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Abstract Parkinson’s disease (PD) is a progressive neuro-
degenerative disorder affecting ∼1 % of people over the age
of 65. Neuropathological hallmarks of PD are prominent
loss of dopaminergic (DA) neurons in the substantia nigra
and formation of intraneuronal protein inclusions termed
Lewy bodies, composed mainly of α-synuclein (αSyn).
Missense mutations in αSyn gene giving rise to production
of degradation-resistant mutant proteins or multiplication of
wild-type αSyn gene allele can cause rare inherited forms of
PD. Therefore, the existence of abnormally high amount of
αSyn protein is considered responsible for the DA neuronal
death in PD. Normally, αSyn protein localizes to presynap-
tic terminals of neuronal cells, regulating the neurotransmit-
ter release through the modulation of assembly of soluble N-
ethylmaleimide-sensitive factor attachment protein receptor
complex. On the other hand, of note, pathological examina-
tions on the recipient patients of fetal nigral transplants
provided a prion-like cell-to-cell transmission hypothesis
for abnormal αSyn. The extracellular αSyn fibrils can in-
ternalize to the cells and enhance intracellular formation of
protein inclusions, thereby reducing cell viability. These
findings suggest that effective removal of abnormal species

of αSyn in the extracellular space as well as intracellular
compartments can be of therapeutic relevance. In this re-
view, we will focus on αSyn-triggered neuronal cell death
and provide possible disease-modifying therapies targeting
abnormally accumulating αSyn.
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Abbreviations
AAV Adeno-associated virus
ACD Autophagic cell death
αSyn α-Synuclein
CaMKIIα Calcium/calmodulin-dependent protein kinase

IIα
CMA Chaperone-mediated autophagy
CSPα Cysteine-string protein-α
DA Dopaminergic
DLB Dementia with Lewy bodies
DMT1 Divalent metal transporter 1
Dnmt1 DNA methyltransferase 1
ER Endoplasmic reticulum
GCase Glucocerebrosidase
GDNF Glial cell line-derived neurotrophic factor
HDAC Histone deacetylase
Hsc70 Heat shock cognate 70
LRRK2 Leucine-rich repeat kinase 2
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
mTOR Mammalian target of rapamycin
OB Olfactory bulb
PCD Programmed cell death
PD Parkinson’s disease
PP2A Phosphoprotein phosphatase A2
RIP Receptor-interacting protein
RNS Reactive nitrogen species
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ROS Reactive oxygen species
SN Substantia nigra
SNAP-25 Synaptosomal-associated protein of 25 K
SNARE Soluble N-ethylmaleimide-sensitive factor

attachment protein receptor
SNpc Substantia nigra pars compacta
TH Tyrosine hydroxylase
UCH-L1 Ubiquitin carboxy-terminal hydrolase-L1
VPA Valproic acid

Introduction

Parkinson’s disease (PD) is an age-related and the second
most common neurodegenerative disorder beyond Alz-
heimer’s disease [1]. Clinical manifestation of PD is typical
movement abnormalities that include resting tremor, rigidity,
bradykinesia/akinesia, and postural instability. Neuropatho-
logical hallmarks in PD brains are (1) a prominent loss of
dopaminergic (DA) neurons in the substantia nigra (SN) pars
compacta (SNpc) projecting into the caudate/putamen (collec-
tively called as striatum), and (2) formation of protein inclu-
sions termed Lewy bodies and Lewy neurites that can be
found in neuronal somas and processes, respectively. These
aggregates are composed mainly of α-synuclein (αSyn) pro-
tein [2, 3]. Severe deprivation of striatal dopamine in PD can
most effectively be treated with oral administration of dopa-
mine precursor levodopa, whereas a long-term and pulsatile
treatment with levodopa gradually induces adverse involun-
tary movements such as motor fluctuations and dyskinesias
[4]. On the other hand, neurosurgical procedures including
deep brain stimulation can partially normalize neuronal activ-
ities that have been agitated by the loss of the nigrostriatal DA
pathway [5]. However, there have been no therapeutic options
available that can reverse or even retard the progression of the
disease, and such treatments are urgently required. To date,
numerous efforts have been concentrated to elucidate the
molecular mechanisms underlying the DA cell death in PD.
In this article, we will review the relationship between abnor-
mal αSyn and neuronal cell death. Several key molecules that
can modulate the αSyn-induced neuronal death have hitherto
been identified and investigated in αSyn-related animal mod-
els. We will also discuss such neuroprotective remedies for
potential clinical interventions in PD (summarized in Fig. 1).

Neuronal Cell Death in PD Brains: Apoptotic
or Non-apoptotic?

