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P2X receptors are calcium perme-
able ligand-gated ion channels acti-

vated by ATP. Their role as cell surface 
receptors for extracellular ATP released 
physiologically by mammalian cells is 
well established. However, the cellular 
function of P2X receptor subtypes that 
populate the membranes of intracellular 
compartments is not defined. An initial 
report described how intracellular P2X 
receptors control the function of the 
contractile vacuole, an osmoregulatory 
organelle in Dictyostelium and other 
protists, and that genetic disruption of 
P2X receptors severely impaired cell 
volume control during hypotonic stress. 
However, later studies refuted a func-
tional role of intracellular P2X recep-
tors in Dictyostelium. Here we provide 
evidence that the discrepancies reported 
between the studies are due to the labo-
ratory strain of Dictyostelium employed, 
which display different phenotypes in 
response to hypotonic stress and a var-
ied dependency upon P2X receptors for 
osmoregulation. We use the recent dis-
covery that intracellular P2X receptors 
are novel calcium release channels to 
provide some mechanistic insight in an 
effort to explain why the strain variance 
may exist.

Introduction

P2X receptors (P2XRs) comprise a family 
of cation-selective ligand-gated ion chan-
nels activated by micromolar adenosine 
5'-triphosphate (ATP).1 Functional recep-
tors assemble as trimers of pore-forming 
units of which the human genome encodes 
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seven (P2X
1–7

). Homo- and heteromeric 
assembly of receptor is documented and 
allows fine-tuning of biophysical and cel-
lular responses to ATP. Initially cloned in 
mammals, the dogmatic view of P2XRs 
is that of cell surface receptors serving 
to respond to extracellular ATP secreted 
by cells in processes of cell stress, pain, 
inflammation and chemotransduction. 
ATP is omnipresent in biological systems 
with a major role as an energy source and 
substrate for enzymatic reactions. Despite 
the wide distribution of ATP, its role as 
a signaling molecule appears to be some-
what restricted, represented by the unusual 
phylogeny of P2XRs.2 Phylogenetic analy-
sis of P2XRs outside mammals reveals 
expression by amoeba,3 single-celled green 
algae,4 tick5 and schistosome;6 yet P2XRs 
homologs are not present in Drosophila, 
C. elegans, yeast or higher plants.2

In addition to a cell surface residency, 
some P2XR subtypes are localized to 
intracellular compartments of mamma-
lian and other eukaryotic cells, including 
lysosomes7-9 and phagosomes.10 In 2007 we 
cloned the first P2XR from a unicellular 
organism, from the amoeba Dictyostelium.3 
In contrast to the recognized cell sur-
face role of P2XRs, the receptors of 
Dictyostelium are exclusively intracellu-
lar.3,11,12 Dictyostelium P2XRs (P2X

A-E
) are 

localized to the contractile vacuole (CV), 
an osmoregulatory organelle and acidic 
calcium store. The receptors are orien-
tated such that the receptor is positioned 
to sense changes in luminal not cytosolic 
ATP.11,12 Our initial study3 demonstrated 
that genetic disruption of the P2X

A
 

receptor compromised osmoregulatory 
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cells were verified by RT-PCR (Fig. 1). 
AX2 P2X

A
 null cells behaved as wild-type  

(Fig. 1) exhibiting no differences in nei-
ther peak swelling nor RVD. In stark con-
trast, disruption of P2X

A
 in AX4 ablated 

RVD (Fig. 1) with cells exhibiting per-
sistent swelling after peak. Highly puri-
fied vacuoles isolated from AX2 and AX4 
wild-type cells both released calcium into 
the extravacuolar space in response to 4 
mM ATP (Fig. 2). The magnitude of cal-
cium release was significantly smaller in 
vacuoles isolated from AX2 cells vs. AX4 
cells (Fig. 2). The magnitude of release 
was approximately 2-fold less in AX2 
cells. Knockout of P2X

A
 significantly 

reduced ATP evoked calcium release in 
vacuoles isolated from both AX2 and AX4 
strains (Fig. 2).

