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Autophagosome formation is a dynamic process that is strictly
controlled by autophagy-related (Atg) proteins. However, how
these Atg proteins are recruited to the autophagosome formation
site or autophagic membranes remains poorly understood. Here,
we found that FIP200, which is involved in proximal events, directly
interacts with Atg16L1, one of the downstream Atg factors, in an
Atg14- and phosphatidylinositol 3-kinase-independent manner.
Atg16L1 deletion mutants, which lack the FIP200-interacting
domain, are defective in proper membrane targeting. Thus,
FIP200 regulates not only early events but also late events of
autophagosome formation through direct interaction with Atg16L1.
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INTRODUCTION
Macroautophagy, hereafter referred to simply as autophagy, is an
intracellular degradation system mediated by the autophagosome.
Cytoplasmic materials, such as proteins, lipids, glycogens and
organelles, are engulfed by an isolation membrane/phagophore,
leading to the formation of a double-membrane autophagosome.
Next, the autophagosome fuses with a lysosome, and the

sequestered contents and the inner membranes are degraded [1].
So far, more than 30 autophagy-related (ATG) genes have been
identified in yeast [2,3]. These include Atg1–10, 12–14, 16–18, 29
and 31, most of which are conserved in higher eukaryotes and are
essential for the formation of the autophagosome [1,3].

Following the comprehensive hierarchical analysis of yeast
Atg proteins [4], the genetic hierarchy of mammalian Atg
proteins has also been determined. The ULK1–Atg13–FIP200–
Atg101 complex and Atg9A are independently recruited to the
autophagosome formation site, and both are required for
recruitment of the class III phosphatidylinositol 3-kinase
(PtdIns3K) complex (Beclin1–Atg14(L)–Vps15–Vps34) [5–7].
PtdIns3K activity is required for further recruitment of the
Atg2–WIPI and Atg12—Atg5–Atg16L1 complexes (— indicates
a covalent attachment) [5,8–10]. Finally, LC3 is recruited in an
Atg12—Atg5–Atg16L1-dependent manner [11].

Whereas WIPI proteins have a phosphoinositide-binding motif
for recruitment to the autophagic membrane, Atg5, Atg12 and
Atg16L1 do not have such typical membrane-binding motifs.
Thus, it remains unknown how the Atg12—Atg5–Atg16L1
complex is recruited during starvation-induced autophagy.
Furthermore, conflicting results have also been reported with
regard to selective autophagy. In Salmonella xenophagy, the
recruitment of LC3 and Atg5 to the Salmonella-containing vacuole
is independent of PtdIns3K, FIP200 and Atg9A [12]. In Parkin-
dependent mitophagy, LC3 can also be recruited to depolarized
mitochondria even in FIP200 knockout (KO) mouse embryonic
fibroblasts (MEFs) and Atg9A KO MEFs [6]. Therefore,
the recruitment of Atg12—Atg5–Atg16L1 and LC3 to the
autophagosome formation site appears to be complicated.

Here, we report the physical interaction between the Atg12—
Atg5–Atg16L1 complex and the ULK1 complex, and describe a
new mode of Atg16L1 targeting to the isolation membrane.
Furthermore, we discuss the role of the carboxy-terminal
WD-repeat domain of Atg16L1, which is absent in yeast Atg16.
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RESULTS
Identification of FIP200 as an Atg16L1-interacting protein
We screened a mouse brain complementary DNA yeast
two-hybrid library with mouse Atg16L1 as ‘bait’ and isolated
clones that all encoded partial sequences of FIP200 (Fig 1A).
To confirm the interaction between Atg16L1 and FIP200, we first
performed transient transfection experiments in HEK293T cells.
Immunoprecipitation (IP) analysis revealed that FLAG–Atg16L1
interacts with HA–FIP200 (Fig 1B). As FIP200 forms a stable
complex with ULK1, Atg13 and Atg101 [13–15], we examined
the interaction between Atg16L1 and other components of the
ULK1 complex. Interactions between FLAG–Atg16L1 and HA–ULK1,
HA–Atg13, and HA–Atg101 were detected, but were weaker than
the interaction between FLAG–Atg16L1 and HA–FIP200 (Fig 1B,C).
Furthermore, endogenous Atg16L1 was co-immunoprecipitated

