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As studies of DNA methylation increase in scope, it has become evident that methylation has a complex relationship
with gene expression, plays an important role in defining cell types, and is disrupted in many diseases. We describe
large-scale single-base resolution DNA methylation profiling on a diverse collection of 82 human cell lines and tissues
using reduced representation bisulfite sequencing (RRBS). Analysis integrating RNA-seq and ChIP-seq data illumi-
nates the functional role of this dynamic mark. Loci that are hypermethylated across cancer types are enriched for
sites bound by NANOG in embryonic stem cells, which supports and expands the model of a stem/progenitor cell
signature in cancer. CpGs that are hypomethylated across cancer types are concentrated in megabase-scale domains
that occur near the telomeres and centromeres of chromosomes, are depleted of genes, and are enriched for cancer-
specific EZH2 binding and H3K27me3 (repressive chromatin). In noncancer samples, there are cell-type specific
methylation signatures preserved in primary cell lines and tissues as well as methylation differences induced by cell
culture. The relationship between methylation and expression is context-dependent, and we find that CpG-rich en-
hancers bound by EP300 in the bodies of expressed genes are unmethylated despite the dense gene-body methylation
surrounding them. Non-CpG cytosine methylation occurs in human somatic tissue, is particularly prevalent in brain
tissue, and is reproducible across many individuals. This study provides an atlas of DNA methylation across diverse
and well-characterized samples and enables new discoveries about DNA methylation and its role in gene regulation
and disease.

[Supplemental material is available for this article.]

In the early 1980s, several groups observed that the covalent ad-

dition of a methyl group to the cytosine base in mammalian ge-

nomic DNA at certain loci is associated with differential gene

expression of nearby genes (Razin and Riggs 1980; Sutter and

Doerfler 1980; van der Ploeg and Flavell 1980). This led to decades

of research deciphering the patterns and purpose of this fifth DNA

base in the human genome. It is an ongoing challenge to map the

locations of methylated cytosines across the genome and to un-

derstand their roles in cell-type specific gene regulation (Ghosh

et al. 2010), the establishment of gene expression patterns for

stable differentiation (Lei et al. 1996; Okano et al. 1999; Jackson

et al. 2004; Blelloch et al. 2006; Ji et al. 2010; Kim et al. 2010), and

disease, including cancer where vast changes in DNA methylation

patterns occur (Laird and Jaenisch 1994; Ushijima 2005; Sharma

et al. 2010; Tsai and Baylin 2011). Bisulfite sequencing provides

the most direct and highest resolution method to quantify DNA

methylation in the genome, enabling the ability to calculate the

fraction of molecules that are methylated at each individual

cytosine sequenced (Frommer et al. 1992). The advent of next-

generation DNA sequencing technologies has prompted the de-

velopment of methods that take advantage of this vastly increased

throughput, using bisulfite sequencing to query large subsets of

the human genome (Meissner et al. 2008) and even whole human

genomes (Cokus et al. 2008; Lister et al. 2009; Laurent et al. 2010;

Li et al. 2010; Hansen et al. 2011; Berman et al. 2012; Hon et al.

2012).

The goal of this study was to generate a high-quality com-

pendium of DNA methylation data across a large number of hu-

man cell lines and tissues. Reduced representation bisulfite se-

quencing (RRBS) was chosen because it provides quantitative,

single-base resolution methylation profiles for a large subset of the

human genome that is enriched for genic regions and CpG islands

(CGIs) (Meissner et al. 2008). Other genomic assays have been

performed in these samples as part of The ENCODE Project (The

ENCODE Project Consortium 2007, 2011, 2012), providing a rich

resource for integrated analysis of DNA methylation, gene ex-

pression, transcription factor binding, and chromatin modifica-

tions. We demonstrate that comparisons of methylation profiles

across the diverse collection of samples in this study can be used to

investigate cancer-associated methylation defects, cell-type specific
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methylation, and epigenetic changes induced by cell culture. We

quantify the reciprocal relationships of promoter and gene body

methylation to expression levels and present the identification of

a DNA methylation signature of intragenic (gene body) tran-

scriptional enhancers marked by EP300 that clarifies the in-

terpretation of gene body methylation. We report the discovery

of reproducible non-CpG cytosine methylation in human so-

matic tissue, particularly in adult human brain tissues. The data

described here provide an atlas of DNA methylation for in-

vestigating how this epigenetic mark relates to other molecular

and phenotypic characteristics within these diverse cell types,

including many commonly used cell line models. The data are

readily available for visualization and analysis using the UCSC

Genome Browser (Fujita et al. 2011; Raney et al. 2011) and will

provide a valuable resource for future comparisons to other cell

types, disease states, and functional genomic assays.

Results

Quantifying DNA methylation

We modified a previously published protocol for RRBS (Meissner

et al. 2008) to create a streamlined workflow for this larger-scale

implementation (Supplemental Fig. S1). For each reference cyto-

sine sequenced, we computed the percentage of reads in which the

cytosine was methylated (remained a C after bisulfite treatment)

out of the total reads covering that position (Supplemental Fig. S2).

This percent methylated (PM) value represents the percentage of

molecules that were methylated at each cytosine.

In replicate growths of the human myeloid cell line K562, we

found that lower read depth provided less reproducible measure-

ments of PM between replicates. When restricted to CpGs with at

least 103 coverage, the reproducibility of PM measurements across

the full range of values improved between replicates (r = 0.987) and

resulted in an average of 3.96 PM difference per CpG between

replicates (Supplemental Fig. S3A). The resulting PM measure-

ments were highly correlated with values obtained from an array-

based methylation assay (Illumina Methyl450K, r = 0.954) (Sup-

plemental Fig. S3B). We performed RRBS on 82 human cell lines

and tissues in duplicate (sample information in Supplemental

Table S1) and obtained at least 103 coverage for an average of

700,000 CpGs in each sample. The MspI restriction digest utilized

for RRBS enriches for CpG-dense regions of the genome, in-

cluding genes (twofold enrichment) and CpG islands (111-fold

enrichment).

Global observations

We found that all samples, regardless of the disease state or tissue

type, had similar distributions of methylation among the assayed

CpGs (mean of pairwise R2 = 0.96) (Supplemental Fig. S3C). In each

sample, 5%–15% of assayed CpGs were completely methylated

(PM $ 90), and 65%–80% of assayed CpGs were unmethylated

(PM # 10). This consistency could appear because the same CpGs

are always methylated in all samples, or it could result from the

same net amount of methylation placed on different loci between

samples. Our data set supports the latter; the PM values of in-

dividual CpGs varied substantially across cell lines and tissues.

