 and 90% confidence limits (in the case of this ‘prediction’, we trained the model on measurement of
species A and B only). The inability of estimation to recover the parameter values used to generate synthetic data is not due to problems with the computational procedures.
Instead, it represents a fundamental limit on our ability to understand biochemical systems based on time-course data alone.

Bayesian parameter for the simple, non-identifiable ‘Robertson’ system. (A) Structure of the reaction network. (B) Synthetic data generated from an ODE
corresponding to the system in A with the parameter values shown immediately below. (C) Results of Bayesian parameter estimation using data on species A and B,
independent Gaussian priors and showing marginal distributions above and to the right of correlation plots for the three parameters. Red lines correspond to the best-
fit parameter set and green lines to the mean of the individual marginal distribution, as in Figure 3. (D) Predicting the trajectory of species C given the posterior
distribution in C. Red error bars denote one standard deviation around the mean of the data (assuming 10% error; data on C was withheld from the estimation) and
green and black lines denote 60% and 90% confidence intervals of the prediction respectively.
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MCMC sampling adequately captures an unknown distribu-
tion only if independent chains starting from random points
converge to the same distribution. Convergence was assessed
using the Gelman–Rubin test, which compares inter-chain to
intra-chain variance: failing the test proves non-convergence,
although passing the test does not necessarily guarantee it (see
Materials and methods) (Gelman and Rubin, 1992; Brooks and
Gelman, 1998). The importance of convergence is illustrated
by the difference in parameter distributions recovered by
convergent and non-convergent walks (Supplementary
Figure 2). To improve convergence, a wide variety of ‘adaptive’
methods have been developed based on varying step size and
biasing walks in certain directions (Gilks et al, 1996).
A drawback of some adaptive MCMC approaches is that they
alter the proposal distribution (which determines how the next
step is taken) over the course of a walk and therefore have the
potential to violate the stationarity requirement of M–H
sampling. We sought a middle ground between stationarity
and efficiency by performing MCMC walks in which ‘Hessian-
guided’ adaptive moves (see Materials and methods) were
performed once every 25 000 steps. Under these conditions all
parameters in EARM1.3 reached convergence by Gelman–
Rubin criteria. We also attempted to reach convergence
without Hessian guidance by increasing the number of steps
in a conventional MCMC walk to41.5�106; in this case 70/78
parameters converged (Table I). We discuss the technical but
very important issues associated with normal and adaptive
walks in the Materials and methods. Future users of our
methods should note that approaches for achieving and
demonstrating convergent sampling in MCMC walks remains
an active area of research and improvements are likely.

Choosing priors

Pre-existing knowledge about parameters is incorporated in
‘prior distributions’ that bias sampling of posterior landscapes

to values observed in earlier work or otherwise thought to be
reasonable. With a biochemical system that is well studied,
relatively narrow priors derived from in vitro data might make
sense. However, in the current work we took a more
conservative approach and used broad priors derived from
physiochemical constraints likely to pertain to most biochem-
ical reactions (use of narrower, specific priors would only
serve to make calculations easier). In general, we favor soft
constraints involving Gaussian priors over hard constraints.
Although rate constants in a biochemical model pertain to
physical process, many are actually ‘lumped’ or ‘effective’
rates in the physicochemical sense: the reactions they describe
are comprised of a series of elementary association–
dissociation reactions that cannot be distinguished. For an
effective rate, a hard constraint is overly restrictive. We picked
a prior for the on-rate of protein–protein binding centered at
B107 M� 1 s� 1, which does not violate diffusion limits and is
B10-fold higher than theoretical values estimated by discrete
simulation of linearly and rotationally diffusing bodies
(Northrup and Erickson, 1992). Other plausible priors,
corresponding to the mean values and variance for on-rates
and off-rates, protein–protein binding constants and catalytic
rate constants were obtained from a literature search (Table II).
Because these include a mix of in vitro and in vivo values, they
represent conservative estimates for possible parameter values
(s.d.’s were B102) and should be generally useful for other
models in the absence of more specific prior information.

To evaluate the impact of priors on parameter estimation, we
compared five independent Hessian-guided MCMC searches
that incorporated either of two priors. The first was a uniform
prior in which log(prior) was a constant (the actual value is not
significant); this is equivalent to sampling in proportion to the
likelihood. The second was a prior involving 78 independent
Gaussian distributions, each having a mean and s.d. based on
a literature value appropriate for that type of parameter. With a
uniform prior, we observed that only a subset of parameters
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Figure 3 Parameter covariation is an important type of information recovered by model calibration. (A) A parameter vector drawn from the peak of the joint posterior
distribution (corresponding to a best-fit parameter vector) does not always have components whose values correspond to the peaks of the corresponding marginal
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converged whereas all converged with the literature-based
prior. The literature-based prior had the added benefit of
minimizing the frequency with which EARM1.3 ODEs failed to
integrate. MCMC walks with a uniform prior often ventured
into regions of parameter space where numerical integration
was not possible, presumably because the system of equations
was too stiff. Conversely, we speculate that integration
problems are minimized when parameter values at the
extremes of the distribution are de-emphasized via the use of
a log-normal prior, a potentially significant benefit.

Properties of the posterior landscape

It is a basic property of Bayesian estimation that when
posterior distributions are unchanged relative to prior dis-
tributions, little information is added by data. Inspection of
individual (marginal) posterior distributions for EARM1.3
revealed that many were similar to the prior, implying that
model calibration did not add significant new information.
However, calibrated parameters exhibited significant covaria-
tion whereas distributions in the prior were independent. How
much information is contained in this pattern of covariation?
To begin to address this question, we selected a parameter
vector (k1y.k78) from the set of best fits arising from the joint
posterior distribution and then projected the values of the
individual component parameters to form the corresponding
marginal distributions. In Figure 3A we see that the first
parameter (indicated in red) from a typical best-fit vector has a
value near the mean of the marginal posterior distribution for
k1 (green; this must be true because the k1y.k78 vector was
selected based on this property) but other well-constrained
parameter values such as k36, k64 and k73 lie well away from
the means of their marginal distributions (this was true for all
other vectors sampled from the posterior distribution; the
same phenomenon is shown in Box 2). This makes clear that
the peak of the 78-dimensional joint posterior distribution
does not project onto the peaks of the marginal distributions.
This is also true of the mean of the joint posterior and the
means of the marginal distributions. The key point is that the

best parameter estimates lie at the peak of the joint distribution
and we cannot tell where this lies based on looking at marginal
distributions individually.