with endogenous FIP200 in the presence, but not the absence, of
the chemical crosslinker dithiobis(succinimidyl propionate) (DSP)
(Fig 1D). Endogenous interactions between Atg16L1 and other
components of the ULK1–Atg13–FIP200–Atg101 complex were
also detected (Fig 1E). In addition, the immunoprecipitates using
antibodies against FIP200, ULK1, Atg13 and Atg101 included not
only Atg16L1 but also the Atg12—Atg5 conjugate (Fig 1E), and
Atg12—Atg5 and Atg16L1 were included in a large (B3 MDa)
protein complex dependent on FIP200 (supplementary Fig S1
online). The interaction between Atg16L1 and FIP200 was not
significantly changed by nutrient conditions (Fig 1D,F), and by
deletion of ULK1 and ULK2 (supplementary Fig S2 online).
Collectively, these results indicate that the Atg12—Atg5–Atg16L1
complex weakly interacts with the ULK1–Atg13–FIP200–Atg101
complex via direct interaction with Atg16L1–FIP200.
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Fig 1 | Atg16L1 interacts with the ULK1–Atg13–FIP200–Atg101 complex. (A) Yeast two-hybrid screening for Atg16L1-interacting proteins. The Atg16L1-

interacting FIP200 clones are indicated. (B, C) HEK293T cells were co-transfected with the indicated constructs. Cell lysates were subjected to IP using

anti-FLAG antibodies. The resulting precipitates were examined by immunoblot analysis with anti-FLAG and anti-HA antibodies. (D) HEK293T cells

were cultured in regular or starvation medium for 2 h. Cells were harvested and treated with DSP. (E) HEK293T cells were harvested and treated with

DSP. (F) HEK293T cells were cultured in regular DMEM or starvation medium in the presence or absence of 200 nM wortmannin for 2 h. After

treatment with DSP, cell lysates were subjected to IP analysis. (G) Atg14F/F (undeleted) or Atg14D/D (deleted) MEFs were harvested and treated with

DSP. * (E) and ** (G) indicate the positions of the immunoglobulin light and heavy chains, respectively. aa, amino acid; DSP, dithiobis(succinimidyl

propionate); IP, immunoprecipitation; MEFs, mouse embryonic fibroblasts.
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Atg14 is not essential for the Atg16L1–FIP200 interaction
As PtdIns(3)P is required for the recruitment of the Atg12—Atg5–
Atg16L1 complex to the isolation membrane [1,5], we examined
the involvement of PtdIns3K in the interaction with Atg16L1–
FIP200. First, we found that the Atg16L1–FIP200 interaction was
insensitive to the PtdIns3K inhibitor wortmannin (Fig 1F). As Atg14
is a specific subunit of the autophagy-specific class III PtdIns3K
complex [1,16], we directly investigated the involvement of
Atg14 in the Atg16L1–FIP200 interaction. IP analysis revealed that
Atg14 was not included in the FIP200 complex (Fig 1F). In
addition, the Atg16L1–FIP200 interaction was still observed in cell
lysates derived from Atg14-deficient MEFs (Fig 1G). These data
suggest that the Atg16L1–FIP200 interaction is not dependent on
Atg14 and PtdIns(3)P. PtdIns(3)P might be important for concen-
tration of Atg16L1 to the puncta or stabilization of Atg16L1 on the
membranes, rather than for membrane targeting.

Atg12—5–16L1 stabilizes the ULK1 complex
To further validate the interaction between the Atg12—Atg5–
Atg16L1 and ULK1–Atg13–FIP200–Atg101 complexes in vivo, we
determined expression levels of these proteins in various cells
lacking Atg proteins. In FIP200 KO cells, the expression levels of
Atg12—Atg5 and Atg16L1 were not significantly affected (Fig 2A).
On the other hand, expression levels of ULK1, Atg13 and FIP200
were reduced in Atg5 KO and Atg16L1 KO MEFs (Fig 2A),
although the ULK1–Atg13–FIP200 complex could be formed in
Atg5 KO MEFs (supplementary Fig S3 online). Atg16L1 expression
was also significantly reduced in Atg5 KO MEFs (Fig 2A). To
exclude the possibility of clonal variation among cell lines, we
used m5-7 cells, in which Atg5 expression can be regulated with
doxycycline (Dox) [17]. As reported previously, expression of
Atg5 was suppressed following addition of Dox (Fig 2B).
Concomitantly, there was a decrease in Atg16L1 expression by
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day 4. After day 4, the expression levels of ULK1, Atg13 and
FIP200 were also reduced. A further 2-day incubation after
washing out Dox could reverse these effects, suggesting that
deficiency of either Atg5 or Atg16L1 destabilizes ULK1, Atg13 and
FIP200. Indeed, degradation of the ULK1 complex components
was accelerated in the absence of Atg5 (Fig 2C), without
significant changes in their messenger RNA levels (Fig 2D). On
the other hand, Atg14 deficiency, which causes accumulation of

