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Abstract

PTEN induced kinase 1 (PINK1) is a serine/threonine kinase in the outer membrane of mitochondria (OMM), and known as a
responsible gene of Parkinson’s disease (PD). The precursor of PINK1 is synthesized in the cytosol and then imported into
the mitochondria via the translocase of the OMM (TOM) complex. However, a large part of PINK1 import mechanism
remains unclear. In this study, we examined using cell-free system the mechanism by which PINK1 is targeted to and
assembled into mitochondria. Surprisingly, the main component of the import channel, Tom40 was not necessary for PINK1
import. Furthermore, we revealed that the import receptor Tom70 is essential for PINK1 import. In addition, we observed
that although PINK1 has predicted mitochondrial targeting signal, it was not processed by the mitochondrial processing
peptidase. Thus, our results suggest that PINK1 is imported into mitochondria by a unique pathway that is independent of
the TOM core complex but crucially depends on the import receptor Tom70.
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Introduction

Mitochondria are unique organelles which harbor numerous

metabolic pathways and supply cells with energy in the form of

ATP. The complex biogenesis and dynamics of the mitochondrial

network necessitate elaborate quality control measurements to

assure that damaged proteins and organelles are eliminated. A

dysfunction of mitochondria causes fragmentation of the mito-

chondrial network and can induce a specific autophagy of

mitochondrial fragments (also called mitophagy) [1,2,3].

Aberration of mitochondrial quality control has been suggested

as a cause of Parkinson’s disease (PD) [4,5,6]. PD is one of the

most common neurodegenerative diseases. Most of the PD cases

cannot be attributed to known genetic factors but about 5–10% of

the patients suffer from familial PD and bear mutations in specific

genes that have been conclusively shown to cause PD [7,8,9].

Among these mutated genes are alpha-synuclein (SNCA), leucine-

rich repeat kinase 2 (LRRK2), Parkin, DJ1, ATP13A2, and PTEN

induced kinase 1 (PINK1) [7,8,9]. PINK1, a protein of the outer

membrane of mitochondria (OMM), and Parkin, E3 ubiquitin

ligase localized in cytosol, are involved in selective clearance of

damaged mitochondria. [10]. In normal condition, the precursor

of PINK1 (65 kDa) is synthesized in the cytosol and is imported

into the OMM. After association with the OMM, PINK1 is

further transferred into the inner membrane of mitochondria

(IMM) in a membrane potential dependent manner, and is then

processed to a 52 kDa mature form by the mitochondrial

rhomboid protease in the IMM, PARL [11,12]. The half life of

the mature form of PINK1 is very short (30 min) and it was

proposed that the proteasome is involved in its degradation [13].

Hence, under normal conditions the protein level of PINK1 in

mitochondria is extremely low. However, when mitochondria are

damaged and lose their membrane potential, PINK1 is not

imported into the IMM, and rather avoids processing by PARL.

PINK1 remains then in the OMM and recruits Parkin, to the

OMM where the latter protein induces mitophagy [10].

PINK1 has a predicted mitochondrial targeting signal (MTS) in

its amino-terminal region, transmembrane (TM) domain in the

middle, and kinase domain in its carboxy -terminal [14]. It has

been anticipated that PINK1, like almost all mitochondrial

proteins, is synthesized in the cytosol as a preprotein, targeted to

the surface of the organelle, and then translocated across the

translocase of the OMM (TOM) complex [11,15,16]. Subse-

quently, PINK1 is believed to be imported into the mitochondrial

matrix (MTX) by the translocase of the IMM (TIM), and then it

was suggested to be cleaved by the mitochondrial processing

peptidase (MPP) [17].

In this study, we investigated the import pathway of PINK1 into

the mitochondria using a cell-free system. We found that PINK1 is

imported into the mitochondria in a membrane-potential depen-

dent manner, is not cleaved by MPP, and that the import receptor

Tom70, but not Tom40, is involved in this process.

Materials and Methods

Ethics statement
All animal experiments were reviewed and approved by the

local authorities (Regierungspräsidium Tübingen, Germany) and

were conducted in accordance with the University of Tübingen
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guidelines and 14 of the German law. We made effort to minimize

the number of animals used and their suffering.

Cell culture
HeLa cells expressing shRNA against TOM proteins under the

control of doxycyclin (Dox) were established as described

previously [18]. These cells were cultured at 37uC under 5%

CO2 in RPMI 1640, supplemented with 10% FBS. The

knockdown of TOM proteins was induced by adding 1 mg/ml

Dox for 7 days or 5 days in the case of Tom40 knockdown cell

line.

