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Abstract
When dense markers are available, one can interrogate almost every common variant across the
genome via imputation and single nucleotide polymorphism (SNP) test, which has become a
routine in current genome-wide association studies (GWASs). As a complement, admixture
mapping exploits the long-range linkage disequilibrium (LD) generated by admixture between
genetically distinct ancestral populations. It is then questionable whether admixture mapping
analysis is still necessary in detecting the disease associated variants in admixed populations. We
argue that admixture mapping is able to reduce the burden of massive comparisons in GWASs; it
therefore can be a powerful tool to locate the disease variants with substantial allele frequency
differences between ancestral populations. In this report we studied a two-stage approach, where
candidate regions are defined by conducting admixture mapping at stage 1, and single SNP
association tests are followed at stage 2 within the candidate regions defined at stage 1. We first
established the genome-wide significance levels corresponding to the criteria to define the
candidate regions at stage 1 by simulations. We next compared the power of the two-stage
approach with direct association analysis. Our simulations suggest that the two-stage approach can
be more powerful than the standard genome-wide association analysis when the allele frequency
difference of a causal variant in ancestral populations, is larger than 0.4. Our conclusion is
consistent with a theoretical prediction by Risch and Tang ([2006] Am J Hum Genet 79:S254).
Surprisingly, our study also suggests that power can be improved when we use less strict criteria
to define the candidate regions at stage 1.
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INTRODUCTION
Admixture mapping has been proposed as an efficient approach for localizing genes in a
recent admixed population in which the risk alleles have different frequencies among the
ancestral populations. The idea of using the linkage disequilibrium (LD) due to the
population admixture process was proposed half a century ago [Rife, 1954], but it took
nearly four decades to gain serious attention [Briscoe et al., 1994; Chakroborty and Weiss,
1988; Mc-Keigue, 1998; Risch, 1992; Stephens et al., 1994], and only recently the panels of
ancestral informative markers (AIMs) and relevant statistical methods have become
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available [Zhu et al., 2008a]. Since the publications of the first genome-wide admixture
study for hypertension [Zhu et al., 2005] in African Americans, a range of traits and diseases
have been studied using admixture mapping, e.g., multiple sclerosis [Reich et al., 2005],
prostate cancer [Freedman et al., 2006, Bock et al., 2009], hypertension [Zhu and Cooper,
2007, Zhu et al., 2011], type 2 diabetes [Elbein et al., 2009; Kao et al., 2008], breast cancer
[Fejerman et al., 2009], obesity [Basu et al., 2009a, Cheng et al., 2009], lipid levels [Basu et
al., 2009b], and retinal vascular caliber [Cheng et al., 2010]. Systematic reviews of historical
perspective, AIM panels, and software packages, as well as recent successes in mapping
human diseases of recently admixed populations can be found in the literature [Winkler et
al., 2010; Zhu et al., 2008a].

When different populations have different disease prevalence, it is reasonable to assume that
the genetic causal variants may have different risk allele frequencies in different populations
[Halder and Shriver, 2003]. For a chromosome segment where a causal variant resides,
affected individuals descended from the recent admixture of two ethnic populations may
have an increased probability of inheriting the alleles from the ethnic population with higher
disease-susceptibility allele frequency. In modern admixed populations, such as African
Americans and Hispanic Americans, the admixture process has been occurring in the past 20
generations. Linkage disequilibrium due to the admixture process should thus extend over a
long genetic distance. In African Americans, for example, ancestry blocks were observed to
extend for 17–20 centimorgans (cM) on average [Montana and Pritchard, 2004; Parra et al.,
1998; Patterson et al., 2004; Smith et al., 2004; Tang et al., 2006; Zhu et al., 2006]. Because
of the long-range LD, admixture mapping is able to map regions of interest by using a small
number (i.e., hundreds to thousands) of genome-wide AIMs.