the autophagy substrate p62, had no effect on these components
(Fig 2A). Collectively, these results indicate that the Atg12—Atg5–
Atg16L1 complex interacts with a large portion of the ULK1–
Atg13–FIP200–Atg101 complex and stabilizes these components
in the cell, even though the interaction between these two
complexes was weak in the IP experiments. These studies reveal
substantial and important interactions between protein complexes
that mediate early and late steps in the autophagy pathway.
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Identification of the FIP200-interacting domain in Atg16L1
IP analysis revealed that the Atg16L1 mutants D(230–300),
D300 and 1–230 did not interact with FIP200, suggesting that
the middle region of Atg16L1a (amino acids 230–300) was
essential for interaction with FIP200 (Fig 3A,B). Introduction of the
Crohn’s disease-associated mutation T281A (corresponding to
T300A in human Atg16L1b) did not significantly affect the
Atg16L1–FIP200 interaction (Fig 3A,B). While the interaction
between the Atg16L1D78 mutant and Atg5 was reduced as
reported previously [18], two FIP200-interacting domain deletion
mutants, Atg16L1D(230–300) and Atg16L1(1–230), could interact
with endogenous Atg5 (Fig 3A,B). We further narrowed down the
interaction domain to two regions in Atg16L1, 230–250 and
288–300, which were involved in the interaction with FIP200
(supplementary Fig S4A,B online). These regions are highly
conserved among species but not in human Atg16L2, which
cannot localize to the isolation membrane [19] (supplementary
Fig S4C online). The FIP200-interacting domain deletion
mutants Atg16L1D(230–300) and Atg16L1(1–230) could
still form heterodimers with full-length Atg16L1, whereas the
coiled–coil deletion mutant Atg16L1D(78–230) could not
(Fig 3A,C). These results indicate that the middle region of
Atg16L1 is required for its interaction with FIP200, but not with
Atg5 or Atg16L1.

Although it was reported that Rab33B interacts with the middle
region of Atg16L1 [20], Rab33B was not immunoprecipitated with
FIP200 and overexpression of Rab33B or OATL1, a GAP for
Rab33B, did not significantly affect the Atg16L1–FIP200 interac-
tion (supplementary Fig S5 online), suggesting that Rab33B is not
involved in this interaction.

FIP200 regulates membrane targeting of Atg16L1
To investigate the role of the Atg16L1–FIP200 interaction in
autophagy, we performed an autophagic flux assay using Atg16L1
KO MEFs. LC3 conjugation was blocked in Atg16L1 KO MEFs,
and was restored by expression of non-tagged full-length
Atg16L1a (Fig 4A). Bafilomycin A1-induced accumulation of
LC3-II, which represents autophagic flux, was also restored.
However, the expression of FIP200-binding-deficient
Atg16L1D(230–300) only partially restored the autophagic flux,
compared with that of full-length Atg16L1a (Fig 4A). The several
LC3 puncta generated in response to starvation was also
significantly reduced in Atg16L1 KO MEFs expressing the
Atg16L1D(230–300) mutant (Fig 4B,C). In line with this, lysosomal

degradation of p62 (Fig 4A) and GFP–LC3 (Fig 4D,E), both of
which are known to be through autophagy, was induced by
starvation in Atg16L1 KO MEFs expressing full-length Atg16L1,
but not Atg16L1D(230–300). Moreover, the Atg16L1D(230–300)
mutant did not show a clear punctate distribution pattern under
starvation conditions (Fig 4B,C). Whereas there were about 10
dots per cell for full-length Atg16L1a, there was only about 1 dot
per cell for the Atg16L1D(230–300) mutant (Fig 4B,C). Similar
results were obtained in HeLa cells using FLAG-tagged
Atg16L1D(230–300) (supplementary Fig S6 online).