Only 4% (27,053) of CpGs are unmethylated (#10 PM) across all

cell lines and tissues that we assayed, and these are located near the

transcription start sites (x2, P < 0.0004) of genes with housekeeping

functions (P < 1.35 3 10�10). The remaining 670,000 CpGs that we

assayed exhibited differential methylation in this study, providing

a rich data set for investigating epigenetic patterns.

To characterize cell-type specific methylation patterns, we

analyzed 440,974 autosomal CpGs with at least 103 coverage in at

least 90% of the samples. We performed unsupervised hierarchical

clustering on the PM values for the top 5% of CpGs with the most

variable methylation (N = 22,696, s $ 32.6). The samples all paired

with their replicates and clustered into clades with distinct meth-

ylation patterns, and these clades corresponded to distinct types of

samples, namely cancer cell lines, primary cell lines, tissues, and

blood leukocytes (Fig. 1A; detailed tree in Supplemental Fig. S4).

We divided these most variable CpGs based on whether they are

located in gene regulatory regions (<2000 bp from the transcrip-

tion start site) or in the body of genes (>2000 bp from the tran-

scription start site) and found that both subsets recapitulate the

classification of samples in the four clades (Supplemental Fig. S5).

To determine if the detection of cell-type specific differences would

be confounded by epigenetic variability introduced when cell lines

were grown in different ENCODE Consortium laboratories, we

obtained growth replicates of the same cell lines from different

laboratories. We found that they clustered together based on cell

type, not laboratory. Furthermore, for a particular cell type, repli-

cates from within a lab and replicates grown in distant labs were

equally similar (Supplemental Fig. S6).

Aberrant methylation across cancer cell lines

The dominant signal in this data set is cancer-specific hyper-

methylation found at 66,570 CpGs in the cancer cell lines (Fig. 1A),

including lines derived from breast, prostate, lung, ovarian, en-

dometrial, liver, and pancreatic cancer, as well as neuroblastoma

and several leukemias (Kolmogorov-Smirnov, P < 1 3 10�7). Of the

loci that are hypermethylated across cancers, 48,787 (73%) reside

in CGIs (Table 1) and represent a significant portion of the 148,465

island CpGs assayed (33% vs. expected 15%, Fisher’s exact test,

P < 0.05). The observation of hypermethylation at CGIs across the

genome, regardless of their proximity to genes, in 18 diverse cancer

cell lines is consistent with reports of a CpG island methylator

phenotype (CIMP) that was first described in colorectal cancer

(Toyota et al. 1999) and has since been documented in many

cancer types (Teodoridis et al. 2008; Liu et al. 2011; Chen et al.

2012; Turcan et al. 2012). An additional 7377 (11%) nonisland

CpGs are significantly hypermethylated in cancer, and these reside

in promoters and bodies of genes encoding proteins with se-

quence-specific DNA binding transcription factor activity (hyper-

geometric enrichment for GO:0003700, P = 5.4 3 10�15) (Table 1).

The presence of increased methylation in both the promoter and

gene body of these transcription factor genes indicates dysregula-

tion of methylation at these genes in cancer cell lines.

It has been observed that hypermethylation in cancer is

enriched at loci that in embryonic stem cells (ESCs) are unmeth-

ylated, have bivalent chromatin marks, and are reversibly re-

pressed by the Polycomb Repressive Complex. This observation

has led to the model of a stem/progenitor cell signature in cancer

(Ohm et al. 2007; Schlesinger et al. 2007; Widschwendter et al.

2007; Easwaran et al. 2012). We determined the overlap between

the loci that are hypermethylated across the cancer cell lines in our

data set and the location of binding sites for 149 transcription

factors that were assayed by chromatin immunoprecipitation se-

quencing (ChIP-seq) experiments performed by our lab and others

in The ENCODE Project Consortium. For each transcription factor

that overlapped loci that are hypermethylated in cancer cell lines,
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we report the enrichment and statistics in Supplemental Table S2.

Consistent with previous reports, we found that hypermethylated

CpGs have a significant overlap with loci that are bound by SUZ12

in ESCs, a component of Polycomb Repressive Complex 2 (Fisher’s

exact test, Benjamini–Hochberg (BH)-adjusted, P = 9.27 3 10�142).

The corepressor CTBP2 was also enriched at these sites and sig-

Figure 1. Methylation patterns distinguish cell types and reveal aberrant hypermethylation across cancers. (A) Unsupervised hierarchical clustering of
the top 5% of CpGs with the most varying methylation across 82 samples distinguishes four major clades, identified as cancer cell lines, tissues, primary cell
lines, and blood leukocytes. (B) Loci that are hypermethylated across cancers are significantly enriched for sites that are bound by NANOG in embryonic
stem cells. UCSC Genome Browser visualization of the SFRP2 gene showing DNA methylation data, NANOG binding sites in the embryonic stem cell line
H1-hESC (H1-hESC), and RNA-seq data. The color in the RRBS track indicates the percent of molecules that are methylated at each CpG position. (Red)
100%, (yellow) 50%, (green) 0%. Hypermethylation across the cancers occurs in the SFRP2 gene promoter where NANOG, a transcription factor, binds in
H1-hESC. NANOG binding in H1-hESC is visualized as green peaks in both ChIP-seq replicates, and peak boundaries are depicted as black and gray boxes
below the raw signal (darker boxes indicate a more significant peak). The RNA-seq data demonstrate that SFRP2 is expressed in H1-hESC and not expressed
in the cancer cell lines (HeLa, HepG2, MCF7, and HCT116).