To investigate the impact of parameter covariation on
model-based prediction, EC-RP trajectories were simulated
using parameter vectors derived from the posterior distribu-
tion using different sampling procedures. Vectors sampled
from the manifold of the joint posterior distribution yielded a
good match to experimental data as expected (‘manifold
sampling’; Figure 3B). However, parameters sampled inde-
pendently from marginal distributions (i.e., ignoring covaria-
tion) yielded a poor fit to experimental data (‘independent
sampling’; Figure 3B). To assess whether the observed
covariation could be captured in a compact manner, we
computed a 78� 78 covariance matrix for pairs of EARM1.3
parameters and generated a corresponding multivariate

Table I Improved chain convergence using Hessian-guided MCMC searches

Fraction of parameters that convergeda

MCMC stepsb 1150 000 1000 000 750 000 500 000 100 000 50 000

Hessian
guidedc

78/78 77/78 73/78 70/78 40/78 21/78

Non-guidedd 65/78 62/78 55/78 50/78 24/78 12/78

aAverage number of parameters for which convergence was achieved for a series
of 10 MCMC walks after the indicated number of steps.
bNumber of MCMC steps in a chain.
cMCMC chains guided by the Hessian.
dMCMC chains not guided by the Hessian.

Table II Prior of log of parameter values derived from literature

Forward, first
order (s� 1)

Forward, second
order (M� 1 s� 1)

Reverse, first
order (s� 1)

Catalytic
(s� 1)

Mean � 1.5 � 6.0 � 1.8 0.02
Variance 1.4 1.3 1.2 1.2
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Figure 4 Using parameter vectors obtained by three different sampling
methods to make model-based predictions of the time between ligand exposure
and caspase activation (Td) or between initial and complete PARP cleavage (Ts),
computed using parameter vectors sampled from (A) the joint posterior
distributions obtained from the MCMC walk; (B) a multivariate log-normal
distribution with mean and covariance computed from the MCMC walk;
(C) independent log-normal distributions with means computed from the MCMC
walk. Mean values (blue dotted line) and estimated 90% (black dotted lines, gray
area) and 60% confidence intervals are shown (green dotted lines, light green
area along with experimental data (red). PSRF values obtained via the Gelman–
Rubin convergence test for these predicted model features ranged between
1.0001 and 1.0442 for Td and 1.0015 to 1.0343 for Ts.
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Gaussian distribution (Klinke, 2009) (‘covariance matrix
sampling’; Figure 3B). In this case, simulated EC-RP trajec-
tories had as poor a fit to data as trajectories generated by
independent sampling.

These findings imply that a significant fraction of the
information added to the posterior by calibration against data
involves the discovery of non-linear covariation among
parameters and this cannot be captured by a covariance
matrix. To further illustrate that this information is important,
we selected 10 parameters for which the difference between
prior and posterior marginal distributions was the least
significant (based on a t-test for the means and variances).
The 10 selected parameters would conventionally be flagged as
ones in which calibration had added little or no information.
We then fixed the other 68 parameters at their maximum a
posteriori (MAP) values and generated 103 vectors by sampling
the 10 selected parameters from independent marginal
distributions. EC-RP trajectories were simulated and the
� ln(posterior) of values were computed. The resulting values
for the posterior were dramatically lower than the values of
the posterior resulting from parameter vectors obtained by
sampling from the complete 78-dimensional posterior
(Supplementary Figure 3 and Figure 3B). This demonstrates
that even when the prior and posterior distributions appear
nearly identical, calibration adds essential information on the
relationships among parameters.

From these observations we conclude that: (i) non-linear
covariation in parameters, as captured in the joint posterior
distribution, contains critical information, (ii) the most
probable values for individual parameters do not correspond
to values in best-fit vectors and (iii) treating parameters as
independent values, as in a table, or approximating their
relationships linearly, as in a covariance matrix, destroys
information necessary for accurate model-based prediction.
We can understand this conceptually by referring to the
landscape of k1 and k2 (Figure 2); it is evident that the
true relationship between the parameters is not constant
but instead varies across the landscape in a complex
non-linear manner. These considerations seem rather
technical at first, but they have profound implications for the
ways in which model parameters are recorded and used (see
Discussion).

Using parameter distributions in simulation and
prediction

Estimation of parameter distributions makes it possible to
account for both measurement error and parameter non-
identifiability, when making model-based predictions. For
cells exposed to a range of TRAIL concentrations, we
computed two descriptors of apoptosis known to be physio-
logically significant for many cell types (Albeck et al, 2008b;
Aldridge et al, 2011): (i) the time interval between the addition
of TRAIL and half-maximal cleavage of the caspases substrates
whose proteolysis accompanies cell death (i.e., the mean and
variance in Td) and (ii) the interval between initial and final
cleavage of effector caspases (C3*), which captures the
rapidity of death (the mean and variance in Ts (Albeck et al,
2008b)). EC-RP trajectories for cells treated with 50 ng ml� 1

TRAIL were used for model calibration and Ts and Td values
were then predicted for 10, 250 and 1000 ng ml� 1 TRAIL.
Simulations were performed by sampling 1000 parameter
vectors Y from the posterior distributions arising from two
independent MCMC chains and computing trajectories for
each Y. These predictions comprised probability density
functions rather than single values and we therefore calculated
60 and 90% confidence intervals. We observed that the mean
value of Td fell with increasing TRAIL concentrations while Ts

remained essentially constant, in line with experimental data
(Figure 4A). Moreover, distributions had the satisfying
behavior of having narrow confidence intervals at the training
dose and progressively wider intervals at higher and lower
doses. This illustrates two closely related points: first, quite
precise predictions can be made from models despite
parameter non-identifiability (Gutenkunst et al, 2007; Klinke,
2009) and second, Bayesian sampling makes it possible to
compute rigorous confidence intervals for predictions that
account for experimental error and our lack of knowledge
about parameters. However, this requires that we correctly
account for covariation in parameter estimates: independent
and covariance matrix sampling of parameters dramatically
impaired the ability of EARM1.3 to predict accurate values for
Ts and Td (Figure 4B and C).