Genome-wide association studies (GWASs) have led to the discovery of thousands of alleles
associated with human diseases and traits [Hindorff et al., 2009]. Because of the large
number of SNPs analyzed, however, GWASs incur a stiff statistical penalty [Risch and
Merikangas, 1996]. In the presence of dense marker sets, it should be instructive to integrate
the advantages of SNP association testing and admixture mapping analysis. For independent
familial triads, Tang et al. [2010] quantified the contribution of allele-based and ancestry-
based Transmission Disequilibrium Test (TDT) tests and proposed a chi-square statistic of
two degrees of freedom to integrate the two TDT tests. They found that the contribution of
association evidence from ancestry is limited when testing a causal variant or a variant in
strong LD with the causal variant. Ancestry can be more informative than a direct
association test when a causal variant has a large allele frequency difference among
ancestral populations. For unrelated individuals, Lettre et al. [2011] proposed summing up
the chi-square statistic of genotype effect and the chi-square of local ancestry effect,
assuming that the sum followed a chi-square distribution with two degrees of freedom
(SUM), without consideration of the correlation between a local ancestry and genotypes,
which can exist [Qin et al., 2010; Wang et al., 2011]. More recently, Pasaniuc et al. [2011]
proposed a one degree of freedom method, MIX, to combine the signals from admixture
mapping and SNP association analysis for case control studies. For a systematic review of
latest approaches for disease association analysis in admixed populations, see Seldin et al.
[2011]. To our knowledge, the two-degree TDT, SUM, and the one degree of freedom MIX
methods share the same null hypothesis that there is no SNP association and no ancestry
association with a trait. Thus, a rejection of the null hypothesis can be interpreted as there is
association evidence contributed by either SNP association or ancestry association or both.
As we know, the ancestry association can occur in a much wider genome region than the
SNP association. Therefore, we may expect that the significant evidence identified by the
joint analysis will fall in a genome region. In general, we usually perform a SNP-based
association analysis in a GWAS at the first hand. A variant with a sufficiently large effect
size can be captured by a direct association analysis, regardless of the allele frequency
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difference among ancestral populations. It is also possible that the variants with less
effective sizes and substantial allele frequency differences in ancestral populations can be
identified by the joint analysis, although the interpretation should be careful because
possibly a region is detected rather than a locus. However, the joint test suffers the penalty
of the same number of tests as in GWAs as well as the increased degrees of freedom. In this
paper, we aim to search for the variants within admixture mapping peaks. By doing so, we
are potentially able to identify variants missed by the conventional genome-wide association
analysis. We studied a two-stage approach for association analysis in an admixed population
similar to the method of Zhu et al. [2011]. The original method calculates P-value by
estimating the effective number of tests. Here we propose to estimate P-values by
permutation, which should be much more accurate than estimating the effective number of
tests. At the first stage, we identify ancestry genomic regions by applying admixture
mapping analysis. At the second stage, we only test the SNPs with substantial allele
frequency differences among ancestral populations in the regions identified at the first stage.
These markers can be correlated due to the allele frequency differences in ancestral
populations. Because of the significant reduction of the number of tests, we argue that the
two-stage approach can improve power to detect the associated variants whose allele
frequency differences in ancestral populations are large. To control the family wise error
rate (FWER) at a preset nominal level, we established significance thresholds for the SNP
association test via permutations. We also demonstrated the advantage of admixture
mapping following by SNP association test to identify causal SNPs in GWASs of recently
admixed populations. The significance thresholds established in this report would serve as a
guideline for the GWASs in African Americans, but the idea of our method is broadly
applicable to other admixed populations.

METHODS
For N unrelated individuals from an admixed population, let yi, Ai, aij and gij be a
continuous trait value, global ancestry, SNP-specific ancestry, and genotype score at SNP j
( = 1, …, M) of individual i ( = 1, …, N), respectively. In context, global ancestry Ai is
calculated as the genome-wide proportion of the ith individual’s alleles inherited from a
given ancestral population, SNP-specific ancestry aij is referred to as the proportion of the
ith individual’s alleles inherited from the given ancestral population at the jth SNP, and the
genotype gij is coded as the number of a reference allele at SNP j of the ith individual. Let α
be the nominal FWER of a genome-wide study for SNP association.

