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Transient receptor potential vanil-
loid subfamily member 1 channels 

are polymodal sensors of noxious stim-
uli and integral players in thermosensa-
tion, inflammation and pain signaling. 
It has been shown previously that under 
prolonged stimulation, these channels 
show dynamic pore dilation, providing 
a pathway for large and otherwise rela-
tively impermeant molecules. Further, 
we have shown recently that these non-
selective cation channels, when activated 
by capsaicin, are potently and reversibly 
blocked by external application of qua-
ternary ammonium compounds and 
local anesthetics. Here we describe a 
novel phenomenon in transient recep-
tor potential channel pharmacol-
ogy whereby their expression levels in 
Xenopus laevis oocytes, as assessed by 
the magnitude of macroscopic currents, 
are negatively correlated with extracellu-
lar blocker affinity: small current densi-
ties give rise to nanomolar blockade by 
quaternary ammoniums and this affin-
ity decreases linearly as current den-
sity increases. Possible mechanisms to 
explain these data are discussed in light 
of similar observations in other channels 
and receptors.

Introduction

The transient receptor potential vanilloid 
subfamily member 1 (TRPV1) is a nonse-
lective cation ion channel that is activated 
by vanilloids such as capsaicin and other 
stimuli including voltage, heat and proton 
concentration; thus, acting as a polymodal 
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integrator of noxious stimuli.1 Given its 
wide tissue distribution and its implica-
tion in nociceptive pathways, TRPV1 has 
been identified as an important target for 
novel analgesic compounds.2-5 TRPV1 is 
a homotetramer in which each monomer 
contains six transmembrane segments 
(S1–S6), with the loop connecting S5 and 
S6 forming the pore domain. The acti-
vation by capsaicin is likely mediated by 
intracellular residues,6 proton activation 
is conferred by extracellular side chains,7-9 
while the domain(s) and potential mecha-
nism responsible for temperature sensi-
tivity remains a topic of debate.10-15 In 
light of the distinct sites of action of the 
many TRPV1 stimulants, it is desirable to 
develop antagonists that target a domain 
that is common for the activation path-
ways of many (if not all) agonists. One 
obvious candidate is the pore domain, 
with its selectivity filter being the final 
integrator of the diverse stimuli acting on 
the ion channel, ultimately biasing the 
open-closed equilibrium. To this end, we 
and others have demonstrated extracel-
lular TRPV1 inhibition by charged or 
chargeable ammonium compounds,16,17 
and we have recently shown that these 
compounds likely target the channel 
pore.18

 Expression-dependent extracellu-
lar block of TRPV1 channels. We have 
previously shown that TRPV1 channels, 
expressed in Xenopus leavis oocytes, are 
reversibly inhibited by the quaternary 
ammonium compound QX-314 with 
micromolar affinity.16 In contrast, our 
follow-up study demonstrated that the 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

48 Channels Volume 7 Issue 1

amplitudes (from 100 nA to 15 μA),  
which we assumed to roughly corre-
late with channel expression levels. In 
single drug application experiments,  
1 or 10 μM QX-314 were co-applied with 
an approximate EC

50
 concentration of cap-

saicin (15 μM) to oocytes expressing vary-
ing levels of TRPV1 channels.16 To control 
for de(sensitization), each drug application 
was preceded and followed by an applica-
tion of capsaicin alone (Fig. 1A and C). 
We observed a robust inverse correlation 
between the observed maximal currents 
and the level of inhibition at both 1 and 
10 μM QX-314 (R values of 0.80 and 0.71, 
respectively, Fig. 1B and D), with increas-
ing TRPV1 expression levels resulting in 
progressively less inhibition by QX-314. 
Similar trends were observed for all con-
centrations tested between 100 pM and 
100 μM QX-314 (data not shown), sug-
gesting this trend is a general phenomenon.

Discussion

Before discussing the findings of our 
present study in more detail, it is neces-
sary to point out a potential caveat in the 
interpretation of our results. It is generally 
assumed that with increasing amounts of 
injected mRNA and/or longer incubation 
time, the expression levels of ion channels 
expressed in Xenopus leavis oocytes will 
linearly increase.19 However, in the pres-
ent case, we cannot definitively prove that 
the observed macroscopic currents are lin-
early correlated with the expression levels 
of TRPV1 for two reasons. First, it has not 
yet been possible to identify the voltage-
sensing component of TRPV1 channels, 
prohibiting gating current measurements, 
as those routinely performed in on voltage-
gated potassium channels, for example.20 
Such gating currents would otherwise 
allow for assessment of surface protein 
expression. And second, the direct surface 
labeling of expressed TRPV1 would be 
unreliable at the very low expression levels 
used for many of the experiments in this 
study. However, given that previous stud-
ies with different ion channels expressed in 
Xenopus leavis oocytes have demonstrated 
that larger amounts of injected mRNA, as 
well as longer incubation times results in 
higher expression levels,21,22 we assume a 
similar correlation is true for TRPV1.

different expression levels of the TRPV1 
channels.