Model discrimination based on computing the
Bayes factor

Although the scheme described above represents a principled
way to manage parametric uncertainty, it does not account for
uncertainty in the structures of reaction networks. We focused
on uncertainty involving pore formation by Bcl2-family
proteins during MOMP (Lovell et al, 2008; Chipuk et al,
2010; Leber et al, 2010). EARM1.3D instantiates a ‘direct’
model in which MOMP activators such as tBid (Figure 5A, red
lozenges) positively regulate Bak/Bax pore-forming proteins
(green), and Bcl2, BclXl and Mcl1 inhibitors (yellow) block
this activation (these proteins are themselves antagonized by
the sensitizers Bad and NOXA). EARM1.3I instantiates an
‘indirect’ model in which Bak/Bax are always active but are
held in check by Bcl2-like inhibitors, whose activity in turn is
antagonized by tBid, Bad and NOXA (Figure 5A). These
models represent only two of several possibilities for direct and
indirect regulation of MOMP, but the important point for the
current work is that they have distinct topologies and different
numbers of parameters (88 for EARM1.3I and 95 for
EARM1.3D).

When we compared trajectories for EC-RP simulated using
EARM1.3I or EARM1.3D to experimental data, we observed
equally good fits, meaning that the models cannot be
discriminated based on a maximum likelihood (Figure 5B).
To compare the models in a Bayesian framework, we applied
Bayes theorem at the level of models:

PðMi j dataÞ¼ Pðdata j MiÞPðMiÞ
Pðdata j M1ÞPðM1ÞþPðdata j M2ÞPðM2Þ

where i¼ 1; 2

ð1Þ

where ‘data’ refers to experimental measurements against
which the objective function was scored (EC-RP trajectories in
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the current case). M1 refers to the direct model and M2 to the
indirect model, and as both have literature support we
assumed that the models are a priori equally plausible:
P(M1)¼P(M2) (this represents the most conservative assump-
tion). Then, Equation 1 simplifies to:

PðM1 j dataÞ
PðM2 j dataÞ ¼

Pðdata j M1Þ
Pðdata j M2Þ

¼
R

dY1 L1 data j Y1ð Þp Y1 j M1ð ÞR
dY2 L2 data j Y2ð Þp Y2 j M2ð Þ

ð2Þ
where Y1¼ (y1

y y95) and Y2¼ (y1
y y88) are, respectively,

the parameter vectors for models M1 and M2, yi�log10(ki)
where ki is the ith parameter of a particular model (all
calculations are performed in log space), Li(data|Yi) is the
likelihood function, and p(Yi|Mi) is the prior for the
parameters of model Mi. This ratio is known as the Bayes
factor and represents the odds ratio of one model being correct
over another (Kass and Raftery, 1993; Gelman and Meng,
1998), and has been used for discriminating alternate models

of cross-talk in ERK and cAMP signaling (Xu et al, 2010). Both
the numerator and the denominator comprise two high-
dimensional integrals that represent the overlap volume
between a likelihood (L(data|Y)) and the prior for each model
(p(Y|M)). This overlap integral is also known as the evidence.
The Bayes factor not only accounts for all plausible parameters
based on their likelihood, it also has a built-in ‘Occam’s razor’
that explicitly accounts for the possibility that the two models
have different numbers of parameters (see Discussion for
details) (MacKay, 2004).

We computed the integrals in Equation 2 using a method
known as thermodynamic integration. This transforms the
problem of evaluating high-dimensional integrals into a
problem involving a one-dimensional sum over quantities
sampled from a series of MCMC walks. Sampling is weighted
by a power posterior that depends on a fictitious temperature
factor ranging from a value of 0 to 1 (Gelman and Meng, 1998;
Lartillot and Philippe, 2006; Friel and Pettitt, 2008). For each
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Figure 5 Discriminating between direct and indirect models of mitochondrial outer membrane permeablization. (A) Graphical depictions of potential indirect and direct
mechanisms controlling pore formation by Bax and Bak. See text for details. (B) Both EARM1.3I indirect (red) and EARM1.3D direct (blue) models exhibited an excellent
fit to experimental EC-RP trajectories. Thus, the models cannot be distinguished by simple maximum likelihood criteria. For simplicity, simulations were based on a single
best-fit parameter vector. (C) Thermodynamic integration curves for the direct and indirect model. (D) Exponentiation of the differential area in the two thermodynamic
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Bayes factor estimate (reflected in the error bars in C) the direct model is preferred to the indirect by a weight of B20, with the 90% confidence interval spanning a range
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suggesting that it is consistent with the data over a larger volume of parameter space and therefore exhibits greater statistical weight.
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model, three MCMC chains were run at 29 temperatures
between 0 and 1. The quantity ln(likelihood) was averaged
with respect to the power posterior at each temperature and
over three chains, resulting in two curves, one for each model
(Figure 5C; see Materials and methods for more details). The
ratio of the areas under each curve converges to the logarithm
of the Bayes factor. Because thermodynamic integration is a
sampling method, the computed Bayes factor is subject to
sampling error and must be expressed as a confidence interval.
We computed the uncertainty on the areas returned by
thermodynamic integration by estimating the variance at each
point of the curve to generate a two-tailed confidence interval.
This allowed us to conclude with 90% confidence that the
direct model is 16–24 times (e2.8 to e3.2) more likely than the
indirect model (Figure 5D).