The way in which DA neurons die is the principal enigma in
the field of PD research. In neurodegenerative environ-
ments, neurons die through distinct fashions that are

distinguished by morphological features: (1) apoptosis
(known as type 1 cell death) [6–16], (2) autophagy (type 2
cell death) [9–11], and (3) necrosis (type 3 cell death) or
“necroptosis” [12–16]. Apoptosis is evolutionally conserved
cell-suicide mechanism indispensable for fundamental bio-
logical processes such as normal development, elimination
of malignant neoplasms, and establishment of neuronal cir-
cuitry [6]. The morphologic features of apoptosis include
nuclear and cytoplasmic condensation, internucleosomal
DNA cleavage, and packaging of the dying cell into apo-
ptotic bodies that are engulfed by phagocytes, preventing
release of intracellular components [7]. Pathogenic apopto-
sis cascade can be induced by (1) mitochondrial damage that
involves B cell lymphoma 2 (Bcl-2) family proteins, apo-
ptotic protease-activating factor 1 (apaf-1), and the cysteine
proteases caspases (referred to as intrinsic pathway); and (2)
agonistic ligands of death receptors such as tumor necrosis
factor α (TNFα), Fas ligand (FasL), and TNF-related
apoptosis-inducing ligand (TRAIL), which promote activa-
tion of caspase-8 inside the cell (extrinsic pathway) [10].
The involvement of apoptotic cascade in DA neuronal death
has been controversial in PD [17–25]. We and other groups
have previously reported the positive staining of DA neurons
in PD for terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) and chromatin condensation, which is
the typical process seen in apoptotic cell death [17, 21, 22].
However, other groups found no signs of apoptosis in the
nigral DA neurons, regardless of disease duration, severity,
drug treatment, and age of the patient [19, 20]. Using electron
microscopy, Anglade et al. [18] showed the presence of con-
densed chromatin in the nucleus of neuromelanin-containing
neurons and engulfment of apoptotic bodies in glial cells.
Importantly, they also observed cells displaying the features
of autophagic degeneration, implying that apoptosis may not
be the sole form involved in DA neuronal death [18].

Autophagy is an evolutionally conserved mechanism for
a bulk degradation of cellular components, including pro-
teins and organelles, and serves as a cell survival mecha-
nism during nutrient deprivation [9]. There exists a complex
crosstalk between apoptosis and autophagy [10]. Common
upstream signals sometimes result in combined autophagy
and apoptosis at the single cell level. In other instances, the
cell dictates autophagy or apoptosis in a mutually exclusive
manner. Under certain circumstances, autophagy allows
cells to adapt to stress, thereby avoiding apoptotic cell death,
e.g., a harmful αSyn can be degraded by autophagic path-
way (see below). By contrast, massive autophagy induces
alternative cell death pathway that is called autophagic cell
death (ACD) [9, 10]. ACD is characterized by the presence
of autophagic vacuoles (autophagosomes), which can be
identified as double-membraned vesicles, and autophagoly-
sosomes, which arise from the fusion of autophagosomes
and lysosomes and are defined by a single membrane, in
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dying cells [9, 10]. On the other hand, Kroemer and Levine
[11] indicated that the term ACD may be a misnomer
because that is, in many cases, cell death “with” autophagy
rather than cell death “by” autophagy. They emphasized that
the autophagic process is not the executioner of cell death,
or rather, cytoprotective response under pro-apoptotic con-
dition [11].

Energy depletion is a potent trigger of necrosis [13].
Morphologically, necrosis is characterized by extensive vac-
uolation of the cytoplasm, mitochondrial swelling, dilatation
of the endoplasmic reticulum (ER) and nuclear membrane,
condensation of chromatin into small, irregular, and circum-
scribed patches, and plasma membrane rupture. Necrotic
cells are lysed and do not fragment into discrete corpses as
their apoptotic counterparts do. As a consequence, cellular
contents are liberated into the extracellular space, which

might precipitate damage to neighboring cells and evoke
inflammatory responses [13, 15]. Necrosis has traditionally
been considered merely as an accidental, uncontrolled form
of cell death that only occurs in pathological conditions.
Also, apoptosis has long been believed the sole form of
programmed cell death (PCD). However, accumulating ev-
idence uncovered another route of PCD, a programmed
necrosis termed necroptosis [reviewed in 14, 15]. While
several articles have suggested the occurrence of the “non-
apoptotic PCD” during neurodegenerative processes [12,
14, 15, 26, 27], there have been a limited number of reports
documenting the necrotic cell death in PD brains. This
might in part be attributed to a methodological difficulty to
dissect necrotic cell explosion in the postmortem brain tis-
sues. It is known that necroptosis is triggered by ligation of
death receptors with TNFα, FasL, and TRAIL, the same