Dynamic DNA methylation across human tissues
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nificantly overlapped SUZ12-bound loci in ESCs (Fisher’s exact

test, BH-adjusted, P = 9.75 3 10�20). Additionally, we discovered

that hypermethylated loci were also enriched for sites where

NANOG is bound in ESCs, which is a transcription regulator es-

sential for maintaining pluripotency in ESCs (Fisher’s exact test,

BH-adjusted, P = 4.06 3 10�4). The hypermethylated NANOG

binding sites do not overlap the SUZ12-bound loci, and the genes

nearest the hypermethylated NANOG binding sites are enriched

for genes that are overexpressed in human ESCs (P = 6.64 3 10�5)

(Ben-Porath et al. 2008). These observations support the role of

embryonic transcriptional regulators in directing aberrant meth-

ylation that leads to cancer but add complexity to the model. In

contrast to the polycomb repressive complex recruiting hyper-

methylation in cancer to persistently silence differentiation-

inducing genes, our results suggest that hypermethylation also

occurs at NANOG-bound loci that are active in ESCs. While these

are seemingly opposing effects, it is possible that both mechanisms

lead to tumorigenesis by silencing genes that lead to differentia-

tion, as well as silencing genes that control the stable, nonneo-

plastic division of a pluripotent cell. This is supported by the ob-

servation that NANOG binding site hypermethylation in cancer

occurs at genes enriched for transcription factor activity (P = 9.78 3

10�5), including developmental regulators such as FOXD3, a nega-

tive regulator of cell cycle (Abel and Aplin 2010), and CDX2, whose

silencing is associated with cancer progression (Huang et al. 2012;

Knosel et al. 2012). Figure 1B depicts another example, the SFRP2

gene, a modulator of Wnt signaling, whose promoter is unmeth-

ylated and bound by NANOG in the H1 ESCs where the gene is

expressed. In cancer, the NANOG binding site in the promoter is

methylated, and the gene is silenced.

Hypomethylation across the genome has been reported in

cancer (Irizarry et al. 2009; Hansen et al. 2011; Berman et al. 2012;

Hon et al. 2012). Although RRBS enriches for CpG-rich regions of

the genome that tend to be hypermethylated in cancer, we also

query thousands of positions in low CpG-density regions. We

detected 6691 positions that were significantly hypomethylated

across the cancer types when compared to the primary cell lines

and tissues (Kolmogorov-Smirnov, P < 1 3 10�7). We discovered

that these hypomethylated loci were colocalized in the genome

and identified 114 independent megabase windows that had sig-

nificantly more hypomethylated loci than expected, taking into

account the nonrandom genomic coverage of the assay (Fisher’s

exact test, P = 2 3 10�5) (genomic coordinates listed in Supple-

mental Table S3). These megabase-size hypomethylated domains

were significantly depleted of genes (binomial, P < 3.48 3 10�40)

and were significantly enriched in the 10-Mbp ends of chromo-

somes and near the centromere, although they are not usually

directly adjacent to the telomeres or centromeres (binomial, p =

4.41 3 10�19) (Fig. 2A). Recent reports have found that some

tumors exhibit hypomethylation corresponding to lamina-

associated domains (Berman et al. 2012), but we did not observe an

enrichment for lamin B1 binding in the hypomethylated domains

we identified. It has also been reported that hypomethylated

regions in cancer correspond to H3K27me3 (Hon et al. 2012;

Statham et al. 2012), and we found that the domains we identi-

fied overlap long tracks of H3K27me3, as well as correspond-

ing stretches of EZH2 binding. We compared the presence of

H3K27me3 in these regions between cancer cell lines and non-

cancer cell lines and discovered that the long tracks of H3K27me3

were specific to the cancer cell lines (x2 test, P = 2.4 3 10�27).

Brinkman et al. demonstrated that when DNA methyltransferases

are knocked-out in ESCs, broad local enrichments (BLOCs) of

H3K27me3 appear in place of high levels of methylation (Brinkman

et al. 2012). It is plausible that the same process is directing

H3K27me3 BLOC formation at these hypomethylated domains

in cancer. Among the ChIP-seq experiments comprising 149

transcription factors, we did not identify any factors that were

particularly enriched in these domains. Notably, these hypo-

methylated domains occasionally contain a gene that is ex-

pressed in specific cancer samples, and those samples exhibit

gene-body methylation within the hypomethylated domain

corresponding to the gene’s expression. This indicates that gene

expression and gene-body methylation are not occluded from

these regions by the unmethylated tracks of H3K27me3 sur-

rounding the gene. The prevalence of these domains across

cancer types warrants further investigation of these regions as

predictive biomarkers and to uncover the mechanisms driving

these massive defects. Figure 2B depicts an example of a domain

at the end of the q-arm of chromosome 22, where a 2-Mb gene-

depleted region is specifically hypomethylated across cancer

cell lines and exhibits long tracks of cancer-specific H3K27me3

and EZH2 binding. This hypomethylated domain is flanked by

methylation corresponding to the gene-body methylation of

expressed genes.

The single nucleotide resolution of bisulfite sequencing al-

lows us to detect both methylation and DNA sequence variants

in the same molecules, and we used this information to identify

loci with allele-specific or allele-biased methylation (Gertz et al.

2011). We identified 1144 CpGs that were adjacent to an allelic

variant and exhibited allele-biased methylation in the noncancer

samples from different tissues and individuals. We found that

1027 (90%) of these CpGs, which are allelically methylated in

noncancer samples, exhibit aberrant methylation in cancer cell

lines (Kolmogorov-Smirnov, FDR-adjusted, P < 0.05) (Supple-

mental Fig. S7A). This aberrant methylation occurs as either

hypermethylation (gain of methylation on the unmethylated

allele) (example in Supplemental Fig. S7B) or hypomethylation

(loss of methylation on the methylated allele) (example in

Table 1. Genomic context of cell-type specific methylation

CGI

Near TSS (<2 Kbp) Far from TSS in gene body Intergenic

Hypo Hyper Hypo Hyper Hypo Hyper

Cancer-specific + 78 (0.3%) 26,434 (99.7%) 130 (1.5%) 8701 (98.5%) 291 (2.1%) 13,652 (97.9%)
� 673 (15.5%) 3657 (84.5%) 1628 (30.4%) 3720 (69.6%) 3890 (51.1%) 3716 (48.9%)

Blood-specific + 59 (4.2%) 1359 (95.8%) 103 (11.9%) 763 (88.1%) 50 (8.9%) 511 (91.1%)
� 265 (28.3%) 673 (71.7%) 456 (29.9%) 1069 (70.1%) 360 (29.9%) 843 (70.1%)

Tissues vs.
primary cell lines

+ 71 (44.9%) 87 (55.1%) 257 (100%) 0 (0%) 43 (43.4%) 56 (56.6%)
� 152 (33.7%) 299 (66.3%) 718 (100%) 0 (0%) 239 (43.1%) 316 (56.9%)
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Supplemental Fig. S7C). Loss-of-imprinting has been previously

reported at particular imprinted loci in cancer (Feinberg et al. 2002;

Bjornsson et al. 2007; Feinberg 2007; Monk 2010), and these

observations demonstrate that the majority of allelically methyl-

ated loci are dysregulated in cancer, regardless of whether they are

imprinted.