We can better understand how the Bayes factor scores
models by examining the landscape of the objective function.
We approximated the landscape as an n-dimensional ellipsoid
(where n refers to the number of parameters in each model) by
using a Taylor series at a best-fit position in parameter space.
This makes it possible to describe the landscape in terms of an
ellipsoid the length of whose axes are inversely proportional to
the square roots of the eigenvalues of the second-order term of
the Taylor expansion (i.e., the Hessian). The direct model had
more small eigenvalues than the indirect model (i.e., longer
axes) and thus a greater volume of equally good parameters
(Figure 5E). The notion that a model is more probable if more
parameters give a good fit is frequent if informally applied,
when models are ranked based on their ‘robustness’ with
respect to parameter variation (Chen et al, 2007b). It is also
intuitively appealing: a model that performs well only over a
narrow range of parameter values which are otherwise
unknown is less probable than a model that is tolerant of
variation. Such reasoning is also related, conceptually, to
maximum entropy and minimum information approaches
(see Discussion).

Discussion

In this paper we describe a Bayesian framework for estimating
free parameters in ODE-based biochemical models, making
probabilistic predictions about dynamical variables and discri-
minating between competing models having different topologies.
We illustrate the use of this approach with a previously validated
and non-identifiable model of receptor-mediated apoptosis in
human cells (EARM1.3). Rather than return a single set of ‘best
fit’ parameters, Bayesian estimation provides a statistically
complete set of parameter vectors k that samples the posterior
parameter distribution given a set of experimental observations
(time-lapse data from live cells in the current case) and a value
for experimental error. Estimation starts with a best-guess initial
distribution (the prior), which is then modulated by a sum of
squares log-likelihood function that scores the difference
between model and data (Box 1). Recovery of the posterior
parameter distribution makes it possible to compute confidence
intervals for biologically interesting properties of the model (time
and rapidity of apoptosis in the current case). These confidence
intervals correctly account for measurement noise and para-
metric uncertainty, and can be remarkably precise in the face of
substantial non-identifiablility (Klinke, 2009). Simulations that

include confidence intervals represent an advance on the
prevailing practice of relying on error-free trajectories computed
using a single set of maximum likelihood parameter values.

We also used Bayesian procedures to discriminate between
competing direct and indirect models of MOMP, a key step in
apoptosis. Discrimination involves estimating the evidence for
the indirect model P(MI|data) divided by the evidence for the
direct model P(MD|data), a ratio known as the Bayes factor
(Kass and Raftery, 1993, 1995; Xu et al, 2010). Bayesian
approaches to model discrimination account not only for
uncertainty in parameter values but also for differences in the
numbers of parameters. This is important because models that
instantiate different hypotheses about biochemical mechan-
ism usually have different numbers of parameters even when
the number of unique model species is the same. The
complexity penalty embedded in the Bayes factor represents
a generalization of the Akaike or Bayesian Information Criteria
(AIC and BIC) commonly used to score model likelihoods
(Kass and Raftery, 1995).

In the case of MOMP, we observed that both direct and
indirect models fit experimental data equally well and, thus,
cannot be distinguished on a maximum likelihood basis.
However, computation of the Bayes factor revealed the direct
model to be B16–24 times more probable than the indirect
model at 90% confidence, reflecting the greater range of
parameter values compatible with the direct model. This
formalization of a ‘robustness’ criterion for preferring the
direct model is consistent with recent experiments obtained
from engineered cell lines (Chipuk et al, 2010). With respect to
the biological significance of this finding, however, it is
important to note that published indirect and direct ‘word
models’ are compatible with many different ODE networks.
Thus, it will ultimately be necessary to distinguish among
extended sets of competing models, not just the two presented
here. With improvements in computational speed, methods
for calculating the Bayes factor using ‘thermodynamic
integration’ are well suited to this task.

Properties of the posterior distribution and
implications for reporting parameter values

With EARM1.3, Bayesian estimation reveals substantial
differences from one parameter to the next in the degree of
identifiability (as reflected in the widths of the parameter
distributions). This is expected given previous work showing
that biochemical models are ‘sloppy’ (Gutenkunst et al, 2007)
even when calibrated against ‘complete’ data on all dynamic
variables (which is not the case in the current work). A basic
property of Bayesian estimation is that the posterior will
resemble the prior when data provide little or no additional
information. Conversely, when the data are informative, the
shape of the posterior will differ substantially from that of the
prior. In the case of EARM1.3 modal values for posterior
distributions differed from the priors for about one-third of all
parameters while still falling within a biophysically plausible
range (with rate constants below the diffusion limit, for
example). The exact shape of the prior did not appear to be
critical in achieving convergent sampling, a fortunate outcome
since we used general-purpose priors applicable to all cellular
functions rather than priors derived from specific analysis of
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apoptosis proteins. One mistake we learned to avoid was
constraining the MCMC walk to a fixed interval around
nominal parameter values; such hard limits result in artifi-
cially truncated marginal distributions. Gaussian priors also
had the benefit of improving the fraction of parameter sets for
which the EARM1.3 ODE system could be integrated.

It is incorrect to judge the impact of parameter estimation
(i.e., what we learn by comparing models to data) simply by
examining the shapes of individual parameter distributions:
several lines of evidence show that marginal distributions
contain only part of the information. Non-linear covariation
among parameters accounts for the rest; it is necessary for
accurate model-based simulation and cannot be approximated
by a covariance matrix. The reasons for this are evident from
inspection of the landscape of the objective function. The
landscape is steep (the eigenvalues of the Hessian matrix are
high) in directions that do not point directly along raw
parameter axes (Gutenkunst et al, 2007). Thus, identifiable
features of the systems correspond to ratios of rate constants
(this is the basis of parameter covariation) but the value of the
ratio varies through parameter space (this gives rise to curved
high-probability valleys that are not well approximated by
lines). By direct analogy, the identifiable parameter in a
Michaelis–Menten treatment of a simple catalytic reaction is
KM, a ratio of rate constants, rather than kf or kr themselves
((Chen et al, 2010) see also Box 2). When parameters in a model
are highly covariant, it is almost always the case that the system
can be described with a simpler model involving a smaller set of
more identifiable parameters. In many applications in engineer-
ing it is desirable to use such reduced models, but in the case of
biochemistry, parameter non-identifiability and high covariance
appear to be the cost of representing systems as sets of
reversible mass-action reactions. Under the assumption that
mass-action kinetics (and also stochastic kinetics obtained by
solving the chemical master equation) are uniquely appropriate
as a means to describe the physics of biochemical systems, we
are forced to use models such as EARM1.3. However, there is no
reason, from a physical perspective, to believe that proteins
in a network that do not actually bind to each other alter
each other’s rate constants. Thus, the presence of highly
covariant parameters in best-fit vectors is not a property of the
underlying biochemistry: instead, it represents a limitation on
our ability to infer the properties of complex reaction networks
based on the time-course data we typically acquire.