Fig. 1 Schematic representation of molecular events and potential
therapeutic targets associated with abnormal αSyn in PD. The molec-
ular events that are reduced in PD and/or potentially neuroprotective,
or considered to be neurotoxic, are shown in blue, or red arrows and
inhibitory lines, respectively. Accumulation of αSyn oligomer, which
can be modulated by several post-translational modification(s) of
αSyn, leads to reduced neuronal cell viability by inhibiting ER-Golgi
trafficking, autophagy, and/or proteasome. Mitochondrial translocation

of αSyn induces production of ROS and RNS, further enhancing
oxidative/nitrosative modification of αSyn. Oligomerized αSyn spe-
cies can also be secreted into extracellular space, which might induce
inflammatory glial reactions, pore formation on plasma membrane, or
transmission to the neighboring neuronal cells to promote Lewy for-
mation and/or cell death. These neurotoxic events can be ameliorated
by several ways as indicated (also see the main text)
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ligands that activate apoptosis [14, 15]. A death domain-
containing kinase receptor-interacting protein 1 (RIP1) and
RIP3 are required to dictate necroptotic pathway. Caspase-
8 inactivates RIP1 and RIP3 by proteolytic cleavage and
initiates the pro-apoptotic caspase activation cascade [15].
By contrast, inhibition of caspase-8 results in execution of
the programmed necrosis in primary DA cultures [16]. A
small molecule inhibitor of necroptosis, necrostatin-1, atten-
uated RIP1 kinase activity [28] and prevented glutamate-
induced hippocampal neuronal cell death [29]. It needs
further explorations to determine the involvement of nec-
roptosis in DA neuronal degeneration in PD.

Physiological Functions of αSyn

αSyn is a neuronal protein of 140 amino acids and normally
localized to presynaptic terminals. The exact physiological
function of αSyn remains yet defined, but several works
have implicated its role in dopamine biosynthesis, synaptic
plasticity, and vesicle dynamics [1, 30–32]. Indeed, αSyn
directly binds to vesicle-associated membrane protein 2
(VAMP2; also called as synaptobrevin-2) and promotes
assembly of soluble N-ethylmaleimide-sensitive factor at-
tachment protein receptor (SNARE) complex through a
nonclassical chaperone activity [33]. Orchestration of as-
sembly/disassembly of SNARE complex is essential for
the regulation of neurotransmission. Recent studies have
implicated presynaptic dysfunction to be an initial event of
neurodegeneration [34]. A presynaptic protein cysteine-
string protein-α (CSPα) also promotes SNARE complex
assembly through the formation of chaperone complex with
heat shock cognate 70 (Hsc70) and the small glutamine-rich
protein SGT [35, 36]. The CSPα-Hsc70-SGT complex binds
directly to synaptosomal-associated protein of 25 kDa
(SNAP-25), whereby promoting SNARE complex formation
[36]. Depletion of CSPα in mice represents decreased level of
SNAP-25 and corresponding reduced assembly of SNARE
complex [36]. Intriguingly, the CSPα-knockout mice show a
rapidly progressive neurodegeneration and premature death,
both of phenotype counteracted by transgenic expression of
αSyn [37]. On the other hand, increased expression of αSyn
in the absence of overt cell toxicity markedly inhibited
neurotransmitter release, which was attributed to a perturbed
synaptic vesicle density at the active zone, due to a defective
reclustering of synaptic vesicles after endocytosis [38]. In
another study, overexpressed αSyn indirectly inhibited
SNARE-mediated exocytosis by sequestering arachidonic
acid, which upregulates syntaxin and enhances its engagement
with SNARE complex [39]. The opposing actions of αSyn
implicate that a tight regulation of subcellular level and distri-
bution of αSyn is indispensable for the intrinsic functions of
neuronal cells.