Figure 2. Megabase-size domains are hypomethylated across cancers. (A) We identified 114 megabase windows in the genome that are significantly
hypomethylated across cancer cell lines, compared to primary cell lines and tissues. These domains are enriched near the ends and centromeres of
chromosomes. (B) UCSC Genome Browser visualization of a 2-Mb hypomethylated domain on the q-arm of chromosome 22. The color in the RRBS track
indicates the percent of molecules that are methylated at each CpG position. (Red) 100%, (yellow) 50%, (green) 0%. Hypomethylation across cancers
occurs in the 2-Mb gene-depleted region. RNA-seq demonstrates that the methylated regions flanking the cancer-specific hypomethylated domain
contain genes that are expressed in both the cancer (HeLa, HepG2, and K562) and noncancer samples (GM12878 and H1-HESC). The chromatin ChIP-seq
tracks demonstrate that the hypomethylated region is marked by cancer-specific repressive H3K27me3 and EZH2 binding (cancer = K562, HeLa, HepG2;
noncancer = HMEC, GM12878, NH-A).

Dynamic DNA methylation across human tissues
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Cell-type specific methylation

When we isolated and subjected noncancer samples to un-

supervised hierarchical clustering of the top 5% of CpGs with the

most variable methylation (N = 22,152, s $ 24.5), the samples

again clustered into clades corresponding to distinct types of bi-

ological samples: tissues, primary cell lines, embryonic cell lines,

and blood leukocytes (Fig. 3A; detailed tree in Supplemental Fig.

S8). The blood leukocyte-derived samples, including both periph-

eral blood leukocytes and Epstein-Barr virus (EBV)-immortalized

lymphoblastoid cell lines, clustered together and displayed a dis-

tinct pattern of methylation at 6511 CpGs (Kolmogorov-Smirnov,

P < 1 3 10�7). Blood-specific hypermethylation occurs at CGIs

(Table 1), but unlike the ubiquitous CGI methylation in cancer cell

lines, only a select subset of CGIs (66%) exhibit hypermethylation

when compared to tissue and primary cell lines. Epigenetic regula-

tion of genes involved in blood leukocyte development was evi-

dent and included specific methylation at genes involved

in regulation of body fluid levels (GO:0050878, P = 3.25 3 10�4),

blood coagulation (GO:0007596, P = 5.33 3 10�4), hematopoietic or

lymphoid organ development (GO:0048534, P = 8.52 3 10�4), and B

cell activation (GO:0042113, P = 9.24 3 10�4).

We identified seven tissue types that were represented by

both primary cell lines and primary tissues and performed ANOVA

to identify CpGs whose methylation is

significantly associated with the tissue of

origin (regardless of whether it has been

grown in culture). We identified 117,795

CpGs whose methylation was signifi-

cantly associated with the tissue of ori-

gin and was consistent in both the pri-

mary cell lines and the primary tissues

(FDR < 0.05) (subset visualized in Fig. 3B).

These data support previous observations

that there is a large number of tissue-

specific differentially methylated regions

(tDMRs) (Rakyan et al. 2008) and that

primary cell lines can serve as models for

understanding epigenetic tissue-specific

gene regulation at a large number of loci.

However, as described above, we found

that unsupervised hierarchical clustering

of the most variable CpGs across sam-

ples divided the primary cell lines from

the tissues (Figs. 1A, 3A). We identified

2238 CpGs that significantly discriminate

primary cell lines from tissue samples

(Kolmogorov-Smirnov, P < 1 3 10�7)

(Table 1; loci listed in Supplemental Ta-

ble S4). These methylation differences

associated with cell culture occur pre-

dominately as unmethylated CpGs in

the bodies of genes involved in regulat-

ing cellular proliferation (GO:0042127,

P = 5.17 3 10�4). Studies of DNA methyl-

ation that use cell lines as model systems

could use this list to reduce false positives

due to the epigenetic effects of cell culture.

Context-dependent DNA methylation
signatures of gene expression

The current models describing the rela-

tionship between DNA methylation and

gene expression indicate that promoter

methylation is associated with gene si-

lencing, and gene body methylation is

associated with expression (Doerfler et al.

1989; Jones and Baylin 2002; Lorincz

et al. 2004; Ball et al. 2009; Illingworth

et al. 2010; Maunakea et al. 2010; Aran et al.

2011; Deaton et al. 2011). RNA-seq has

been performed as part of The ENCODE

Project on several of the samples included

Figure 3. Noncancer samples exhibit methylation differences associated with cell culture, as well as
tissue-specific methylation that is preserved between primary cell lines and tissues. (A) Unsupervised
hierarchical clustering of the top 5% of CpGs with the most varying methylation across noncancer
samples separates clades of samples characterized as tissues, primary cell lines, embryonic cell types, and
blood leukocytes. The tissues and primary cell lines are divided into separate clades by a cell culture-
associated methylation signature. (B) Seven tissue types were represented by both primary cell lines and
tissues in this data set (tissue types listed in legend). ANOVA identified 117,795 CpGs significantly
associated with tissue of origin (FDR < 0.05). For this visualization, we performed unsupervised hier-
archical clustering on the 3223 significant CpGs with the largest standard deviation of PM values across
the samples (SD $ 26). Both primary cell lines and primary tissues share a common tissue-specific
methylation pattern, and the heat map displays the methylation patterns associated with each tissue of
origin. Many CpGs are partially methylated in the tissues (black = 50%) at loci where the cell lines are
completely methylated (yellow = 100%), indicating that heterogeneity among the cell types comprising
the tissues results in a dampened signal compared to the pure cell population isolated in a cultured cell
line (tissues marked by *, cell lines unmarked).
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in our DNA methylation study, providing an opportunity to ex-

plore and quantify this relationship. We divided the CpGs near

genes into four categories that were distinguished based on

whether or not they reside in CGIs and whether they are near the

TSS (<2 kb upstream or downstream) or far from the transcription

start site in the gene body ($2 kb). We computed the Pearson

correlation coefficient between RPKM values (reads per kilobase

of transcript per million reads) (Mortazavi et al. 2008) measured

by RNA-seq and PM values measured by RRBS. In this data set, the

vast majority of CpGs close to the TSS, regardless of whether they

reside in CGIs, are negatively correlated with gene expression

(median r =�0.3756), i.e., increased methylation is associated with

lower levels of gene expression (Fig. 4A,B). In contrast, the nonis-

land CpGs far from the TSS in the body of the gene are positively

correlated with expression (median r = 0.44450), i.e., increased

methylation is associated with higher levels of gene expression

(Fig. 4D). For these promoter and nonisland gene body CpGs, the

current model of the relationship between methylation and ex-

pression holds across these cell lines. However, we also identified

an exception to the expected pattern: island CpGs residing in gene

bodies displayed a bimodal distribution of correlation with ex-

pression levels (Fig. 4C). This indicates that a substantial subset of

CGIs in the gene body are negatively correlated with expression,

similar to promoters, rather than positively correlated with expres-

sion like other gene body CpGs.