One consequence of parameter covariation in EARM1.3 is
that parameter values in best-fit vectors do not correspond to
the means of marginal parameter distributions, and sampling
the means of marginal distributions does not result in a good
fit. It is common practice in biochemical modeling to report
parameters as a table of single values (with no allowance for
non-identifiablility) or as a list of means and ranges. If these
parameters are derived from calibration, critical information
on covariation is lost. It is therefore necessary to report the
actual vectors recovered by sampling the posterior parameter
distribution. In principle, this is an array of size (C�M)� (
Nþ 1) where C is the number of MCMC chains, M the number
of steps, and N the number of parameters (Nþ 1 appears
because we record a posterior value for each N-dimensional
vector) corresponding to B1.5�108 entries for EARM1.3.
However, steps in MCMC chains have characteristic

‘decorrelation lengths’ over which parameter values vary
relatively little (B102–104 steps, depending on the parameter).
Thinning by this amount yields an array of B104–106 entries,
still a much more complex representation of parameters than
the simple tabular summary assumed by current standards
such as SBML. It is also important to note that the posterior
landscape needs to be revisited repeatedly when adding new
data or extracting new hypotheses. In this sense, parameter
estimates are best viewed as computational procedures and
sets of possible values rather than fixed information.

Model discrimination in the Bayesian framework

A solid theoretical foundation and large body of literature
speaks to the value of Bayesian frameworks for analyzing
models having different numbers of uncertain parameters
(Kass and Raftery, 1995; MacKay, 2004; Xu et al, 2010). The
Bayes factor described here, the odds ratio for competing
models (i.e., the ratio of the evidence), is computed from an
overlap integral between a likelihood and a prior (that is
L(data|Y) and p(Y|M)). At first glance it might seem that
making a model more complex would increase the number of
dimensions and always increase the evidence, but a simple
example shows that this is not the case. Consider a pair of one-
and two-parameter models of the same hypothetical physical
process and a function f that is the ratio of relevant likelihoods:
f(k1,k2)¼ L(k1,k2)/L(k1). The evidence for the one-parameter
model is the overlap integral between its likelihood and a
normalized prior

R
dk1 L(k1)p(k1) and for the two-parameter

model it is
R

dk1 dk2 L(k1,k2)p(k1)p(k2). In the case where
f(k1,k2)o1 for all k1, k2 the likelihood of the two-parameter
model is no better than that of the simpler one-parameter
model (note that the evidence for the two-parameter
model is

R
dk1 L(k1)p(k1)g(k1) where the function g(k1)¼R

dk2 p(k2)f(k1,k2) must be less than 1 everywhere, as the
priors are normalized to 1). The evidence for the two-
parameter model will therefore be less than the evidence for
the one-parameter model, meaning that it will lose out in a
Bayes factor comparison, as it should.

When the function f(k1,k2)41 then it must be true that
introduction of a second parameter ‘rescues’ or ‘lifts’ the
likelihood function by improving the fit to data. In this case,
the more complex model will have greater evidence. In the
special but interesting case where f(k1,k2)¼ 1 for all k1, k2,
model 2 is completely insensitive to the new parameter. The
presence of a parameter with respect to which a model is
completely insensitive has no impact in model assessment (the
Bayes factor is one). Finally, in the general case where f(k1,k2)
has values both above and below 1, explicit integration is
needed to determine which model is favored, precisely what
we do in this paper.

The Bayes factor is not unique as a means to
balance goodness-of-fit and model complexity. The most
commonly used metrics are the AIC and the BIC (Akaike,
1974; Schwarz, 1978):

AIC¼ � 2 logðMLÞþ 2n BIC¼ � 2 logðMLÞþn logðNÞ

where n is the number of parameters, ML is the maximum
likelihood value, and N is the number of data points (ML is
simply the highest value achieved by the likelihood function).
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AIC and BIC do not explicitly account for parameter non-
identifiability and the two metrics are therefore good for
comparing models only in the ‘asymptotic’ limit where the
number of experimental data points becomes ‘large’ and
identifiability is ‘greater’ (Akaike, 1977, 1983; Kass and
Raftery, 1995). It is rare in the field of biochemical modeling
to explicitly check whether the conditions for computing the
AIC and BIC are valid and, in our experience, they are
frequently violated. In contrast, the Bayes factor is applicable
even with limited data and reduces to the BIC and, under some
conditions, to the AIC in the asymptotic limit (Akaike, 1977,
1983; Kass and Raftery, 1995). Moreover, whereas the AIC or
BIC compare models solely on the basis of goodness-of-fit,
Bayesian methods allows formal introduction of a prior degree
of belief in each model. An arbitrary model (i.e., a physically
impossible model) exhibiting a better fit to data might get a
better AIC or BIC score than a more realistic mechanistic
model, but in a Bayesian approach it would receive a low prior
value. We therefore consider evaluation of the Bayes factor to
be a better way than AIC or BIC to compare models when
models have different numbers of non-identifiable parameters
and data are limited.

Limitations of the approach

The computational approach described here has several
practical and algorithmic limitations, albeit ones that can be
mitigated with further work. A practical concern is that current
methods for computing the Bayes factor are too slow to
incorporate the full range of data we have collected from cells
exposed to drugs, siRNA-mediated protein knockdown and
ligand treatment. Using only a subset of available training
data, computing the Bayes factor for EARM1.3 required
B6�104 CPU-hr (4 weeks on a 100 core general-purpose
computer cluster). It should be possible to improve this by
optimizing the code (e.g., porting it from MatLab to C/Cþþ )
and performing multiple analyses in parallel. It also remains to
be determined how inclusion of more calibration data will alter
the topology of the posterior landscape. It may become more
rugged, decreasing the requirement for Hessian guidance
during MCMC walks but increasing the need for simulated
annealing (SA) to move out of local minima. Readers
interested in these developments should check our Github
repository or contact the authors directly.