Isolation of mitochondria
Mouse liver mitochondria were isolated as described previously

[19]. For isolation of mitochondria from tissue culture, HeLa cells

in a 10 cm cultured dish were washed with PBS and collected by

centrifugation (8006 g, 5 min, 4uC). The collected cells were

resuspended in buffer A (20 mM Hepes-KOH pH 7.4, containing

220 mM Mannitol, 70 mM sucrose, 1 mM EDTA, 2 mg/ml BSA

and 0.5 mM PMSF), and were homogenized by passing 20 times

through a 27-gauge needle. This mixture was then centrifuged

(8006g, 5 min, 4uC) and the supernatant fraction was centrifuged

again (10,0006 g, 10 min, 4uC) to obtain the mitochondrial

fraction in the pellet. The mitochondria were resuspended in 1 ml

buffer B (buffer A without BSA) and then centrifuged again

(10,0006 g, 10 min, 4uC). This mitochondria pellet was used for

import assay.

Cell-free import assay
Radiolabeled precursor proteins were synthesized by the TNT

coupled reticulocyte lysate system (Promega) in the presence of
35S-methionine. The radiolabeled proteins were incubated at 15uC
(PINK1) or 30uC (pSu9-DHFR and F1b) for various time periods

with 25 mg mitochondria in 50 ml of import buffer (10 mM Hepes-

KOH pH 7.4, containing 1 mM ATP, 20 mM sodium succinate,

5 mM NADH, 0.5 mM magnesium acetate, 220 mM mannitol,

70 mM sucrose, 0.5 mM PMSF). The mitochondria were then

isolated by centrifugation and analyzed by SDS-PAGE and

autoradiography. The intensity of bands representing imported

proteins was quantified by ImageJ (NIH).

MPP treatment
Recombinant MPP was purified as described before [20]. 35S-

methionine-labeled precursor of PINK1 and pSu9-DHFR were

incubated for 10 min at 25uC with 2 mg MPP in MPP buffer

(50 mM KOAc, 20 mM Tris-HCl, 1 mM DTT, 2 mM MnCl2,

pH 7.4). EDTA (4 mM final conc.) was added to stop the

enzymatic reaction.

Trypsin treatment of mitochondria
Mitochondria (25 mg) were treated at 0uC for 10 min with

50 mg/ml trypsin in buffer B and then 500 mg/ml of soybean

trypsin inhibitor (STI) was added and samples were incubated for

15 min on ice to inactivate trypsin. At the same time, control

mitochondria (Tryp2) were incubated with the same amount of

trypsin but in the presence of 500 mg/ml STI. After incubation,

mitochondria were collected by centrifugation (10,0006 g,

10 min, 4uC). Mitochondrial pellet was then used for import

assay and membrane potential measurement.

Membrane potential measurement of isolated
mitochondria

3,39-Dipropylthiadicarbocyanine iodide (diSC3(5)) resuspended

in ethanol was added to mitochondrial mixture to a final

concentration of 1.5 ng/ml. After 5 min incubation, fluorescence

was measured using 651 nm for excitation and 675 nm for

emission. The fluorescence intensity of a sample with dye and in

the absence of mitochondria was subtracted as a background from

the measured fluorescence of the other samples. Three samples

were measured for each of the conditions. Measurements were

performed in the black plate (Corning) using TECAN Infinite

M200 plate reader.

Results

Cell-free synthesized PINK1 is imported into the
mitochondrial outer membrane

To analyse the import pathway of PINK1 into mitochondria,

we used a cell-free import assay. Cell-free translated radiolabeled

PINK1 precursor was incubated with mitochondria isolated from

HeLa cells. Upon import of PINK1 into mitochondria a 52 kDa

mature form (M) was detected in addition to the precursor protein

(P) (Fig. 1A, left lane). To confirm the identity of the 52 kDa

mature form we analyzed PINK1 imported in a cell-free assay and

PINK1 expressed in intact cells side by side by SDS-PAGE.

Radiolabeled cell-free imported PINK1was detected by autoradi-

ography and expressed PINK1 from intact cells was detected using

antibodies recognizing residues 175–250 of PINK1. We observed

that both mature forms co-migrated at 52 kDa (Fig. 1A).