To investigate gene regulatory processes that could account

for this finding, we integrated data sets from The ENCODE Proj-

ect, including CAGE tag sequencing, histone modification, and

transcription factor ChIP-seq. Recent studies have proposed that

cryptic or alternative promoters, marked by H3K4me3 and CAGE

tags, may appear as promoter-like methylation in gene bodies

(Illingworth et al. 2010; Maunakea et al. 2010; Deaton et al. 2011).

We found that H3K4me3 and CAGE tags account for 8.5% (479/

6155) of the gene body CGI CpGs that were negatively correlated

with expression, providing evidence that this subset of CGIs in-

deed reside in alternative promoters (Fisher’s exact test, P-value =

1.06 3 10�7 [H3K4me3] and 0.009124

[CAGE tags]).

We sought to identify other function

elements that could explain the remain-

ing gene body CGIs that have epigenetic

regulation similar to promoters. A recent

study showed that DNA binding factors

influence DNA methylation and that the

methylation signature could be used to

identify CpG-poor distal enhancers in the

mouse genome (Stadler et al. 2011). The

causes and consequences of gene-body

methylation are not well understood,

making it unclear whether active en-

hancers could be unmethylated when

embedded in the densely methylated

gene body of an expressed gene. We in-

vestigated whether the unmethylated

CpG-rich regions that we observe within

methylated gene bodies might be in-

tragenic enhancers. We performed ChIP-

seq for the transcriptional coactivator

EP300, a factor known to bind to tran-

scriptional enhancers (Visel et al. 2009).

The vast majority of CpGs in EP300

binding sites were unmethylated (PM #

10; 99.3% in HepG2, 98.2% in GM12878,

99.6% in hESC H1). When gene body

CGIs contain EP300 binding sites, they

are more strongly inversely correlated

with gene expression than are CGIs not

bound by EP300 (Kolmogorov-Smirnov

test, P-value < 2.2 3 10�16) (Supplemental

Fig. S9). These EP300-bound CGI in-

tragenic enhancers account for an addi-

tional 8% (452/5676) of gene body CGIs

that are negatively correlated with ex-

pression. The signature of CpG-rich ac-

tive enhancers in gene bodies was not

observed at CpG-poor regions, indicating

that this escape from gene-body methyl-

ation is associated with CGIs. To identify

other transcription factors associated

with these unmethylated gene body CpG

Figure 4. Correlation between CpG methylation and gene expression depends on genomic context.
(A,B) CpGs <2000 bp away from the transcription start site (TSS) are negatively correlated with ex-
pression, regardless of whether they reside in a CpG island. (C ) CpGs that are in gene bodies far from the
TSS (>2000 bp away) and reside in CpG islands can be either positively or negatively correlated with
gene expression. (D) CpGs that are in the gene body far from the TSS (>2000 bp away) and do not reside
in CpG islands and are positively correlated with gene expression. (E ) Model of relationship between
methylation and gene expression. Expressed genes are associated with unmethylated promoters,
methylated gene bodies, and unmethylated intragenic CpG island EP300-bound enhancers. (F ) Si-
lenced genes are associated with methylated promoters, unmethylated gene bodies, and methylated
intragenic CpG island enhancer elements.
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islands that may reveal the role of the remaining loci that are not

associated with EP300 binding, H3K4me3, or CAGE tags, we over-

lapped them with the binding sites for the remaining 148 tran-

scription factors in ChIP-seq data sets generated by The ENCODE

Project Consortium. We did not identify any significant enrich-

ment for specific transcription factors. The catalog of EP300-bound

enhancers and other nonpromoter regulatory elements is not

comprehensive. It is possible that these are enhancers bound by

EP300 below the sensitivity of ChIP-seq, or they could be regu-

latory regions bound by transcription factors or noncoding RNAs

not yet studied by The ENCODE Project

Consortium.

Together, these results support a re-

vised model of the expected DNA meth-

ylation state found at expressed and si-

lenced genes, depicted in Figure 4, E and F.

In expressed genes, active intragenic

enhancers bound by EP300 appear as

patches of unmethylated CGIs amid the

dense methylation found in the body of

the expressed genes, and these enhancers

have methylation that is concordant with

the unmethylated CpGs several thousand

base pairs away in the promoter and near

the TSS. The reverse patterns are associ-

ated with silenced genes. This revised

model changes our expectations of the

type of methylation we find in gene re-

gions and helps to more accurately in-

terpret gene body methylation.

Non-CpG cytosine methylation

DNA methylation predominately occurs

at CpG dinucleotides in the human ge-

nome, but there have been recent re-

ports that non-CpG cytosine methyla-

tion occurs at a lower, but appreciable,

level in embryonic and pluripotent cells

(Lister et al. 2009; Ziller et al. 2011). We

identified 56,287 cytosines that were

not located at CpG positions in the ref-

erence genome that exhibited methyla-

tion (PM > 10) in at least one sample. We

eliminated 30,773 (55%) of these meth-

ylated cytosines from further analysis

because they were adjacent to genetic

variants in these samples that created a

CpG dinucleotide that became methyl-

ated, a finding that suggests that there is

a large number of polymorphic CpGs that

show epigenetic diversity between in-

dividuals. To reduce false-positives due to

stochastic errors in bisulfite conversion,

we identified 2466 non-CpG cytosines

that were methylated (PM > 10) in both

replicates of any sample and determined

how many of these loci were methylated

in each sample (Supplemental Table S5;