DIRECT GENOME-WIDE ASSOCIATION ANALYSIS
The direct genome-wide association analysis tests each available SNP across the genome
and declaims SNP j to be significant if ηj ≜ −log10( Pgj) > ηFB, where ηFB = −log10(α/M),
Pgj is the observed P-value to test for single SNP association, namely, tests for β2 = 0 under
the linear regression yi = β0 + β1 Ai + β2 gij + εi, and M is the number of independent tests
on the genome. Any covariates can be adjusted straightforwardly. The threshold ηFB is very
stringent when M is large. Due to the LD among the markers, a popular threshold in current

GWAS is , which corresponds to 1 million independent tests
across the genome.

TWO-STAGE APPROACH
At the first stage, we perform admixture mapping analysis to define chromosome regions
associated with a phenotype. We compute ξj = −log10( Paj) at the jth SNP, where Paj is a P-

value to test for a locus specific ancestry: γ1 = 0 in the linear regression  ,
where  is the residual of yi after adjusting for the global ancestry by performing the linear
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regression yi = α0 + α1 Ai + ei. Any covariates can be included in the model without
difficulty. Using ξj across the genome, we construct genomic regions, which potentially
harbor quantitative trait loci. In general, we first search the peaks of ξj that is greater than a
predefined threshold ξ (i.e., = 1, 2, 3, 4). For each ξj*, we define a genomic region as an
interval where ξj = ξj* − 1 for all the consecutive SNPs around the SNP j*. We assume a
peak observed in testing local ancestry association is attributed to variants with substantial
allele frequency differences between ancestral populations. From each interval defined in
testing local ancestry association, we exclude the SNPs with ancestral allele difference
smaller than a given δ (i.e., δ = 0.1, 0.2, …, 0.8). For a given (ξ, δ) pair, let m genome-wide
SNPs be retained at stage 1 and reindexed as 1, …, m. At the second stage, we compute ηj =
−log10( Pgj) for the m-retained SNPs and claim SNPs j to be significant if ηj > η*, where η*
= η*(ξ, δ, α) is a permutation-based significance threshold, which is dependent on values of
(ξ, δ, α). In this report, we set a genome-wide significance level α = 0.05.

SIGNIFICANCE THRESHOLDS

Let ( ) be the ith ( = 1, …, 1,000) permutation of ( ), the trait residuals as
aforementioned. For each permutation, we first perform admixture mapping analysis to
define candidate regions using threshold ξ and identified the m SNPs with allele frequency
difference between ancestral populations greater than δ. We then compute the T value of
each permutation, where T = max{η1, …, ηm} for testing the SNPs at stage 2. We sort all
the 1,000 T values as T(1) > · · · > T(1,000), and set η* = T(1,000×α). Using this procedure, we
empirically established the thresholds (Table I) for α = 0.05 and various (ξ, δ) pairs by
simulating N = 2,000 African Americans using the HapMapII YRI (Yoruban in Ibadan,
Nigeria) and CEU (Centre d’Etude du Polymorphisme Humain collected in Utah) data,
which contain almost 2 million SNPs.

SIMULATION DESIGNS
We mimicked 2,000 African-American genomes by applying the software GenoAnceBase0
of Qin et al. [2010] to the CEU and YRI haplotypes in the HapMap II database. For this
task, we first applied the software ADMIXPROGRAM [Zhu et al., 2006] to the Maywood
dataset to infer the individual’s SNP-specific ancestries for the 701 Maywood subjects using
2,606 selected ancestry informative SNPs [Kang et al., 2010]. We observed that the
distribution of individual genome-wide CEU allele portions can be well fitted by Beta (4.8,
19.2), the beta distribution with mean 0.2 and standard deviation 0.08. Based on this
distribution, we simulated an admixed population with average 20% European and 80%
African ancestries. Specifically, we simulated Ni individuals with average ancestries wi. For
each individual, we simulated the genotypes at the SNPs on 22 autosomes using HapMap
dataset, which included ~2M SNPs with complete haplotype information for CEU, YRI, and
CHB/JPT samples. For each chromosome, we simulated the number of crossover points s
from the Poisson distribution of mean μ = l × g × 10−7, where l was a chromosome length, g
was the number of generations since the initial admixture occurring for an individual’s
ancestors and was randomly sampled from 1 to 10. Then, we uniformly distributed s
crossovers across the chromosome. Next, we randomly sampled haplotype segments from
CEU or YRI HapMap data between two crossovers independently according to the average
ancestry wi.