Pathogenic Roles of αSyn in PD

αSyn is one of the most extensively studied proteins in PD
research [30–32, 40] (Fig. 1). The gene encoding αSyn
(SNCA) is mutated in rare inherited forms of PD, resulting
in amino acid substitutions (A53T [41], A30P [42], or E46K
[43]; classified as PARK1), or multiplication of its allele
(PARK4) [44, 45]. Moreover, αSyn is a major component of
Lewy bodies and Lewy neurites found in sporadic cases [2,
3]. Therefore, the presence of abnormally high levels of
αSyn protein due to unbalanced production and/or degrada-
tion is thought to trigger DA neuronal death in both familial
and sporadic cases of PD (Fig. 1). Single nucleotide poly-
morphisms in the 5′-promoter and 3′-flanking regions of
SNCA gene that influence αSyn protein level are associated
with susceptibility to idiopathic PD [46–48]. Furthermore,
genome-wide association studies identified SNCA as a com-
mon risk factor for PD [49, 50]. Recent two studies uncov-
ered epigenetic regulation of SNCA gene expression.
Reduced methylation in CpG islands at intron 1 of SNCA
that leads to increased protein production was evident in the
SN of sporadic patients with PD [51, 52]. Desplats et al. [53]
showed reduction of nuclear level of DNA methyltransfer-
ase 1 (Dnmt1) and DNA methylation in human postmortem
brains affected with PD and dementia with Lewy bodies
(DLB). Physical association of αSyn with Dnmt1 might me-
diate the retention of Dnmt1 in the cytoplasm, which results in
hypomethylation of DNA [53]. However, overexpressed
αSyn protein sometimes functions as a neuroprotective mol-
ecule in cell types other than DA neurons [37, 54–56]. Also, a
recent report indicated protective function of physiological
level of αSyn in DA cells. In that study, αSyn was found to
reduce p300/CBP level and its histone acetyltransferase activ-
ity, whereby suppressing the NFκB-mediated transcriptional
expression of pro-apoptotic protein kinase Cδ [57]. Oxidative
modification of αSyn by dopamine metabolites is considered
responsible for the selective vulnerability to DA neurons [55,
58]. Dopamine-modified αSyn tends to form protofibrillar
intermediates but not large fibrils [58]. Such “oligomeric”
αSyn is supposed the real criminal in DA neuronal toxicity
[59–66]. On the other hand, a recent important finding indi-
cated that endogenous normal αSyn forms a helically folded
tetrameric structure of 58 kDa in neuronal and non-neuronal
cell lines, brain tissue, and human red blood cells [67]. The
tetrameric αSyn had high lipid-binding capacity and little or
no propensity for amyloid-like aggregation. They proposed
that destabilization of the tetramer precedes the misfolding
and aggregation of αSyn in pathogenic conditions with PD
and other α-synucleinopathies [67]. Another group also indi-
cated that bacterially produced αSyn forms a stable tetramer
[68] (To avoid misconceptions, hereafter, the nomenclature
“oligomer” will be applied for the toxic species of αSyn
formed in the diseased situations).
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A 22-kDa O-glycosylated form of αSyn (αSp22) is des-
tined for proteasomal degradation by receiving polyubiqui-
tin moieties through the action of E3 ligase parkin, which is
linked to a recessively inherited young-onset PD, PARK2
[69, 70]. Overexpression of wild-type or familial PD-linked
mutant of αSyn in cell culture impairs proteasome activity
and induces apoptosis or ACD, depending on the experi-
mental conditions [71–75]. Soluble oligomeric αSyn im-
paired proteasome activity and likely impeded access of
other proteasomal substrates [76, 77]. αSyn is degraded
not only via ubiquitin-proteasome system but also autoph-
agy [78, 79]. Both macroautophagy and chaperone-
mediated autophagy (CMA) are involved in the clearance
of accumulating αSyn [80]. Overexpressed wild-type αSyn
compromised macroautophagy by inhibiting Rab1a [81],
and pathogenic mutant and dopamine-modified αSyn pre-
vented their own degradation and that of other substrates in
CMA [82, 83]. As a result, DA cells harboring abnormal
αSyn are sensitized to degenerative stimuli.

The majority of cellular source of energy is produced in
mitochondria in the form of ATP. Because of the electrons
being transported along the respiratory chain to potentiate
mitochondrial intermembranous proton gradient, the prereq-
uisite for oxidative phosphorylation, this organelle can in-
trinsically be a primary source of reactive oxygen species
(ROS). A number of studies have demonstrated mitochon-
drial dysfunction and oxidative (and nitrosative) stresses
linked to neuronal cell degeneration in PD [reviewed in
84]. This is well illustrated in an animal model of PD
generated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP), which inhibits complex I in the electron
transport system [85, 86]. αSyn protein has a non-
canonical mitochondrial targeting sequence at its N-
terminus and is indeed translocated to mitochondria in hu-
man fetal DA neuronal culture and postmortem normal brain
tissues [87]. The mitochondrial αSyn accumulation is en-
hanced in PD brains. αSyn interacts with complex I and
interferes with its function, promoting the production of
ROS [87]. Particularly, superoxide radical rapidly reacts
with nitric oxide to yield highly reactive peroxynitrite anion
and ensuing reactive nitrogen species (RNS) [84]. ROS/
RNS covalently modify lipids, nucleic acids, and proteins.
αSyn can be modified with these compounds, augmenting
the formation of toxic oligomeric αSyn (see below) [88].

Previous studies have implicated an increased iron level
in the SN of postmortem brains of idiopathic PD and parkin-
deficient PARK2 patients [89–91]. In MPTP-treated hemi-
parkinsonian monkeys, we and another group reported that
DA cell death preceded iron accumulation [92, 93], suggest-
ing that the elevation of iron may be a secondary event in
nigral degeneration. On the contrary, several recent studies
indicate that intraneuronal iron overload can be a primary
cause of DA cell death in part through enhancing the

formation of toxic radicals by Fenton reaction [94–96]. An
iron transporter, divalent metal transporter 1 (DMT1), is
upregulated and contributes to nigral DA neuronal death in
MPTP and 6-hydroxydopamine rodent models of PD [94,
95]. Importantly, parkin regulates uptake of iron via degra-
dation of DMT1 in ubiquitin-proteasome system [96]. These
results suggest that DMT1-mediated iron overload can
cause DA cell loss in parkinsonian brains. Iron promotes
aggregation of αSyn protein [97, 98], and formation of
pore-forming toxic oligomer species [99]. Moreover,
DMT1-mediated cell death was aggravated in the presence
of mutant αSyn as a result of excessive autophagic activity
[100].