data in Supplemental Table S6). We found

the largest number of methylated non-

CpG cytosines (N = 1418) in the human

embryonic stem cell line H1 (H1-hESC), consistent with previous

reports in this cell type (Fig. 5A). Adult human brain tissue had the

second highest number of methylated non-CpG cytosines, with

666 non-CpG cytosines methylated in both replicates, and was

more than twice as high as the following sample (Supplemental

Table S5). The non-CpG methylation we observed in the brain

samples occurred at a different set of loci than the non-CpG

methylation observed in ESCs (Fig. 5A). This was unexpected in

light of the recent report of the near complete absence of non-CpG

cytosine methylation in human somatic cell types, although adult

Figure 5. Non-CpG cytosine methylation. (A) We examined 82 cell lines and tissues and identified
2466 non-CpG cytosines that were methylated in both replicates. The samples with more than 200
methylated non-CpG cytosines are depicted. The human embryonic cell line (H1-hESC) contained 1418
methylated non-CpG cytosines, followed by adult human brain tissue (N = 666), placental tissue (N =
249), and skeletal muscle from two individuals (female N = 261, male N = 235). (B) The non-CpG
cytosine methylation identified in the brain tissue was confirmed across post-mortem brain samples
from 24 different individuals and occurs at a set of loci distinct from those methylated in the other
samples. (C ) The non-CpG cytosine methylation found in the embryonic stem cell line occurred pri-
marily at the CAG sequence context, consistent with previous reports (Lister et al. 2009). (D) The non-
CpG cytosine methylation discovered in the adult human brain tissue occurred primarily in the CACC
sequence context.
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human brain tissue was not studied (Ziller et al. 2011). The ob-

servation of non-CpG methylation in somatic tissues challenges

current hypotheses that a pluripotent-specific regulation or noise

is involved in establishing this mark. The other samples with more

than 200 non-CpG cytosines methylated in both replicates in-

cluded skeletal muscle tissue from two different individuals and

placental tissue (Fig. 5A; Supplemental Table S5). To further in-

vestigate non-CpG cytosine methylation in the brain, we per-

formed RRBS on brain samples from 24 additional individuals.

These fresh-frozen samples were collected post-mortem from the

dorsolateral prefrontal cortex (DLPFC) of healthy control donors as

part of the Pritzker Neuropsychiatric Disorders Research Consor-

tium. The non-CpG cytosines that were methylated in the first

brain sample were also methylated (PM > 10) in these additional

brain samples (Fig. 5B; data in Supplemental Table S7). The non-

CpG loci that are methylated in adult brain tissue are distinct from

the set of non-CpG cytosines that were methylated in ESCs (Fig.

5B). The non-CpG cytosine methylation that we observed in the

brain predominately occurs at CAC trinucleotides (Fig. 5D), which

is different from the CAG trinucleotide context that we and others

have observed in ESCs (Fig. 5C; Lister et al. 2009; Ziller et al. 2011).

Non-CpG methylation was recently reported in mouse frontal

cortex (Xie et al. 2012) in a similar sequence context that we find in

human brain, suggesting that mice may serve as a valuable

experimental model for understanding this new methylation

pattern. We used GREAT (Genomic Regions Enrichment of An-

notations Tool) (McLean et al. 2010) to determine if these meth-

ylated non-CpG cytosines are associated with any functional en-

richment and found that loci in brain tissue are found near genes

enriched for ‘‘blood vessel development’’ (GO:0001568, GREAT

hyper FDR q-val = 5.34 3 10�6), while the loci methylated in hESC

are found near genes related to small GTPase regulator activity

(GO:0005083 hyper FDR q-val =4.91 3 10�4), suggesting that these

events are associated with different gene regulatory processes in

each cell type.

Discussion
We have described an epigenomics resource generated by the

ENCODE Consortium: large-scale single-base resolution DNA

methylation profiling on a diverse collection of 82 human cell

lines and tissues using reduced representation bisulfite sequenc-

ing. Many of these samples have been characterized with other

genomic assays by The ENCODE Project Consortium, providing

a rich resource for exploring functional changes associated with

DNA methylation. We demonstrated that cell lines grown in rep-

licate in multiple laboratories display stable DNA methylation

signatures, that comparing methylation profiles between samples

identifies methylation profiles relevant to the functional differ-

ences between cell types, and that these data provide a catalog of

aberrant methylation found in cancer cell lines.

We discovered that cancer-specific hypermethylation is en-

riched at sites where NANOG binds in ESCs. This observation

complements the previous report of a stem/progenitor signature

in cancer but expands it beyond loci that are bound by Polycomb

Repressive Complex 2 to include loci that are bound and activated

by NANOG, a seemingly contradictory process. Further investi-

gation is needed to understand when, during the progression of

cancer, NANOG is present and how would it attract the methylation

machinery to result in this aberrant hypermethylation. Addition-

ally, we discovered that hypomethylation that is consistent across

cancer types occurs in megabase-scale domains near the ends of

chromosomes that contain long tracks of cancer-specific repres-

sive H3K27me3. Further investigation is needed to understand

how and why H3K27me3 repression is utilized in these regions

rather than DNA methylation and whether their location on the

ends of chromosomes is indicative of a structural mechanism

or scaffold interaction that leads to their hypomethylation. As

more genome-scale assays are performed on these samples, we are

hopeful that further integrated analysis will shed light on the

causes and consequences of these prolific methylation defects in

cancer.

We demonstrate how integrated analysis enabled the quan-

tification of known relationships between DNA methylation and

gene expression and describe the characterization of DNA meth-

ylation at intragenic enhancers. We present a revised model of the

types of methylation found in the body of expressed and silenced

genes that includes our finding that unmethylated EP300-bound

CGIs can be embedded in the densely methylated bodies of

expressed genes. This model can be used to more accurately predict

the effects of aberrant DNA methylation found in disease associ-

ation studies where EP300 binding and gene expression data are

not available.

The single-base resolution of RRBS enabled the detection of

non-CpGs cytosine methylation across the diverse samples in this

study, which led to the discovery that adult human brain tissue

from many different individuals contains methylated non-CpG

cytosines. We find that these loci are different from those pre-

viously identified in ESCs and occur in a CACC sequence con-

text, rather than at CAG trinucleotides. This data set provides a

launching point for the investigation of the mechanisms and

function of this newly characterized phenomenon. It is intrigu-

ing that this mark is particularly abundant in brain tissue but

not in the brain-derived cell lines in our study. It is plausible that

the non-CpG methylation occurs in a particular type of brain cell

that was not among the cell lines in this study or that the non-

CpG methylation is eliminated during cell culture growth. As

more genomic assay protocols are adapted to work with small

amounts of tissue, we are hopeful that cell types and factors as-

sociated with the non-CpG methylation at these loci will be

revealed.

Overall, we hope that this atlas of methylation across diverse

samples, including many commonly used cell line models, proves

to be a valuable resource for exploring how DNA methylation re-

lates to other molecular and phenotypic characteristics.

Methods

Cell lines and tissues
Samples included in this study are listed in Supplemental Table S1.
Detailed information about the samples can be obtained from the
ENCODE Common Cell Types websites at (http://genome.ucsc.
edu/ENCODE/cellTypes.html).