To establish the thresholds η*, we simulated individual trait values from model I: yi = Ai φ +
ei, where Ai is the proportion of the individual i’s alleles inherited from CEU over the 2
million SNPs, ei ~ N(0, var(e )) and φ is the coefficient such that var(y) = 1 and φ2var(A) = 1
− var(e). This model does not include any specific SNP contribution to the phenotype and
can be used to establish the genome-wide significance thresholds for the two-stage
approach. We set var(e) = 0.9 in our empirical exploration. For power comparison, we
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simulated individual trait values from model II: yi = Ai φ + gij ψ + ei, where j is a randomly
selected SNP of given δ, representing the allele frequency difference in ancestral
populations (Tables II and III), ei ~ N(0, var(e )) φ and ψ are the coefficients such that

var(y) = 1, and . We considered two scenarios for power
comparisons: the causal SNP accounts for 0.5% and 1% total trait variation,
correspondingly, var(e) = 0.99 and 0.98. For each given value of var(e), we computed the

coefficients as  and  by assuming the
independence between global ancestry and the causal SNP genotype.

RESULTS
SIGNIFICANCE THRESHOLDS

We first tabled the thresholds to declare genome-wide significance for the two-stage
approach by simulations. The thresholds are dependent on the threshold ξ at stage 1 to
define candidate regions in admixture mapping and the selected SNPs tested at stage 2,
which are dependent on δ, the difference between ancestral allele frequencies. We simulated
trait values under the null hypothesis that there is no SNP contributing to the trait variation.
Our thresholds η* for declaring significance were calculated at the nominal FWER level α =
0.05. Table I presents these thresholds for different (ξ, δ) pairs. As anticipated, the threshold
η* decreased when admixture association threshold ξ and marker specific informative
content δ increased. For all (ξ, δ) pairs in the table, the corresponding η* values were

uniformly smaller than the traditional GWAS significance level . As ξ increased
from 1 to 4 and δ increased from 0.1 to 0.8, the significant threshold η* decreased from 6.74
to 2.21. Increasing ξ will result in less genome regions to be detected by admixture
mapping, whereas increasing ξ will result in less SNPs in a region to be tested in association
analysis. Both will reduce the number of tests.

POWER COMPARISON
We evaluated the power of the standard one-stage method and that of the two-stage
approach under various scenarios. We chose chromosome 22 as the region that a causal SNP
located. We randomly selected eight SNPs with high CEU and lower YRI allele frequencies
(Table II) and each of these SNPs served as a causal SNP under the genetic model II. For a
selected SNP, we simulated 2,000 unrelated individuals. We evaluated the power of both
methods based on 1,000 replicates. Figures 1A and B present the power curves for the two-
stage approach and single SNP-based genome-wide association analysis. We set δ = 0.2 so
that only the SNPs with allele frequencies ≥ 0.2 were tested in second stage of the
association test. In general, neither the two-stage approach nor the single SNP analysis has
power when a causal SNP accounts for 0.5% of the trait variation (Fig. 1A). When a causal
SNP explains 1% of the trait variation, we observed that the power of two-stage approach
increases as the causal allele frequency difference Δ increases, while the single SNP
association analysis decreases slightly. The two-stage approach appears less powerful than
the single SNP association test when Δ < 0.25 but becomes more powerful when Δ
increases (Fig. 1B). When the two-stage approach is more powerful than the single SNP test
depends on the threshold ξ for the admixture mapping at the first stage. Interestingly, the
power of the two-stage approach is quite dependent on the first stage threshold. For
example, the smaller the threshold ξ is at stage 1, the more power the two-stage approach
has. However, this pattern changes when Δ > 0.7. To further examine this pattern, we
plotted the power curves of admixture mapping for different thresholds ξ. It can be observed
that the power of the two-stage approach is bounded by the power of admixture mapping at
stage 1. We next increased δ to 0.3 (Figs. 2A and B), which means we only tested the SNPs
with allele frequency differences ≥ 0.3, therefore reducing the number of testing SNPs at
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stage 2. We observed similar power patterns as at δ = 0.2 although power was improved
compared to δ = 0.2. However, it should be noted that the two-stage approach has less
power for δ = 0.3 than for δ = 0.2 when Δ < 0.3 because we have a greater chance to miss a
causal SNP by choosing δ = 0.3. From Figures 1B and 3B (Δ < 0.3), we observed that the
two-stage method is not as powerful as a standard genome-wide association analysis for the
quantitative trait loci (QTLs) with small allele frequency differences between ancestral
populations.