Recent studies revealed the association of Gaucher dis-
ease, the lysosomal storage disorder, with αSyn pathology
[101–105]. Gaucher disease is caused by mutations in the
gene encoding lysosomal protein glucocerebrosidase
(GCase) that also increase the risk for PD and DLB
[reviewed in 105]. A direct physical interaction between
GCase and αSyn that prefers lysosomal acidic condition
has been demonstrated [102]. In another study, importantly,
glucosylceramide, which is the substrate of GCase and
accumulated in Gaucher disease brains, directly influenced
amyloid formation of αSyn by stabilizing soluble oligomer-
ic intermediates [103]. The oligomeric αSyn in turn
inhibited intracellular trafficking of GCase and decreased
lysosomal GCase function. Such bidirectional effects of
αSyn and GCase form a positive feedback loop that may
lead to a self-propagating disease [103]. Genetic mouse
model of Gaucher disease exhibited αSyn accumulation in
the SN, cortex, or hippocampus [103, 104], and adeno-
associated viral (AAV) vector-mediated delivery of GCase
ameliorated pathological and behavioral aberrations in the
Gaucher mice [104].

Prion-Like Cell-to-Cell Transmission of αSyn

In the last 20 years, more than 300 patients with PD have
received striatal transplantation of midbrain tissues that were
isolated from aborted fetuses [106, 107]. Many of these
patients experienced a transient improvement of motor
symptoms [106, 107], while severe off-phase dyskinesia
remains a major concern [108–110]. On the other hand,
intriguingly, more than a decade after the fetal transplanta-
tion, Lewy-like inclusions were depicted to be present in the
surviving DA cells in the grafts [111, 112]. These findings
led to the current provocative hypothesis that αSyn protein
itself might transmit from neuron to neuron like as prion
proteins, whereby spreading the pathologies in the brains of
PD and other α-synucleinopathies [113–115].

Indeed, αSyn and its oligomeric forms are localized in
the lumen of vesicles in differentiated neuronal cells and rat
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synaptosomal preparations, and secreted via non-classical
ER/Golgi-independent exocytosis like as a part of the nor-
mal life cycle of this protein [116]. The intravesicular αSyn
was found more prone to aggregation compared with cyto-
solic αSyn [116]. Another group showed that soluble mo-
nomeric and oligomeric αSyn were externalized via the
vesicles that have characteristic hallmarks of exosomes in
a calcium-dependent manner, and significantly reduced cell
viability [117]. Danzer et al. [63] showed that different
species of extracellular αSyn oligomers can exert distinct
effects on cells; some oligomeric αSyn induced cell death
by presumably pore-forming mechanism, and the other form
of oligomer directly entered the cell and enhanced aggrega-
tion of αSyn. They proposed that heterogeneous popula-
tions of oligomeric forms coexist in equilibrium [63]. A
solution structure of the pore-forming αSyn oligomer has
been determined by small angle X-ray scattering [65]. On
the other hand, cationic liposome-mediated forced transduc-
tion of exogenously produced fibrils of αSyn could seed the
intracellular formation of Lewy-like inclusion in cultured
cells [118, 119]. Furthermore, several groups reported that
the extracellular αSyn can be uptaken by cells through
endocytotic mechanism, and the internalized αSyn en-
hanced aggregation of (endogenous or overexpressed) αSyn
and neuronal cell death [120–122]. Importantly, Mougenot
et al. [123] demonstrated prion-like propagation of αSyn
pathology in αSyn-transgenic mice. Brain homogenates
from old αSyn-transgenic mice, which display motor clini-
cal signs and contain insoluble Ser129-phosphorylated
αSyn, were intracerebrally inoculated to young αSyn-
transgenic mice. This triggered an early onset of character-
istic motor signs and a prominent formation of inclusions
that contain Ser129-phosphorylated αSyn, compared with
uninoculated αSyn-transgenic mice or mice inoculated with
brain homogenate from young healthy αSyn-transgenic
mouse [123]. In that experiment, αSyn-null mice showed
no abnormalities when inoculated with the brain homoge-
nate of old disease-state αSyn-transgenic mice, indicating
the crucial role for the presence of (pre-abnormal) αSyn in
the host brain [123]. Extracellular αSyn is also capable of
inducing microglial activation [124] and pro-inflammatory
cytokine release from astrocytes [125] that may enhance
neuronal toxicity. Accordingly, removal of extracellular
αSyn species may be relevant to disease modification. Vac-
cination or passive immunization targeting the overloaded
αSyn has successfully cured mice from neuronal degenera-
tion (see below) [126, 127].