Discussion

This study demonstrates that two 
commonly used laboratory strains of 
Dictyostelium display different phenotypes 
in response to hypotonic stress. We also 
provide direct evidence that the magni-
tude of CV calcium released in response 
to ATP differs substantially between AX2 
and AX4, with the magnitude of release 
being significantly smaller in AX2 cells. 
Our data agree with those of Ludlow et 
al. (2009) in that AX2 cells are not depen-
dent upon the P2X

A
 receptor for normal 

volume regulation. However this current 
study, which employs the P2X

A
 receptor 

targeting vector described by Ludlow et 
al. (2009), substantiates our original find-
ings3 that intracellular P2XRs are required 
for normal osmoregulation in AX4 cells. 
However, the molecular basis for the dif-
ferences in proficiency of osmoregulation 
displayed between AX2 and AX4 wild-
type strains remains unclear, and is likely 
to be a fruitful line of investigation to 
fully understand the role of intracellular 
P2XR function in cell volume control. 
One apparent difference is in the magni-
tude of ATP evoked calcium release from 
the CV, the organelle underlying RVD. 
We recently described that intracellular 
P2X receptors mediate calcium release in 
response to ATP, and this is true for both 
AX2 and AX4 strains.12 Indeed the P2X

A
 

receptor contributes around 20–30% of 
total calcium release in response to ATP in 

function and loss of regulated cell vol-
ume decrease (RVD) in response to hypo-
tonic swelling.3 These data suggested a 
functional role for intracellular P2XRs. 
However, a consequent study by Ludlow 
et al. (2009) revealed near normal osmo-
regulation in cells void of P2XRs. This 
controversy has left the functional role 
of intracellular P2XRs unclear. The fac-
tors underlying the discrepancy between 
the two studies is important to address in 
an effort to: (1) validate Dictyostelium as 
a model with which to study intracellular 
P2XR signaling; and (2) to further study 
how ATP dependent signaling evolved. 
One striking difference between the study 
of Fountain et al. (2007) and Ludlow et 
al. (2009) is the use of laboratory strain, 
AX4 and AX2, respectively. Although 
one might expect phenotypic differences 
between laboratory strains to be subtle, 
extensive differences have been previously 
reported13-15 with genetic variability a 
likely contributing factor.16

Our recent study12 has gone someway 
to demonstrate strain variance as a fac-
tor between the two studies, but here we 
provide a direct and definitive analysis of 
the effect of strain on the dependency for 
P2XRs during normal osmoregulation.

Results

Proficiency of osmoregulation var-
ies between laboratory strains of 
Dictyostelium. Hypotonic challenge 
caused cell swelling in both wild-type 
AX2 and AX4 laboratory strains (Fig. 
1). Time to peak and the magnitude of 
peak swelling was similar between strains. 
However, regulated cell volume decrease 
(RVD) was markedly different with AX2 
recovering much greater volume compared 
with swollen AX4 cells (Fig. 1). RVD in 
AX4 was approximately 2-fold less than 
AX2 strain cells. This direct comparison 
of wild-type AX2 and AX4 demonstrates 
distinct strain variance in response to 
hypotonic challenge and suggests AX2 
cells are far more adept at volume recovery 
following swelling (Fig. 1).

Differences in P2XR dependency 
and ATP evoked vacuolar Ca2+ release. 
Blasticidin resistant clones were identified 
following transformation with the P2X

A
 

receptor targeting vector.11 P2X
A
 null 

Figure 1. Dependency on P2XAR for normal 
osmoregulation is strain variant. (A) Time-
dependent changes in cell volume following 
hypotonic challenge for wild-type AX2 and 
AX4 strain Dictyostelium (n = 10). (B) Genera-
tion of P2XA null cells verified by RT-PCR.  
(C and D) Effect of P2XA knockout on AX2 and 
AX4 hypotonic phenotype (n = 8–10). (E) Aver-
age light scatter for each cell type 800 s after 
hypotonic challenge (n = 8–10; *p < 0.05).
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Statistics. Average results are expressed 
as mean ± SE from the number of experi-
ments indicated. Hypothesis testing 
employed unpaired two-tailed Student’s 
t-test.
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