Because the power of admixture mapping also depends on which ancestral population has
higher causal allele frequency, we randomly selected eight SNPs with higher YRI and lower
CEU allele frequencies (Table III) and each of these SNPs served as a causal SNP under the
genetic model II. We observed similar power patterns when CEU has higher causal allele
frequency (Figs. 3 and 4). In general, we observed that the power for the two-stage approach
and single SNP association is larger for a causal SNP with higher allele frequency in the
YRI sample than in the CEU sample when the analysis is conducted in an African-American
sample.

DISCUSSION
Tang et al. [2010] studied the contribution of allele-based and ancestry-based association
tests under a family design and suggested that the two tests can provide nonredundant
information. Thus, a joint test of the allele and ancestry potentially improves statistical
power over the allele-based test when the causal variant has a large allele frequency
difference in ancestral populations. A similar idea has been applied to population-based
samples [Lettre et al., 2011]. More recently, Pasaniuc et al. [2011] proposed MIX as a one
degree of freedom method to combine the signals from admixture mapping and SNP
association analysis for case control studies. However, the null hypothesis of the joint test is
that neither a SNP nor its ancestry at the testing SNP is associated with the trait of interest.
A rejection of such null hypothesis would suggest either a SNP or its ancestry is associated
with the trait. Given a rejection, further analysis is necessary to tell whether the SNP is
associated with the trait. In this report, we focused on detecting the genetic variants whose
allele frequencies in ancestral populations are substantially different. Such variants will
contribute the association evidence, which can be observed in admixture mapping analysis.
It is possible that the allele-based test in GWAS will detect these variants, although the
power can be limited by the large penalty due to multiple tests. We thus argue that testing
the SNPs only with substantial allele frequency differences in ancestral populations in the
genomic regions defined by admixture mapping analysis can improve the power to detect
causal variants. Such power improvement is mainly attributed to the great reduction of the
number of tests. Our simulations suggest that the two-stage approach is more powerful than
the standard single SNP test when the allele frequency difference in ancestry populations is
large. Our observation is generally consistent with a theoretical prediction by Risch and
Tang [2006], who suggested direct association tests can be more powerful than admixture
mapping when Δ is small. Zhu et al. [2011] performed the two-stage analysis of blood
pressure in CARe African-American samples and were able to detect NPR3 gene associated
with blood pressure traits. However, this association was missed by the genome-wide
association analysis in the same samples [Fox et al., 2011]. We also observed that the power
of the two-stage approach is larger when a lower threshold is applied to define the genomic
regions in admixture mapping at stage 1 than a higher threshold until the causal allele
frequency difference is at least greater than 0.7. This is not entirely surprising because the
power of the two-stage approach depends on the power of admixture mapping, which is
determined by the allele frequency difference between ancestral populations. The power of
the two-stage approach is also affected by the threshold δ value that determines which SNPs
are to be tested at stage 2. Although a large δ value will reduce the number of SNPs to be
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tested and therefore improves the power, the danger is that true causal variants or the SNPs
in strong LD with the causal variants would be possibly filtered out. Thus, we suggest that
both lower thresholds for stage 1 and 2 may be used, i.e., ξ = 2 and δ = 0.2 in practice. It
should be noted that associations can still occur in the absence of admixture signal, as
demonstrated by the association of PHYIN1 locus with asthma in African-American and
African-Caribbean populations [Torgerson et al., 2011]. The two-stage method is not as
powerful as a standard one-stage method to detect such variants. Thus, we do not suggest
that the two-stage analysis replace the conventional GWAS analysis. Rather, the two-stage
analysis should be considered as a complementary method to the conventional GWAS
analysis.