By contrast, the Atg16L1(1–230) mutant, which also lacks the
FIP200-binding domain, fully restored the autophagic flux
defects of Atg16L1 KO MEFs (Fig 4A,D,E). The several puncta of
Atg16L1(1–230) observed under starvation conditions was
similar to that of full-length Atg16L1 (Fig 4B,C). However, the
colocalization of Atg16L1(1–230) puncta with GFP–ULK1, which
associates with the isolation membrane, was decreased
significantly. Although more than 70% of puncta of full-length
Atg16L1 were colocalized with GFP–ULK1 under starvation
conditions, Ag16L1(1–230) puncta were mostly GFP–ULK1
negative (Fig 4B,C; supplementary Fig S6 online). We noticed
that the several ULK1 puncta was significantly reduced in the
Atg16L1 KO MEFs expressing the FIP200-interacting mutant
compared with those expressing full-length Atg16L1 (Fig 4B,C).
Treatment with wortmannin recovered formation of the ULK1
puncta in these cells (supplementary Fig S7 online), suggesting
that the reduction of ULK1 puncta is caused by enhanced
dissociation and/or reduced expression of ULK1, rather than
by impaired recruitment.

We also found that, in addition to the punctate structures, the
Atg16L1(1–230) mutant localized to the perinuclear region both in
nutrient-rich and in starvation condition (Figs 4B,5A, arrowheads).
It is interesting that this perinuclear localization of Atg16L1
(1–230) was observed even in the absence of FIP200 (Fig 5B,
arrowheads), indicating that the recruitment of the 1–230 mutant
can be independent of FIP200. A small proportion of Atg16L1
(1–230) also colocalized with Atg9A and p62 in FIP200 KO MEFs
(Fig 5C,D), suggesting that Atg16L1(1–230) itself has some affinity
for the autophagic membrane. However, Atg16L1(1–230) also
targeted to the unknown perinuclear compartments, to which
Atg9A and p62 did not localize, suggesting that the membrane
targeting of Atg16L1(1–230) is deregulated. Collectively, these
findings suggest that the Atg16L1–FIP200 interaction is required
for the proper targeting of Atg16L1 to the isolation membrane.

Fig 4 | Atg16L1D(230–300) mutant is impaired in isolation membrane targeting and partially restores the autophagic defects of Atg16L1 KO MEFs.

(A) WT MEFs, Atg16L1 KO MEFs or Atg16L1 KO MEFs stably expressing either full-length Atg16L1(1–588), Atg16L1(1–230) or Atg16L1D(230–300)

were cultured in regular DMEM or starvation medium in the presence or absence of 100 nM BafA1 for 2 h. * indicates nonspecific immunoreactive

bands. (B,C) Atg16L1 KO MEFs stably expressing GFP–ULK1 and either full-length Atg16L1(1–588), Atg16L1(1–230) or Atg16L1D(230–300) were

cultured in regular DMEM (C) or starvation medium (B,C) for 1 h. Cells were fixed and analysed by immunofluorescence microscopy using anti-GFP,

anti-Atg16L1 and anti-LC3 antibodies. Arrowheads indicate the perinuclear localization of Atg16L1(1–230). The number of dots was quantified from

more than 30 randomly selected cells from three independent samples as described in the Methods. Data represent mean±s.e. (*Po0.001, analysis

of variance followed by Bonferroni/Dunn post hoc test). Scale bar, 10 mm, and 2 mm in inset. (D, E) Cells stably expressing GFP–LC3 were cultured in

regular DMEM, starvation medium or starvation medium in the presence of 0.2mM WM or 100 nM BafA1 for 6 h. Total cellular GFP–LC3 signals were

analysed by flow cytometry. Representative FACS data were shown (D). The geometric mean of fluorescence intensity was determined. Values are

expressed as a percentage of the mean of control cells cultured in regular DMEM. Data represent mean±s.e. (*Po0.05) (E). BafA1, bafilomycin A1;