Furthermore, we analyzed the submitochondrial localization of

the imported and expressed PINK1. Alkaline extraction [21]

(Fig. 1B) and proteinase K treatment (Fig. 1C) showed that cell-

free imported PINK1 is localized in the OMM similarly to PINK1

expressed in intact cells. Taken together, both forms of PINK1

behaved as a membrane-embedded protein exposed to the cytosol.

PINK1 is not processed by MPP
Most of the MTS-containing mitochondrial precursor proteins

are imported into the mitochondria in a process requiring

membrane potential and upon their import the MTS is cleaved

off by MPP [22]. PINK1 has a predicted MTS in its N-terminal

region [14]. Thus, we asked whether PINK1 is imported into the

mitochondria through the aforementioned pathway. In these

experiments, pSu9-DHFR, the presequence of subunit 9 of the

F1Fo ATPase of N. crassa fused to mouse dihydrofolate reductase,

was used as a model mitochondrial precursor protein with MTS.

To elucidate the membrane potential dependency we added the

uncoupler CCCP to the cell-free import reactions. When CCCP

was added, the import of both PINK1 and pSu9-DHFR was

interdicted (Fig. 2A). Thus, the membrane potential is necessary

for PINK1 processing.

Next, we investigated whether PINK1 is processed by MPP

upon its import into mitochondria. MPP is a metallopeptidase

which requires divalent metal ions [20]. Thus, to inhibit MPP we

added O-phenanthroline, a metal ion chelator to the cell-free

import reaction. As expected, processing of pSu9-DHFR was

inhibited (Fig. 2B, lower panel), but the generation of PINK1

mature form was unaffected (Fig. 2B, upper panel). To support

these results, we purified recombinant MPP and incubated it

directly with radiolabeled precursors of PINK1 or pSu9-DHFR.

Since pSu9-DHFR has two MPP cleavage sites at positions 35 and

66 [23], two fragments representing the intermediate (I) and

mature (M) forms appeared upon incubation with MPP (Fig. 2C,

lower panel). On the other hand, the proteolytic fragment of

PINK1 Import into Mitochondria
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PINK1 was not detected after MPP treatment (Fig. 2C, upper

panel). Collectively, these results indicate that PINK1 is not

cleaved by MPP.

PINK1 import is independent of Tom40
The TOM complex is composed of the import channel formed

mainly byTom40, the import receptors Tom20, Tom22 and

Tom70, and several small Tom proteins [24,25]. MTS-containing

precursor proteins require Tom40 to pass through the OMM. We

examined whether Tom40 is essential also for PINK1 import. To

that goal, we added high amount of recombinant pSu9-DHFR to

the import reaction in order to block the Tom40 channel. As

expected, import of F1b, the yeast F1-ATPase beta subunit

precursor protein, was interdicted by this treatment (Fig. 3A and B

lower panel). In contrast, PINK1 import was not affected by the

competition with pSu9-DHFR (Fig. 3A and B upper panel). As a

control, we also added DHFR to the import assays and observed

that it did not affect the import reactions (Fig. 3A and B).

Furthermore, we examined the import into mitochondria isolated

from cells where knockdown of Tom40 was performed using

doxycycline inducible shRNA cell line [18]. Mitochondria isolated

from these Tom40-depleted cells have significant reduced capacity

to import VDAC1 [18]. As observed before [18], the levels of

Tom40 were efficiently reduced in these cells by adding

doxycycline, but the level of Hsp60, a mitochondrial matrix

protein, was not affected (Fig. 3C). Therefore, we used Hsp60 to

demonstrate that equal amounts of control and Tom40-knock-

down mitochondria were used in the import experiment (Fig. 3C).

Surprisingly, the reduction of Tom40 did not affect the import of

PINK1 (Fig. 3D and E), suggesting that Tom40 is not necessary

for PINK1 import.

Tom70 is important for PINK1 import
The import of most mitochondrial precursor proteins requires