We acknowledged that the possible confounding from local ancestry should be addressed as
in Qin et al. [2010], Wang et al. [2011], Pasaniuc et al. [2011], and Seldin et al. [2011]. For
fine mapping, it is necessary to adjust for local ancestry to eliminate the effect due to local
ancestry [Qin et al., 2010] even though it may reduce power in association analysis when
adjusting for local ancestry. Although we did not study the impact of local ancestry in this
manuscript, i.e., the confounding of the local ancestry, the general conclusion in this paper
still holds.

In this report, we did not directly compare the power of the two-stage approach and the joint
test of ancestry and allele association because these two methods in fact test different null
hypotheses. However, both methods do share the similarity that the power will be improved
when the causal SNP allele frequency difference increases. We tabulated the significance
levels to determine genome-wide significance for the two-stage approach when different
thresholds are applied at stage 1 and a different set of SNPs are tested at stage 2 (Table I),
which should be useful in practice. The method may also apply for binary traits even though
we focused our simulations on quantitative traits only. The test statistic used in the method
is a scaled Armitage trend test statistic and has identical asymptotic null distribution with the
Armitage trend statistic as used by Price et al. [2006], Pasaniuc et al. [2011], Seldin et al.
[2011], and Zhu et al. [2008b] for binary traits. In Table I, we assume local ancestries can be
accurately inferred. In practice, local ancestries must be inferred in general. Several
statistical methods can be applied when AIMs are genotyped [Zhu et al., 2008a]. When
dense markers are available, software such as SABER [Tang et al., 2006] and HAPMIX of
Price et al. [2009] can be applied to infer local ancestries. Serious local ancestry inference
errors may either inflate the type I error rate or reduce statistical power in admixture
mapping analysis. However, dense SNPs genotyped across the genome allow inferring local
ancestries to be highly accurate, as suggested by Price et al. [2009]. Thus, we expect the
local ancestry inference errors to have very limited impact in our method.
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Fig 1.
Power comparisons for single SNP association test and the two-stage approach of δ = 0.2
when the causal SNPs have higher allele frequency in CEU than in YRI data. The genotype
and ancestry data of the entire genomes of 2,000 individuals were simulated by the program
GenoAnceBase0 (Qin et al., 2010). For each given Δ value (the causal allele frequency
difference between the ancestral populations), one SNP was randomly selected from all of
those of the same Δ value on autosome 22, as listed in Table II. Both panels shared identical
causal SNPs. Using each of the eight SNPs as the causal SNP, 1,000 replicates of 2,000 trait
values were simulated as described in the text.
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Fig 2.
Power comparisons for single SNP association test and the two-stage approach of δ = 0.3
when the causal SNPs have higher allele frequency in CEU than in YRI data. The genotype
and ancestry data of the entire genomes of 2,000 individuals were simulated by the program
GenoAnceBase0 (Qin et al., 2010). For each given Δ value (the causal allele frequency
difference between the ancestral populations), one SNP was randomly selected from all of
those of the same Δ value on autosome 22, as listed in Table II. Both panels shared identical
causal SNPs. Using each of the eight SNPs as the causal SNP, 1,000 replicates of 2,000 trait
values were simulated as described in text.
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Fig 3.
Power comparisons for single SNP association test and the two-stage approach of δ = 0.2
when the causal SNPs have higher allele frequency in YRI than in CEU data. The genotype
and ancestry data of the entire genomes of 2,000 individuals were simulated by the program
GenoAnceBase0 (Qin et al., 2010). For each given Δ value (the causal allele frequency
difference between the ancestral populations), one SNP was randomly selected from all of
those of the same Δ value on autosome 22, as listed in Table III. Both panels shared
identical causal SNPs. Using each of the eight SNPs as the causal SNP, 1,000 replicates of
2,000 trait values were simulated as described in text.
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Fig 4.
Power comparisons for single SNP association test and the two-stage approach of δ = 0.3
when the causal SNPs have higher allele frequency in YRI than in CEU data. The genotype
and ancestry data of the entire genomes of 2,000 individuals were simulated by the program
GenoAnceBase0 (Qin et al., 2010). For each given Δ value (the causal allele frequency
difference between the ancestral populations), one SNP was randomly selected from all of
those of the same Δ value on autosome 22, as listed in Table III. Both panels shared
identical causal SNPs. Using each of the eight SNPs as the causal SNP, 1,000 replicates of
2,000 trait values were simulated as described in text.
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