An additional conceptual concern with the current work
involves the way in which MCMC walks sample the posterior
landscape. To establish that sampling is correct, it is necessary
to show that chains starting at independent positions
converge. Convergent sampling is not an abstruse point
because probability distributions can differ in shape and
modal value, when sampling is convergent as opposed to non-
convergent. With EARM1.3 we observed that convergence was
not possible in a reasonable amount of time (e.g., a week-long
cluster-based calculation) using a conventional MCMC walk.
We therefore used an adaptive walk involving periodic
recalculation of the local landscape as a means to guide
MCMC walks and improve convergence. However, this
approach may violate the detailed balance requirement of
M–H sampling. With large models and existing methods, we

are therefore in the position of having to choose between
convergent Hessian-guided chains and partially non-conver-
gent, conventional chains ((Klinke, 2009) chose the latter
alternative). Moreover, using the Gelman–Rubin test to judge
convergence has the weakness that it is one-sided: failing the
test demonstrates non-convergence but passing the test does
not guarantee it. Analysis of posterior distributions for
EARM1.3 computed in different ways suggests that we are
on relatively solid ground in the current paper (we did not
observe significant differences in posterior distributions using
different sampling approaches), but the development of
methods for analyzing MCMC walks represents an active area
of research in applied mathematics and it is necessary to be
aware of future developments.

For reliable, probabilistic model-based simulation, we also
need to consider the fact that the sufficiency of sampling is
contingent not only on the model structure and available
training data, but also on the types of predictions being sought.
Assuming convergence, the posterior landscape sampled by
multi-start MCMC walks represents a reasonable approximation
to the true but unknown posterior distribution of the parameters,
but the same is not necessarily true for predictions or simulated
trajectories based on these parameters: the posterior landscape
may be poorly sampled in regions of parameter space that have a
significant impact on some simulations. In the current work we
show that MCMC chains used to predict Ts and Td satisfy the
Gelman–Rubin test, but this is a weak criterion and importance
sampling using umbrella, non-Boltzmann or other methods
(Allen and Tildesley, 1987) will generally be necessary to revisit
regions of the landscape that have low posterior values but
contribute strongly to the distribution of a prediction. This
suggests a workflow in which MCMC walks based on calibration
data (as described here) are only the first step in model
calibration. Inclusion of any new training data mandates a new
round of estimation. Additional sampling should also be
performed as required by importance sampling to reliably
inform predictions. Finally, the use of formal methods for
modeling experimental error (Jaqaman and Danuser, 2006)
should make it possible to distinguish errors arising from photon
noise, infrequent sampling, incorrect normalization, etc, thereby
improving the comparison between data and simulation.

Conclusions

The ubiquity of Bayesian methods in other scientific fields has
motivated multiple, parallel efforts to apply the approach to
biochemical models (Flaherty et al, 2008; Calderhead and
Girolami, 2009; Klinke, 2009; Xu et al, 2010), but significant
challenges have remained with respect to development of
widely available methods for discriminating between compet-
ing models. The algorithms and open-source code described in
this paper enable a rigorous approach to estimating the
parameters of non-identifiable biochemical models, making
model-based predictions probabilistic, and using the Bayes
factor to distinguish between models with different topologies
and numbers of parameters. The generic priors we report are a
good starting point for estimating forward, reverse and
catalytic rates in any mass-action model of cellular biochem-
istry, but in some cases it makes more sense to substitute
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narrower and more specific priors derived from previous
studies in vitro and in vivo; such specific priors better capture
pre-existing knowledge, improve parameter estimation and
speed of computation. It is our opinion that application of
rigorous probabilistic analysis of biochemical models will
advance the long-term goal of understanding complex
biochemical networks in diverse cell types and disease states
(Klinke, 2009; Xu et al, 2010). Preliminary application of
Bayesian reasoning suggests that some long-standing disputes
about cell signaling can be laid to rest, (e.g., direct versus
indirect control of MOMP), whereas others truly cannot be
discriminated based on available data.

Materials and methods

Experimental data

All data were obtained by live-cell fluorescence microscopy of HeLa
cells stably transfected with vectors expressing IC-RP and EC-RP as
reported previously (Albeck et al, 2008a). Apoptosis was initiated
by adding media containing 50 ng ml� 1 TRAIL and 2.5mg ml� 1 cyclo-
heximide.

Model and algorithm

The model in this paper, EARM1.3, was first described by Albeck et al
(2008a,b). EARM1.3 as used in the current work differs from the
original model in its inclusion of synthesis and degradation reactions
for all species and its use of different nominal parameter values
(Spencer et al, 2009). A summary of the algorithm is found in
Supplementary Figure 4 and explained in detail below.

Initiating MCMC chains
Three to five independent MCMC chains were run simultaneously on a
cluster computer. Each chain started at a random initial position in
parameter space. These initial positions were obtained by multiplying
the log of the nominal parameter values by a random number drawn
from a uniform distribution between � 1 and 1, in effect yielding a set
of parameters 10-fold lower or higher than the nominal values. In log
parameter space, the starting position is a point randomly chosen
within a box of dimension 78 and sides of length 2. The box is centered
on the nominal values, which are those reported in work on the
original EARM model (Albeck et al, 2008a). The acceptance rate
averaged over all chains wasB0.15–0.19. Prior work on optimal
jumping rates suggests the optimal rate is 0.234 for certain asymptotic
conditions and assumptions of the target distribution (Gelman et al,
1996). However, the same work noted that 0.5 is ‘reasonable’ and
achieves 75% maximal efficiency. We have not determined the degree
to which our system and procedures satisfy the various conditions of
the theoretical optimum. Improvement in this aspect of the algorithm
is therefore possible.