Reduced representation bisulfite sequencing experimental
procedure

We modified the previously published protocol for RRBS (Meissner
et al. 2008) to create a streamlined workflow for this larger-scale
implementation. We designed the reactions to eliminate the
phenol extraction and ethanol precipitation steps as well as one of
the gel extraction steps. We also changed the PCR conditions to
amplify fragments with diverse GC content and a broad range of
sizes uniformly. A protocol overview is depicted in Supplemental
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Figure S1, and specifics are provided as follows. We used the Qiagen
DNeasy Blood and Tissue Kit to extract DNA. We then digested
1 mg genomic DNA with 1 mL 20U/mL MspI restriction enzyme
(New England Biolabs [NEB]) in 13 NEBuffer 2 in a total reaction
volume of 50 mL. This reaction was incubated at 37°C for 30 min,
followed by heat inactivation at 80°C for 20 min. We then filled in
the overhangs and added a 39 A tail by adding dNTP mix to 33 mM
and 1 mL 5U/ mL Klenow Fragment (39–59 exo-) in a total reaction
volume of 55 mL. This reaction was incubated at 37°C for 30 min,
followed by heat inactivation at 75°C for 20 min. We then purified
the DNA with a Qiagen MinElute column. We purchased two
methylated DNA oligonucleotides from IDT (www.idtdna.com) as
follows: ilAdap Methyl PE1 (ACACTCTTTCCCTACACGACGCT
CTTCCGATC*T) and ilAdap Methyl PE2 (59P-GATCGGAAGAG
CGGTTCAGCAGGAATGCCGA*G), where all C’s are 5-methyl
cytosine DNA nucleotides, 59P indicates a 59 phosphate, and an
asterisk indicates a phosphorothioate bond. We then annealed
these oligos to form a stock of 40 mM duplex DNA adapters in
a reaction containing 40 mM ilAdap Methyl PE1, 40 mM Methyl
PE2, 13 T4 DNA Ligase Buffer (NEB) in a total volume of 50 mL. We
incubated this reaction at 95°C for 5 min, then 70°C for 1 min,
then 60°C for 1 min, then 50°C for 1 min, then 40°C for 1 min,
then 30°C for 1 min. We stored these annealed adapters at �30°C
for future use. We ligated the annealed methylated Illumina
adapters in a reaction containing 10 mL purified DNA, 13 T4 DNA
Ligase Buffer (NEB), 1 mL 400U/mL T4 DNA Ligase (NEB), and 1 mL
40 mM annealed methylated adapters in a total volume of 20 mL.
This reaction was incubated at 20°C for 15 min, followed by heat
inactivation at 65°C for 10 min. We electrophoresed the 20 mL li-
gation reaction in a 2.5% Seaplaque Agarose (Lonza) gel. The de-
sired restriction fragments are between 40 and 120 bp, and the
adapters add 33 bp onto each end of the restriction fragments, so
we used a razor blade to isolate the agarose gel section containing
DNA between 106 and 186 bp, while avoiding the adapter self-
ligation products that appear <100 bp. We then purified the DNA
using a Qiagen Qiaquick Gel Extraction kit as described in the
manufacturer’s instructions, except that we did not heat the gel
fragment to dissolve it, and we eluted the purified DNA from the
column using 22 mL buffer EB. We then used 20 mL of this purified
DNA in the sodium bisulfite conversion, which was performed
using the EZ DNA Methylation Gold Kit (Zymo Research). We
purchased PCR primers that would amplify the adapter-ligated
DNA and add the cluster generation sequences to the amplicons
for Illumina sequencing. We purchased these PCR primers from
IDT as follows: ilPCR PE1 (AATGATACGGCGACCACCGAGATC
TACACTCTTTCCCTACACGACGCTCTTCCGATC*T) and ilPCR
PE2 (CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCC
TGCTGAACCGCTCTTCCGATC*T), where an asterisk indicates
a phosphorothioate bond. The DNA that was purified from the
bisulfite conversion kit was then PCR-amplified in a reaction
containing 5 U Platinum Taq DNA Polymerase (Invitrogen), 103

PCR Buffer without MgCl2 (Invitrogen), 2 mM MgCl2, 0.5 mM
ilPCR PE1 DNA oligonucleotide primer, 0.5 mM ilPCR PE2 DNA
oligonucleotide primer, 0.5 mM each dNTP and 0.5 M Betaine
(Sigma-Aldrich) in a total reaction volume of 50 mL. The reaction
was incubated at 98°C for 1 min, followed by 20 cycles of (95°C for
30 sec and 62°C for 3 min). We confirmed the amplification and
correct product size range by running one-fifth of the reaction on
a 2% agarose gel. We then purified the remaining PCR product
with a Qiagen Qiaquick column, eluting in 25 mL buffer EB, and
quantified the purified product using the Quant-IT High Sensi-
tivity dye kit (Invitrogen) on a Qubit fluorometer (Invitrogen). We
typically obtained 250–750 ng of library material. We then diluted
each library to 10 nM and proceeded to sequence each library in
a single lane on the Illumina Genome Analyzer IIx sequencing

machine according the manufacturers instructions. We typically
achieved better quality scores and alignment with slightly lower
cluster density compared to other libraries with more even base-
representation, and we empirically determined that clustering the
sample at 5 pM was optimal.

Sequence alignment and calculating percent methylated value
for each cytosine

The sequence data for this project were acquired between June
2009 and December 2010. On our Illumina Genome Analyzer IIx
sequencing machine, we sequenced one library per lane and
obtained between 8 million and 31 million single-end 36-bp reads
per library. We aligned these reads to a modified reference genome
sequence that was created to reflect both the reduced representa-
tion of the genome due to the MspI restriction digest as well as the
sodium bisulfite conversion which creates a T in the sequencing
reads rather than a C at all unmethylated bases. To create this
reference, we first parsed the hg19 reference genome to identify all
of the MspI restriction fragments <500 bp. We then isolated the
36-bp ends of these fragments into a fasta file and converted every
C in the reference to a T and recorded the position of these refer-
ence cytosines in the name of the reference sequence. To achieve
optimal alignment that is not biased by the methylation state of
a molecule, we also created a copy of our sequencing read files,
converted every C in the read to a T, and recorded the position of
these read cytosines in the name of the read (Supplemental Fig. S2).
We then used bowtie (Langmead et al. 2009) to align these con-
verted reads to the custom reference sequence and required that
the alignment be optimal and unique in the reference and only
align to the proper strand (bowtie options –best, -m 1,–norc). On
average, we uniquely aligned 53.2% (200,000/375,603) of the ge-
nomic MspI digest restriction fragments in the selected size range
(40–120 bp), which resulted in coverage of an average of 1.2 mil-
lion CpGs in each sample. This is only 8.6% of the 14 million
nonrepetitive CpGs in the human genome but represents a 1.9-
fold enrichment for genic regions and a 111-fold enrichment for
CGIs. We then parsed the alignment file and the encoded read and
reference names to determine how many reads covered each ref-
erence cytosine position and what percentage of those reads con-
tained a C at each reference cytosine position (Supplemental Fig.
S2). This percent methylated value approximates the percentage of
molecules in the sample that were methylated at each individual
cytosine. We compute the bisulfite conversion rate of each sample
by determining the percent of non-CpG cytosines that are meth-
ylated (PM $ 10), which is an underestimate of the conversion rate
in samples with biological non-CpG methylation. Each sample
must meet quality control criteria before data release, including
a bisulfite conversion rate $98.5%, a complex library with more
than 500,000 CpGs with at least 103 coverage, and a correlation
coefficient of greater than 0.9 between replicates.