GFP, green fluorescent protein; KO, knockout; MEFs, mouse embryonic fibroblasts; NS, not significant; WM, wortmannin; WT, wild-type.
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DISCUSSION
We have shown that Atg16L1 directly interacts with FIP200 (Fig 1)
and that this interaction is important for the proper targeting of
Atg16L1 to the isolation membrane (Fig 5). During revision of this
manuscript, the Atg16L1–FIP200 interaction and its importance in

autophagy induction were also reported by Gammoh et al [21].
Considering that the Atg12—Atg5–Atg16L1 complex interacts
with the ULK1–Atg13–FIP200–Atg101 complex independently of
nutrient condition, it is reasonable to assume that these two units
form a large complex in the cytoplasm, which then targets to the
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Fig 5 | Atg16L1(1–230) localizes to aberrant membranes in a FIP200-independent manner. (A) Atg16L1 KO MEFs stably expressing either full-length

Atg16L1(1–588), Atg16L1(1–230) or Atg16L1D(230–300) were cultured in regular DMEM or starvation medium for 1 h. Cells were fixed and subjected

to immunofluorescence microscopy using anti-Atg16L1 antibody. Note that full-length Atg16L1 and Atg16L1(1–230), but not Atg16L1D(230–300),

showed punctate structures under starvation conditions (inset). (B) FIP200 KO MEFs stably expressing either CFP–Atg16L1(1–588), CFP–Atg16L1

(1–230) or CFP–Atg16L1D(230–300) were cultured in regular DMEM or starvation medium for 1 h. Cells were fixed and analysed by

immunofluorescence microscopy using anti-GFP antibody. Arrowheads indicate the perinuclear localization of Atg16L1(1–230). (C,D) FIP200 KO

MEFs stably expressing CFP–Atg16L1(1–230) were cultured in regular DMEM. Scale bar, 10 mm, and 2mm in inset. (E) Hypothetical model of

membrane targeting of Atg16L1. Interaction of Atg16L1 with FIP200 leads to proper targeting of this complex to the autophagosome formation site

(middle). Without FIP200, puncta formation of Atg16L1 is impaired probably owing to a self-inhibitory role of the C-terminal WD-repeat domain

(left). If the WD-repeat domain is deleted, the N-terminal half of Atg16L1 localizes to aberrant membranes as well as the autophagosome formation

site (right). KO, knockout; MEFs, mouse embryonic fibroblasts.
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membrane as one complex. This suggests that the sequential
action of components of the autophagy machinery could reflect
the actions of different components of a large complex rather than
the sequential recruitment of distinct and non-interacting protein
complexes. These data are consistent with our findings of live
imaging analysis, which shows that ULK1 and Atg5 are recruited
to the same compartment with similar kinetics (Koyama-Honda
et al, unpublished work).

Nonetheless, our results indicate that the 231–588 region
of Atg16L1, including the FIP200-interacting domain and
WD-repeat domain, is not essential for autophagy. As yeast
Atg16 lacks this region, Atg16L1 might have acquired a
new regulatory function in multicellular eukaryotes. To determine
the precise function of the 231–588 region, we demonstrated
that the Atg16L1(1–230) mutant localizes to punctate
structures as well as a perinuclear structure in FIP200 KO MEFs,
whereas full-length Atg16L1 shows a diffuse cytoplasmic
pattern in the absence of FIP200 (Fig 5). This result suggests the
presence of autoinhibitory regulation (Fig 5E). We propose
that the 231–588 region of Atg16L1 inhibits the membrane
targeting of Atg16L1 and, following interaction of Atg16L1 with
FIP200 via its 230–300 region, Atg16L1 can target to the
membrane by removal of autoinhibition. FIP200 could also
serve as a recruiter and ensure the specific targeting of
Atg16L1 to the isolation membrane. Structural analysis
of Atg16L1 will be required for further understanding of its
precise molecular function.

METHODS
The experimental procedures are described in detail in the
supplementary information online.
Cell culture. Atg14flox/flox MEFs were obtained from Atg14flox/flox

mouse embryos [12], and immortalized with SV40 large T antigen
using pEF321-T. Other cell lines are described in the
supplementary information online.
Chemical crosslinking. Cells were harvested, resuspended in ice-
cold phosphate-buffered saline containing 1 mM DSP and
incubated on ice for 30 min.
Statistical analysis. Differences were statistically analysed using
unpaired t-test or analysis of variance with Bonferroni/Dunn
post hoc test.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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