To determine if the degree of current 
inhibition was directly dependent on 
TRPV1 expression levels (as assessed by 
the magnitude of macroscopic currents), 
we chose to test TRPV1 inhibition by 
the quaternary ammonium compound 
QX-314 in Xenopus leavis oocytes. We 
varied both the amount of mRNA 
injected, as well as the incubation time 
(see Methods for details) to obtain oocytes 
yielding a wide range of maximal current 

tertiary ammonium compound, lidocaine, 
and quaternary ammonium compounds 
such as tetraethyl ammonium (TEA) 
and tetramethyl ammonium (TMA) can 
inhibit TRPV1 channels with nanomolar 
affinity in Xenopus leavis oocytes.18 In the 
latter, and in contrast to our initial study, 
we had limited the whole-cell currents to a 
range between 0.1 and 3 μA (to limit Ca2+ 
overload of the cells due to large inward 
currents). This led us to speculate that the 
drastic difference in apparent affinities 
for ammonium inhibitors may arise from 

Figure 1. QX-314 inhibition is dependent on TRPV1 expression levels in Xenopus oocytes.  
Co-application of 15 μM capsaicin with different QX-314 concentrations was flanked by two ap-
plications of 15 μM capsaicin to control for (de)sensitization. Only one 10 sec drug application was 
performed per oocyte with 2 min washout intervals between all applications. (A and C) Represen-
tative capsaicin-evoked current traces observed before and after the co-application of (A) 1 μM  
and (C) 10 μM QX-314 in oocytes expressing low (top panels) or high (bottom panels) levels of 
TRPV1. Note the different vertical scale bars in top and bottom panels; (B and D) A strong positive 
correlation is observed between capsaicin-evoked TRPV1 peak current amplitudes (Imax) and the 
level of inhibition in the presence of 1 μM (B) or 10 μM (D) QX-314. Only oocytes with inward cur-
rents Imax > 0.1 μA and < 15 μA were included in the analysis (1 μM QX-314: n = 32; 10 μM QX-314: 
n = 38).
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of −60 mV. The data were acquired using 
an Axopatch 200B amplifier with the 
pCLAMP 10.0 software suite (Molecular 
Devices) and analyzed offline using Prism 
5 (GraphPad) and Sigma Plot 10 (Systat 
Software Inc.).
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of extracellular pore block through com-
pounds such as QX-314.

How might such expression-dependent 
pharmacology arise? One possibility is 
that as more channels are present on the 
surface of the cell that they begin to come 
in contact with one another, and such 
channel multimerization results in archi-
tectural modification of the pore domain 
that is concomitant with lowered blocker 
affinity. Alternatively, the channel may 
be interacting with other molecules in the 
oocyte, including endogenous TRP chan-
nel subunits, which would serve to modify 
channel pharmacology. In this scenario, 
high-affinity block diminishes as more 
TRP channels are expressed, effectively 
exhausting this endogenous population, 
even though the actual number of TRPV1 
receptors could be similar in high and low 
current expressing phenotypes. And while 
there is a clear trend with expression level 
(as assessed by the magnitude of mac-
roscopic currents) and blocker affinity, 
there is also sizable inherent variation in 
blocker affinity outside of current expres-
sion levels, suggesting additional modulat-
ing factors, such as phosphorylation and  
Ca2+-dependent gating, may also influence 
pore conformations and blocking abil-
ity. Regardless, the data add yet another 
functional twist to an already challenging 
array of experimental pitfalls in the study 
of these clinically and physiologically rel-
evant ion channels.

Methods

An amount of 10–50 nl of TRPV1 (rat 
isoform) mRNA (500 ng/μl) was injected 
into Xenopus laevis oocytes and electro-
physiological recordings were conducted 
12–36 h post injection, using the two-
electrode voltage-clamp technique. Glass 
microelectrodes were backfilled with  
3 M KCl. The external solution contained 
(in mM): 116 NaCl, 2 KCl, 1 MgCl

2
,  

0.5 CaCl
2
 and 5 HEPES; pH 7.4. 

Capsaicin (8-methyl-N-vanillyl-6-none-
namide) was used at 15 μM and applied 
(with or without QX-314) for 10 sec via 
a fast perfusion system in a custom-built 
recording chamber. Two-minute washout 
times were maintained between applica-
tions. All recordings were performed at 
room temperature and a holding potential 

Taking into account the above men-
tioned caveat, we thus believe the data 
presented here strongly suggest that the 
potency of TRPV1 inhibition by the qua-
ternary ammonium compound, QX-314, 
is dependent on TRPV1 expression levels 
as assessed by the magnitude of macro-
scopic currents in Xenopus leavis oocytes. 
At first glance, the notion of expression-
dependent receptor pharmacology may 
seem surprising, but relevant similar 
observations from other ion channel types 
exist. First, it has long been known that 
some ion channels, such as ATP-gated 
P2X receptors, the nicotinic acetylcho-
line receptor and L-type calcium chan-
nels show differences in their conductance 
and or gating behavior, depending on 
whether they are studied as single mol-
ecules or in association with other chan-
nels.23-25 Similarly, density-dependent 
agonist-sensitivity has been found both 
in P2X receptors21 and glycine recep-
tors.22,26,27 Although we did not observe 
significant expression-dependent changes 
in the agonist (capsaicin) sensitivity with 
TRPV1,18 we found an inverse correla-
tion between the level of expression and 
the amount of inhibition by QX-314. 
Our mutational analysis further pointed 
toward two amino acids near the putative 
pore region of TRPV1 (E648 and F649), 
that may be implicated in the inhibi-
tion by QX-314.18 Interestingly, the pore 
region, which generally also determines 
channel selectivity, has been shown to be 
a dynamic structure in P2X receptors,28-30 
acid-sensing channels31 and also voltage-
gated potassium channels,32-34 which have 
been speculated to bear structural resem-
blance to TRP channels. In fact, it has 
recently been shown that TRPV1 can also 
undergo dynamic changes in the selectiv-
ity filter during agonist activation,35 and 
importantly, this effect was found to be 
expression-dependent. However, it has 
yet to be determined if the expression-
dependent pharmacology described here is 
a general trait of TRP channels expressed 
in native and in vitro setting. Nonetheless, 
we interpret the data as further evidence 
for our finding that QX-314 inhibition 
of TRPV1 is likely mediated through the 
pore region, a protein region that likely 
exhibits an expression-dependent confor-
mation,35 thereby regulating the potency 
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