αSyn-Transgenic Animals

αSyn-transgenic models have been generated in mice
[reviewed in 31, 128–130] and other organisms including

nematode Caenorhabditis elegans [131–133] and fruit fly
Drosophila melanogaster [134, 135]. Nematode models of
αSyn overexpression exhibited neuronal or dendritic loss of
DA cells and corresponding behavioral deficits [131–133].
Drosophila models of αSyn overexpression show adult-
onset loss of DA neurons and locomotor dysfunction [134,
135]. These invertebrate models well recapitulate several
key features of human PD and are relevant for comprehen-
sive genetic analyses and drug screening towards elucidat-
ing the molecular pathogenesis and developing therapies for
α-synucleinopathies [131–135].

On the other hand, a single transgenic expression of wild-
type or familial PD-associated αSyn mutant in mice hardly
represents a progressive loss of DA cells in the SNpc [31,
128–130]. Masliah et al. [136] reported the decrease of the
striatal DA terminals and corresponding motor impairment
induced by the overexpression of wild-type αSyn under the
regulatory control of human platelet-derived growth factor-
β (PDGF-β) promoter. Thereafter, several lines of αSyn-
transgenic mice were generated and displayed severe move-
ment disorders, loss of neuronal cells other than DA ones,
and/or synaptic dysfunction before overt neuronal loss. In
the transgenic mice of αSyn A53T mutant driven by the
mouse prion promoter, which were originally reported by
Lee et al. [137], Martin et al. [138] found that neocortical,
brainstem, and motor neurons developed Lewy-like intra-
neuronal inclusions, axonal degeneration, and mitochondrial
damage, as well as p53- and caspase-3-mediated apoptotic
death. This report provided a mechanistic insight into the
severe movement disorder of the αSyn A53T-transgenic
mice. Sotiriou et al. [140] recently showed that the mouse
prion promoter-αSyn A53T-transgenic mice, originally
reported by Giasson et al. [139], had selective vulnerability
for noradrenergic systems in the spinal cord, olfactory bulb
(OB), and striatum in an age-dependent manner, while DA
cells in the SN and noradrenergic cells in the locus coeruleus
were not affected [140]. Lim et al. [141] generated inducible
line of αSyn-transgenic mice with a tet-off system and the
calcium/calmodulin-dependent protein kinase IIα
(CaMKIIα) promoter, in which A53T mutant can be condi-
tionally expressed in neuronal cells mainly in the cortex and
hippocampus, to model human DLB. αSyn pathology and
age-dependent neuronal cell loss was observed in cortical
and hippocampal areas that resulted in memory impairment.
Drug-induced suppression of αSyn transgene partially
cleared pre-existing αSyn pathology and reverted defects
in presynaptic proteins including synaptophysin, CSPα,
synaptotagmin, SNAP-25, and syntaxin, and corresponding
memory functions [141]. These results emphasize that tar-
geted removal of αSyn pathology can reverse cognitive
decline in DLB.

On the other hand, oxidation and nitration of αSyn indu-
ces the formation of stable dimers and oligomers through
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intermolecular dityrosine cross-linking [88]. αSyn pos-
sesses four tyrosine residues at positions 39, 125, 133, and
136 and lacks cysteine. When cysteine was substituted for
tyrosine 39 and 125, these mutants increased intracellular
inclusions and induced apoptosis in a rat DA cell line [142].
They indicated that cross-linking at critical positions in αSyn
molecule can increase dimer formation, and accelerate protein
aggregation and cellular toxicity of αSyn [142]. αSyn-
transgenic mice carrying Y39C substitution under the murine
Thy1 promoter were then generated and analyzed [143]. The
mice showed age-dependent formation of αSyn oligomer and
aggregate, progressive apoptotic cell loss in the cortex, and
motor and cognitive deficits similar to DLB. Midbrain DA
neurons and spontaneous locomotor activity were not affected
in the αSyn Y39C-transgenic mice [143].

The murine prion promoter-αSyn-transgenic mice carry-
ing E46K mutation, initially reported to cause PD and DLB
[43], displayed detrimental age-dependent motor impair-
ment, although DA neurons in the SN did not produce αSyn
E46K protein [144]. These animals accumulated intracyto-
plasmic neuronal inclusions of αSyn in the cerebellum and
pons that more closely resemble nigral Lewy bodies in PD
than the previously described transgenic mice of human
A53T αSyn. Intriguingly, phosphorylated tau-positive
inclusions were found in the motor cortex and pons of the
αSyn E46K-transgenic mice [144].