initial recognition by import receptors [26,27,28]. We examined

whether the receptor proteins on the OMM are necessary for

Figure 1. Cell-free import assay of PINK1. (A) Radiolabeled PINK1 was incubated at 15uC for 30 min with mitochondria isolated from HeLa cells.
At the end of the import reaction, mitochondria were re-isolated by centrifugation and analyzed by SDS-PAGE and autoradiography (left lane). A
plasmid encoding PINK1 was transfected into HeLa cells. Mitochondria were isolated from the transfected cells and analyzed by immunoblotting
using PINK1 antibody (right lane). (P) and (M), PINK1 precursor and mature form, respectively. (B) Mitochondria from the cells expressing PINK1 or to
which PINK1 was imported were treated with 100 mM Na2CO3 at 0uC for 30 min, and then the samples were ultracentrifuged to separate the
membrane fraction in the pellet (pel.) from soluble proteins in the supernatant (sup.) fraction. Samples were then subjected to SDS-PAGE and
autoradiography or immunodecoration with antibodies against PINK1, Tom20 (OMM protein), or Hsp60 (MTX protein). (C) Mitochondria as in part (B)
were treated with 100 mg/ml proteinase K at 0uC for 30 min. Samples were then subjected to SDS-PAGE and autoradiography or immunodecoration
with antibodies against PINK1, Tom20 (OMM protein) and Tim23 (IMM protein).
doi:10.1371/journal.pone.0058435.g001

Figure 2. PINK1 is not processed by MPP. (A) Import reactions of radiolabeled PINK1 and pSu9-DHFR were performed in the presence or
absence of 20 mM CCCP. Samples were then analyzed by SDS-PAGE and autoradiography. Precursor and mature forms are indicated by P and M,
respectively. (B) Mitochondria were pre-incubated with (+) or without (2) 5 mM o-phenanthroline (o-phe) at 0uC for 10 min, reisolated, and subjected
to cell-free import assay of radiolabeled PINK1 and pSu9-DHFR in the presence (+) or absence (2) of 5 mM o-phe. Further treatment was as described
in part (A). (C) Radiolabeled PINK1 and pSu9-DHFR were incubated with MPP at 25uC for 10 min. The reactions were stopped by adding 4 mM EDTA
and samples were subjected to SDS-PAGE and analyzed by autoradiography.
doi:10.1371/journal.pone.0058435.g002

PINK1 Import into Mitochondria

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58435



PINK1 import. Isolated mitochondria were treated with trypsin in

order to remove the exposed domains of the receptor proteins.

The receptor protein, Tom70 was indeed removed by such a

treatment, but on the other hand, an intermembrane space (IMS)

protein, Mia40 remained intact (Fig. 4A). We performed cell-free

import assay using trypsin treated mitochondria, and found that

the import efficiency of PINK1 was considerably reduced (Fig. 4B

and C). Previously, we showed that membrane potential of

mitochondria is necessary for PINK1 import (Fig. 2A). Thus, we

verified that trypsin treatment did not affect mitochondrial

membrane potential using an assay for membrane potential

measurement based on the intake of fluorescent dye diSC3(5). We

observed that there was no difference in the fluorescence intensity

of the trypsin treated (Tryp+) and intact (Tryp2) mitochondria. As

expected, the fluorescence intensity was strongly reduced when

mitochondria were treated with the uncoupler CCCP and

valinomycin, a potassium ionophore, confirming the validity of

our measurements (Fig. 4D). Likewise, previous experiments

performed with yeast mitochondria showed that trypsin treatment

does not affect mitochondrial membrane potential [29].

Tom20, Tom22 and Tom70 were identified as import receptors

on the OMM. Tom20 and Tom22 mainly recognize presequence-

containing proteins [27], whereas Tom70 is known as a receptor

for internal signals in hydrophobic proteins [28]. We aimed to

identify the receptors that are involved in PINK1 import using

shRNA cell lines of Tom22 and Tom70 (Fig. 4E and F,

respectively). Since a major reduction of Tom20 could be seen

in shRNA cell line with Tom22 knockdown (Fig. 4E), we used this

cell line to analyze the contribution of both receptor proteins. The

reduction of Tom20 and Tom22 did not affect PINK1 import

(Fig. 4G). In contrast, the import efficiency of PINK1 was reduced

by knockdown of Tom70 (Fig. 4H).