Methyl 450 array methods

Illumina Methylation450 arrays were run using standard Illumina
protocols. Briefly, 500 ng of DNA from each cell line was bisulfite-
converted with the Zymo Research EZ DNA Methylation kit, ampli-
fied, hybridized, and stained with standard Illumina reagents. The
intensity data were imported into Illumina’s GenomeStudio software,
and standard beta scores were exported and used in the analysis.

Analysis of methylation across samples

Once we compiled the percent methylated values for all cytosines
shared across samples, we then performed extensive analysis of the
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trends in these data. Statistical associations including mean cal-
culations, standard deviation calculations, Pearson correlations,
binomial tests, Fisher’s exact tests, x2 tests, hypergeometric tests,
and Kolmogorov-Smirnov tests were calculated using Matlab
(The Mathworks, Inc.), and the statistical package R (The R Foun-
dation for Statistical Computing; http://www.R-project.org). Clus-
tergrams were created using the average linkage of Euclidean dis-
tance in Cluster3.0 (de Hoon et al. 2004) and visualized using
Java TreeView 1.1.4r3 (Saldanha 2004). For the annotation of cy-
tosine positions relative to gene features, we used the genomic
coordinates for gene features from the hg19 refGene table of the
UCSC Genome Browser (Fujita et al. 2011; Raney et al. 2011).
Similarly, we used the genomic positions of the CpG islands track
on the UCSC Genome Browser to annotate CGI occupancy. To
measure the Pearson correlation between methylation and ex-
pression, we excluded CpGs whose methylation did not vary by 10
PM across the cell lines to avoid spurious correlations to noise in
the methylation measurements. For identifying transcription fac-
tor binding sites associated with loci hypermethylated across
cancer cell lines, we used the compiled supertrack data set con-
taining binding sites for 149 transcription factors from ENCODE
ChIP-seq experiments, which is available from the UCSC Genome
Browser (http://www.genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=

305048059&c=chr2&g=wgEncodeRegTfbsClusteredV2). For ana-
lyzing the binding sites of the specific transcription factors, we
used individual ChIP-seq data sets. The data for SUZ12 binding
sites in H1-hESC are available from the UCSC Genome Browser
(http://www.genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=305048059&
g=wgEncodeSydhTfb). The data for NANOG binding sites in H1-
hESC are also available from the UCSC Genome Browser (http://
www.genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=305048059&
g=wgEncodeHaibTfbs). For characterizing the hypomethylated
domains found across cancer cell lines, we used the H3K27me3
and EZH2 binding ChiP-seq data collected by the Broad Institute
as part of The ENCODE Project, which were obtained from the
UCSC Genome Browser (http://www.genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=286312585&c=chr4&g=wgEncodeBroadHistone).
The nuclear lamina-associated domains data were obtained from
the UCSC Genome Browser (http://www.genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=305048059&c=chr2&g=laminB1Super). The
RNA-seq data for the HeLa, hESC H1, K562, HepG2, and GM12878
cell lines were collected as part of The ENCODE Project and can
be found under ‘‘RNA-seq from ENCODE/Caltech’’ on the UCSC
Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=

193248635&c=chr10&g=wgEncodeCaltechRnaSeq). The H3K4me3
ChIP-seq data for the HeLa, K562, HepG2, and GM12878 cell
lines were collected as part of The ENCODE Project and can be
found under ‘‘Histone Modifications by ChIP-seq from ENCODE/
University of Washington’’ on the UCSC Genome Browser (http://
genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=203697013&c=chr5&g=

wgEncodeUwHistone). The CAGE tag data from whole cell polyA+
fractions of the HeLa, hESC H1, K562, HepG2, and GM12878 cell
lines were collected as part of The ENCODE Project and can be
found under (http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=

210114571&c=chr21&g=wgEncodeRikenCage). The EP300 ChIP
binding site information was generated by our group as part of The
ENCODE Project and can be found under ‘‘ENCODE Transcription
Factor Binding Sites by ChIP-seq from HudsonAlpha Institute’’
on the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/
hgTrackUi?hgsid=210114571&c=chr21&g=wgEncodeHaibTfbs).
Binding sites for EP300 identified in GM12878, H1 hESC and
HepG2 were combined to create a list of potential enhancers. Ge-
netic polymorphism that created CpG dinucleotides were identified
as those positions where the bowtie alignment identified the same
mismatched base in at least 10% of the reads with a minimum read

depth of five. Functional annotation and enrichment of genes was
obtained using the gene ontology search program Gorilla (http://
cbl-gorilla.cs.technion.ac.il/) (Eden et al. 2009), using the option
that calculates enrichment in a target gene list over a background list
of all genes covered in the RRBS libraries. The motif logos repre-
senting the sequence context of non-CpG cytosine methylation
were created using WebLogo (http://weblogo.berkeley.edu) (Crooks
et al. 2004).

Data access
The DNA methylation data generated as part of The ENCODE
Project are available for visualization and download from the
UCSC Genome Browser (GRCh37/hg19) (http://www.genome.
ucsc.edu) under the Regulation heading in the ENCODE DNA
Methylation tracks. All of the RNA-seq and ChIP-seq data used
in the analysis are also available for visualization and download
from the UCSC Genome Browser (links are listed in Supplemental
Table S1). The DNA methylation data are also available from the
NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
gov/geo/) through accession numbers GSE27584 and GSE42590.
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