αSyn can be processed by C-terminal truncation in nor-
mal and PD brains [145, 146], and this modification pro-
motes aggregation of αSyn [145–149]. The transgenic mice,
that express C-terminally truncated form of αSyn [αSyn(1–
120)] under the control of rat tyrosine hydroxylase (TH)
promoter on a mouse αSyn-null background, exhibited the
formation of pathological αSyn-positive inclusions in the
SN and OB, reduction of the striatal dopamine levels, and a
progressive reduction in spontaneous locomotion, in the
absence of DA cell death [150]. In the following study, they
investigated the presynaptic SNARE proteins in the striatum
of the αSyn(1–120)-transgenic mice [151]. Synaptic accu-
mulation of αSyn was accompanied by age-dependent re-
distribution of SNAP-25, syntaxin-1, and synaptobrevin-2,
as well as reduced exocytosis of dopamine. A similar redis-
tribution of the SNARE proteins was detected in PD brains
[151]. Of note, Wakamatsu et al. [152] reported a selective
loss of DA neurons in the SNpc of the transgenic mice
carrying human αSyn(1–130). This truncated form of αSyn
further caused reduction of the striatal DA axon terminals
and dopamine level with corresponding reduction of loco-
motor activity, which can be reversed by administration of
levodopa. However, the loss of nigral DA neurons was not
progressive and seemed to occur during embryogenesis
along with the onset of transgene expression [152].

Mutations in leucine-rich repeat kinase 2 (LRRK2) gene
have been linked not only to a dominantly inherited PARK8

[153, 154] but also to sporadic form of PD [155]. The gene
product LRRK2 possesses multiple functional domains in-
cluding GTPase and kinase domains [156, 157]. A com-
monly found mutation, G2019S, increased its kinase
activity, suggesting a gain-of-function mechanism for the
pathogenesis of LRRK2-linked PD [157]. Intriguingly,
LRRK2 accelerated the progression of neuropathology of
αSyn [158]. Lin et al. [158] produced inducible line of
LRRK2- or αSyn A53T-transgenic mice with a tet-off sys-
tem and CaMKIIα promoter, in which the PD-related trans-
gene can be expressed at high-level (LRRK2: about 8- to
16-fold; and αSyn A53T: about 30-fold) in neuronal cells in
the striatum and cortex. While LRRK2 alone did not cause
neurodegeneration, the presence of excess LRRK2 G2019S
exacerbated abnormal accumulation and aggregation of
αSyn A53T, which likely stemmed from the impairment of
microtubule dynamics, Golgi organization, and the
ubiquitin-proteasome pathway. Morphological abnormality
of mitochondria and superoxide production was also pro-
moted in the presence of high amount of LRRK2. In their
αSyn A53T mice, genetic ablation of LRRK2 preserved the
Golgi structure and suppressed the accumulation/aggrega-
tion of αSyn, and then delayed the progression of neuropa-
thology [158]. This study elegantly demonstrated that
suppression of LRRK2 can be a potential therapeutic target
to ameliorate αSyn-induced neurodegeneration. In another
report, by contrast, a single LRRK2-knockout mouse, which
has a normal nigrostriatal DA system, developed accumula-
tion and aggregation of αSyn and ubiquitinated proteins in
the kidneys during aging [159]. This was possibly due to
impairment of autophagy-lysosomal pathway. Furthermore,
the ablation of LRRK2 gene dramatically increased apopto-
tic cell death, inflammatory responses, and oxidative dam-
age in the kidney. These mice implicated that loss-of-
function mutations of LRRK2 may cause cell death via
impairment of protein degradation pathways, which lead to
αSyn accumulation and aggregation [159].

Viral Vector-Mediated αSyn Overexpression Models

PD models have also been generated by viral vector-
mediated overexpression of αSyn in rodents and nonhuman
primates [160–166]. The AAV and lentiviral vectors have
efficient tropism for DA neurons when injected into the SN
and the ability of long-term stable gene expression with low
accompanying cytotoxicity [167, 168]. In rodents, the viral
vector-mediated overexpression of wild-type and familial
PD-associated αSyn mutants can cause a progressive loss
of DA cell bodies with neuritic pathology [160–163]. Rep-
resentative images are shown in Fig. 2. The DA cell death
was accompanied with phosphorylation of αSyn at Ser129
residue and apoptotic cascade with activation of caspase-9
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in our examination [163]. We have also reported that, in the
presence of the PARK5-linked ubiquitin carboxy-terminal
hydrolase-L1 (UCH-L1) I93M mutant in mice, the AAV-
αSyn-induced accumulation of αSyn and apoptotic DA cell
death was enhanced, but not influenced in the absence of
wild-type UCH-L1, indicating that PARK5-linked PD might
be caused by gain-of-function mutation in UCH-L1 [166].
Importantly, Chung et al. [169] found that disturbance of the
proteins relevant to synaptic transmission and axonal trans-
port preceded the AAV-αSyn A53T-induced DA neuronal
loss. It is known that a majority of the virally αSyn-
challenged rodents lacks significant behavioral abnormali-
ties, although they finally exhibit a profound DA neuro-
degeneration [160, 161, 163].