Discussion

In this study we addressed the participation of the TOM

complex in PINK1 import using doxycycline inducible shRNA cell

lines and by blocking the TOM import channel. We observed that

Tom70 is essential for PINK1 import, whereas Tom40 appeared

not to be involved in this process. In addition, although we did not

obtain complete depletion of Tom22, our results might suggest

that Tom20 and Tom22 are also not required for the import of

PINK1. Lazarou et al. showed that the TOM core complex,

including Tom40, Tom20, and Tom22 forms a complex with

PINK1 on depolarized mitochondria [30]. When mitochondria

lose membrane potential, PINK1 accumulates on the OMM, and

Figure 3. Tom40 is not involved in PINK1 import. (A) Radiolabeled PINK1 and F1b were imported into mitochondria in the presence of the
indicated amounts of pSu9-DHFR or DHFR. After import reaction, mitochondria were washed with buffer B. Samples were then analyzed by SDS-PAGE
and autoradiography. (B) Bands corresponding to the mature imported protein were quantified. Import into mitochondria in the absence of added
protein was taken as 100%. (C) Protein level of mitochondria isolated from either control (2Dox) or Tom40 knockdown cells (+Dox) were analyzed by
immunodecoration using the indicated antibodies. (D) Radiolabeled PINK1 was incubated at 15uC with control (2Dox) or Tom40 knockdown (+Dox)
mitochondria for the indicated time periods. Samples were then analyzed by SDS-PAGE and autoradiography. (E) Bands corresponding to the mature
imported protein were quantified. The amount of mature PINK1 after 30 min import into control mitochondria (2Dox) was set to 100%. The results
are the average of three independent experiments 6 SD.
doi:10.1371/journal.pone.0058435.g003
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then recruits Parkin. Interestingly, PINK1/TOM complex did not

contain Parkin. Hence, it seems that PINK1 associated with the

TOM complex lost the ability to recruit Parkin. Accordingly, we

speculate that TOM core complex regulates the binding between

PINK1 and Parkin rather than import of PINK1 into the

mitochondria.

Trypsin pretreatment of mitochondria revealed that the

receptors on the OMM are necessary for PINK1 import.

Furthermore, using shRNA knockdown cells we found that

Tom70 might work as a receptor for PINK1 import. However,

the mechanism of the subsequent insertion of PINK1 into the

OMM is still unclear. There are two possibilities; PINK1 is

directly inserted into the lipid bilayer after recognition by Tom70

or alternatively it is integrated into the membrane with the help of

a yet unknown import channel. Several polytopic OMM proteins

are imported into the OMM via Tom70 without a clear

involvement of Tom40 [31,32,33]. It is possible that PINK1

import follows a similar pathway.

PINK1 has a predicted MTS in its N-terminal region and

accordingly it was assumed that PINK1 MTS is processed by MPP

after import into mitochondria. Greene et al. reported that the

knockdown of MPPb induces increasing amounts of full length

PINK1 [17]. However, it is difficult to distinguish whether this is a

direct or an indirect effect of MPPb knockdown. To resolve this

problem, we incubated recombinant MPP with PINK1, and

observed that MPP did not cleave PINK1. Furthermore, known

MPP inhibitor did not affect PINK1 import. Thus, these results

indicate that MPP is most likely not directly involved in PINK1

processing.

Taken together, our study indicates that PINK1 is imported into

mitochondria by a unique pathway that requires Tom70 but is

independent of Tom40 and MPP.
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Figure 4. Tom70 is necessary for PINK1 import. (A) Mitochondria isolated from mouse liver were treated at 0uC for 10 min with 50 mg/ml
trypsin and then analyzed by western blotting using antibodies against Tom70 (OMM) and Mia40 (IMS) proteins. (B) Radiolabeled PINK1 was
incubated at 15uC with intact (Tryp2) or trypsin treated (Tryp+) mitochondria for the indicated time periods. Samples were then analyzed by SDS-
PAGE and autoradiography. (C) Bands corresponding to the mature imported protein were quantified. The amount of mature PINK1 at 15 min import
into intact mitochondria (Tryp2) was set to 100%. The results are the average of three independent experiments 6 SD. (D) The membrane potential
of intact mitochondria (Tryp2), trypsin treated mitochondria (Tryp+) and intact mitochondria treated with 1 mM CCCP and 1 mM valinomycin were
measured by uptake of fluorescent dye diSC3(5). The results are the average of three experiments 6 SD. (E, F) Mitochondria isolated from control cells
(2Dox) and fromTom22 (E, +Dox) or 70 knockdown cells (F, +Dox) were analyzed by western blotting using the indicated antibodies. (G, H)
Radiolabeled PINK1 was incubated at 15uC for the indicated time intervals with mitochondria isolated from control (2Dox), Tom22-depleted (G,
+Dox), or Tom70 depleted cells (H, +Dox). Samples were analyzed by SDS-PAGE and autoradiography (upper panels). Bands corresponding to the
mature imported protein were quantified. The amount of mature PINK1 after 30 min import of control mitochondria (2Dox) was set to 100% (Fig. 4G,
H lower panels). Graphs represent mean values of three independent experiments 6 SD.
doi:10.1371/journal.pone.0058435.g004
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