Simulated annealing
For the first 10% of the MCMC algorithm, SA was used to bring the
chains from random initial starting points to points having high
posterior values. The temperature of annealing was lowered according
to the exponential function T¼T0e

(�Decay rate*Step number), where T0 is
the initial temperature (set to a value of 10), step number refers to the
MCMC step number and decay rate is the rate of exponential decay,
chosen so that the time constant of the decay is 30% of the number of
steps between Hessian calculations (25 000 steps; see below). The
temperature is reduced until it reaches a value of 1. During SA, new
parameter vectors are chosen by taking a step lying on the unit sphere
with radius of size 0.75, centered on the current position. The radius
size was heuristically determined by systematic exploration of
different sizes and choosing the one that showed the most rapid and

greatest success in posterior maximization. After SA is complete, the
Hessian guides the determination of new parameter vectors.

Adaptive MCMC walks
Among the adaptive approaches we tried, the one that showed the
greatest improvement with EARM1.3 involved taking large steps in flat
directions and small steps in steep directions based on calculating the
curvature of the local landscape using the Hessian (represented by
yellow ellipses in Figure 2A; Table I). Hessian guidance improved
convergence with EARM1.3 particularly when MCMC chains had to
pass through saddle points or flat regions of the landscape. A drawback
of some adaptive MCMC approaches is that they alter the proposal
distribution (which determines how the next step is taken) over the
course of a walk and this has the potential to violate stationarity
(Muller, 1991; Atchade and Rosenthal, 2005; Andrieu and Moulines,
2006), a necessary condition for correct sampling of posterior
distributions. Klinke and colleagues (Haario et al, 2001; Klinke,
2009) have proposed an alternative adaptive strategy that uses
information acquired during the entire MCMC walk to construct a
proposal distribution that converges to a distribution related to the
Fisher information matrix. This scheme retains the properties of
stationarity and provable convergence but only improves performance
early in a walk. Later, if the local landscape differs substantially
from the converged proposal distribution, walks become less and less
efficient, and chain convergence more difficult to achieve. We
therefore performed MCMC walks in which the Hessian was
recalculated once every 25 000 steps. Under these conditions all
parameters in EARM1.3 reached convergence by Gelman–Rubin
criteria; without Hessian guidance and a conventional MCMC walk
of 41.5 �106 steps, 70/78 parameters converged (Table I). Among the
convergent parameters, we could detect no significant difference in the
marginal posterior distributions obtained with and without Hessian
guidance using a two-sample Kolmogorov–Smirnov test (Massey,
1951). We conclude that our procedures adequately estimate the
posterior distribution of EARM1.3 but a tradeoff clearly exists between
greater rigor in the sampling procedure (no local adaptation) and
ensuring convergence for all parameters.

Hessian-directed search
To improve the performance of the MCMC search algorithm, we
developed a procedure for taking large steps in directions in which the
local landscape is flat and small steps in directions in which the
landscape has large curvature as determined by a Hessian decom-
position at selected positions in parameter space. These positions are
defined by the parameter vector Y�(y1, y, y78) (we performed all
calculations in log10 space). The Taylor series expansion around a
position Yhess is the following:

lnðpostðYÞÞ¼ lnðpostðYhessÞÞþ ðY�YhessÞTr lnðpostðYÞÞ

þ 1

2
ðY�YhessÞTHðY�YhessÞþOðd3Þ

Here, Y is a position in parameter space close to Yhess;
r lnðpostðYÞÞ and H are a central-difference gradient vector and the
Hessian, respectively, evaluated at Yhess; and d is the magnitude of
Y–Yhess. To determine whether this expansion is a good approxima-
tion to ln(post(Y)), we calculated the correlation coefficient between
Dtrue and Dpredicted, where these quantities are defined by

Dtrue¼ lnðpostðYÞÞ� lnðpostðYhessÞÞ

Dpredicted¼ðY�YhessÞTr lnðpostðYÞÞþ 1

2
ðY�YhessÞTHðY�YhessÞ

The Hessian at the position Yhess is decomposed into the form
H¼ULUT, where L is a diagonal eigenvalue matrix and U is a
corresponding orthonormal eigenvector matrix. By sampling points on
an ellipsoid with major axes that are the eigenvectors of the Hessian
and with length 10% of the corresponding inverse square root of the
eigenvalues around the central point, we observed a Pearson
correlation coefficient of 0.887. This suggests that the Hessian and
gradient matrices represent a good estimate of the true posterior,
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justifying our expansion of the objective function only to second order
(Supplementary Figure 5).

When SA is running, the Hessian matrix is not calculated and test
positions are generated as follows:

Ytest¼Yjþ
DY

DYk k ; whereDY¼ Z1; . . . ;Z78f g andZi : Nð0; 1Þ

Here, DY is a 78-dimensional vector with independent and normally
distributed components, Zi, normalized so that the magnitude of the
step size in log space is one. Once the periodic calculation of the
Hessian matrix is initiated during the MCMC walk, we use its
eigenvectors to direct the walk onto a new set of orthogonal axes by
repeatedly obtaining new test positions of the following form:

Ytest¼Yjþ
X78

i¼ 1

Nð0; 1ffiffiffiffi
li

p Þui

where ui and li are the ith eigenvector and eigenvalue, respectively,
and N(0,s) is a random value drawn from a normal distribution with
mean 0 and variance s. As the landscape is flat in most directions,
many of the eigenvalues are much less than one. To prevent the
algorithm from taking steps that are too large in any particular
direction, all eigenvalues o0.25 were set to 0.25, so that the variance
of the Gaussian distribution from which the new step size was chosen
was limited to a value of 2 in log space.

The entries of the transition matrix T(x-y) in our MCMC algorithm
are composed of a product of two terms: the probability of selecting a
particular transition between two states: m(x-y) and the probability
A(x-y) of accepting it (the M–H criterion):

Tðx!yÞ ¼mðx!yÞAðx!yÞ

The move is symmetric in that m(x-y)¼m(y-x) as it is guided by a
Hessian (kept constant for a window of 25 000 moves) centered on the
current position. These qualities ensure that (as long as the Hessian is
kept constant) the posterior distribution is the stationary distribution
of the MCMC chain. To test for convergence of chains, we rely on the
Gelman–Rubin criterion.

Gelman–Rubin convergence criterion
To obtain accurate probabilistic distributions, independent MCMC
chains must reach convergence, which can be assessed by a Gelman–
Rubin test (Gelman and Rubin, 1992; Brooks and Gelman, 1998). The
Gelman–Rubin test is conducted by calculating the potential scale
reduction factor (PSRF) for two chains. The PSRF value is given by the
following expression:

PSRF¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

n Wþ Mþ 1
nM B

W

s

Here B is the inter-chain variance, W is the intra-chain variance and
M is the number of parallel MCMC chains each of which have run for n
steps. In other studies, typically a PSRF value of o1.2 was used to
indicate convergence. In this work we defined convergence as
attaining a PSRF value of 1.1 or less. Table I shows that the parameters
in three parallel Hessian-guided MCMC random walks consistently
reach convergence before those in the classical MCMC random walk.

Computing the Bayes factor by thermodynamic
integration
Models were compared using the Bayes factor, a ratio of integrals that
can be computed in low dimensions fairly easily, for example, using
the Gauss–Hermite quadrature (Kass and Raftery, 1995; Gelman,
2004). However, in high dimensions quadrature is expensive and we
therefore turned to thermodynamic integration (Gelman and Meng,
1998; Lartillot and Philippe, 2006; Friel and Pettitt, 2008; Calderhead
and Girolami, 2009). Thermodynamic integration relies on a con-
structed relation known as the power posterior, which resembles the
overlap integral in the numerator or denominator in Equation 2 except
for the introduction of a fictious ‘temperature’ t, a power variable to

which the likelihood function is raised. Let us define z(t) by

zðtÞ �
Z

dY Lt data j Yð Þp Yð Þ ð3Þ

At t¼ 1, we recover the evidence (numerator or denominator in
Equation 2), whereas at t¼ 0 we obtain a value of 1 because the prior
distribution integrates to 1. The temperature factor serves to flatten the
likelihood function so that it resembles the likelihood and prior at t¼ 1
and 0, respectively. Then, by the fundamental theorem of calculus, we
obtain the following:

ln P data j Mð Þ¼ ln z 1ð Þ½ � � ln z 0ð Þ½ � ¼
Z 1

0

dt
d

dt
ln z tð Þ½ � ð4Þ

The integrand is explicitly differentiable in the temperature variable.

d

dt
ln z tð Þ½ � ¼

R
ln L data j Yð Þð ÞLt data j Yð Þp Yð ÞdYR

Lt data j Yð Þp Yð ÞdY ¼ ln L data j Yð Þð Þh it

The derivative is transformed into an average of the likelihood
function. The bracket average is obtained by sampling from a
temperature-dependent distribution (a normalized distribution that
we denote as Q), which can be simulated, in the same way as the
posterior, via convergent MCMC sampling. In particular, for any
function f, we let:

f Yð Þh it�
Z

dY Q Y ; tð Þf Yð Þ

Q Y ; tð Þ¼ Ltðdata j YÞpðYÞR
Ltðdata j YÞpðYÞdY

In this way, calculation of a high-dimensional volume is converted
into a one-dimensional integral of bracket averages over a fictitious
temperature. The integrand must be estimated at each temperature via
MCMC sampling. There is an appealing physical interpretation to this
integral: the temperature factor ‘flattens’ the likelihood function
whereas the bracket averaging calculates the likelihood function at
different values of the ‘flatness’. When the temperature-based likelihood
function is flattened, the sampled likelihoods will be poor (low),
whereas when it is sharp and similar to the original posterior, the
sampled likelihoods will be good (high). If the overlap volume is large,
then the switch from poor to good will occur at low temperature (higher
flatness). Conversely if the overlap volume is small, then comparatively
the switch will occur at higher temperature (lower flatness). The
evidence term is simply the exponential of the one-dimensional integral:

P data j Mð Þ¼ exp

Z 1

0

dt ln L data j Yð Þh it
� �

The value of the bracket average ln Lðdata j YÞh it was estimated by
running three independent MCMC chains for 1000000 steps at each
temperature t. All chains achieved convergence as per the Gelman–Rubin
criterion (although only the latter half of the chains were used, to allow a
burn-in period for the MCMC algorithm). The integral necessary to
calculate the value of ln P(data|M) in Equation 4 was then discretized
over the interval tA[0,1]. The temperatures used to evaluate
ln L data j Yð Þh it were divided into three segments: tA[0,0.01],
tA(0.01,0.1] and tA(0.1,1] comprising 11, 9 and 9, evenly spaced points,
respectively. These values for the temperatures were chosen so that the
smooth transition from poor likelihood values to good ones was accu-
rately captured. The trapezoidal rule was applied to evaluate the integral:

ln P data j Mð Þ �
Xn� 1

i¼ 1

1

2
ðtiþ 1� tiÞ ln L data j Yð Þh itiþ 1

þ ln L data j Yð Þh iti

h i

Computational resources and MATLAB code
All code for simulation of the ODEs and for Bayesian sampling was
written in MATLAB R2011a and is available for download at our Github
repository (https://github.com/sorgerlab/eydgahi_et_al_bayesian_
estimation). A zip file of all repository contents is available (https://
github.com/sorgerlab/eydgahi_et_al_bayesian_estimation/zipball/
master). An open source Python version integrated with our other
modeling application PySB is also available under the name BayesSB
(http://sorgerlab.github.com/bayessb/). Parallel computation for
multi-chain walks and Hessian calculations was performed on both
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a Windows desktop (Windows XP Service Pack 3; Intels Coret2 CPU
6600 @ 2.40 GHz, 2.00 GB of RAM) and the RITG computing cluster at
the Harvard Medical School comprising 4708 cores (451 nodes), made
up of a mixture of IBM BladeCenters and Systems with 4-96 GB of
memory per node, running Debian GNU/Linux 6.0.3. Each MCMC
chain was run on a single node of the cluster; for every 25 000 steps, the
main node created 20 parallel jobs, each of which calculated a piece of
the 78� 78 Hessian.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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