By contrast, adult common marmosets (Callithrix jac-
chus) injected with αSyn-encoding AAV exhibited a severe
neuronal pathology with a significant motor impairment
such as head position bias in a short-term (16-weeks) study
[164]. In a long-term examination for 1 year, the αSyn-treated
monkey displayed behavioral impairments including full body
rotation, head turn bias, and slowed and decreased use of
contralateral hand [165]. These motor abnormalities were
most pronounced in αSyn A53T-transduced group compared

with wild-type αSyn and control GFP groups. About half of
the αSyn A53T monkeys analyzed further developed slips of
contralateral limbs (hand and foot) and persistent head tilts
down on the contralesional side in the later phase [165].
Pathologically, wild-type αSyn-transduced monkeys
exhibited a notably lower density of fibers immunopositive
forαSyn in the caudate and putamen than for GFP in the GFP-
transduced monkeys. The αSyn-containing aggregates were
also found in the striatal fibers. This finding was even more
pronounced in the αSyn A53T group, where only a sparse
network of αSyn-positive fibers was seen in the caudate/puta-
men. In the αSyn A53T group, the ectopic αSyn protein
appeared to have cleared from the SN, and there were fewer
surviving αSyn-positive cell bodies compared with wild-type
αSyn and GFP groups. When the Ser129-phosphorylated
αSyn was examined by immunostaining, some of the neurons
in the SN appeared normal while other cells were atrophic
with shrunken cell bodies or had dystrophic dendrites, some
with beaded aggregations. Interestingly, in several cases, the
Ser129-phosphorylated αSyn-positive staining was localized
to the nucleus (see below) [165]. In the wild-type and A53T
αSyn groups, a substantial loss of TH-positive DA axon
terminals and numerous pathological TH-positive

Fig. 2 AAV vector-mediated expression of foreign gene in mouse
brain. a The AAV vector can be injected stereotaxically into the SN
of mice. b–e Representative images for the AAV vector-mediated
overexpression of human αSyn (hαSyn) or GFP in DA cells. Nigral
sections of the AAV-GFP- (b, d) or AAV-hαSyn-injected mice (c, e)
were immunostained for GFP (GFP; b, d; shown in green) or hαSyn
(c, e; green) and tyrosine hydroxylase (TH; b–e; red; merged with anti-

GFP or hαSyn, yellow). Images for DAPI are also merged (d, e; blue).
Note that the overexpression of hαSyn caused a profound loss of DA
cell bodies with neuritic pathology. The overexpressed hαSyn was
localized to nucleus and cytoplasm in a heterogeneous pattern in the
remaining DA cells, while GFP distributed uniformly. Scale bars: (b,
c) 20 μm and (d, e) 10 μm
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accumulations were found in the striatum, suggesting that
some of the affected but surviving cells were nonetheless
dysfunctional. In the SN, the αSyn A53T-transduced
monkeys showed a clear and consistent DA neurodegenera-
tion in the injected side, which was significantly different
when compared with GFP and wild-type αSyn groups
[165]. The nonhuman primate model of α-synucleinopathy
will be greatly useful for preclinical researches potentially
preventing or retarding the behavioral and pathological pro-
gressions of the disease.

Phosphorylation and Neurotoxicity of αSyn

As described above, αSyn receives several post-
translational modifications in diseased brains. In particular,
Fujiwara et al. [170] found that about 90 % of αSyn proteins
deposited in the brains of α-synucleinopathy are phosphor-
ylated at Ser129 residue. Thereafter, the relationship be-
tween phosphorylation and neuronal toxicity of αSyn has
been investigated. In dopamine-producing cells, rotenone
treatment induced Ser129 phosphorylation of αSyn and
formation of Lewy-like aggregates, with increased apoptotic
cell death through the unfolded protein response [171]. In
another study, increased oxidative stress or proteasomal
inhibition caused significant elevation of soluble and non-
aggregated form of Ser129-phosphorylated αSyn with in-
creased DA cell death [172]. These in vitro studies sug-
gested that Ser129 phosphorylation of αSyn is toxic to DA
cells. Chen and Feany [173] reported that phosphorylation
at Ser129 is essential for αSyn to have neuronal toxicity in a
Drosophila model of PD. The toxicity was abolished by
amino acid substitution S129A that is no longer phosphor-
ylated, and reproduced by S129D that carries a negative
charge mimicking phosphate on serine residue [173]. On
the other hand, phosphoprotein phosphatase 2A (PP2A)
dephosphorylates αSyn at Ser129, and this activity is en-
hanced by carboxyl methylation of the catalytic C subunit of
PP2A [174]. αSyn-transgenic mice raised on a diet supple-
mented with eicosanoyl-5-hydroxytryptamide, an agent that
enhances PP2A methylation, dramatically reduced both
Ser129 phosphorylation and aggregation of αSyn in the
brain [174]. These mice displayed enhanced neuronal activ-
ity, increased dendritic arborizations, and reduced astroglial
and microglial activation, as well as improved motor per-
formance [174].

There exist opposing reports as to the neurotoxicity of the
Ser129-phosphorylated αSyn in the viral vector-mediated
rodent model of αSyn overexpression. Alteration of Ser129
to nonphosphorylated Ala resulted in enhanced [175, 176]
or unchanged toxicity of αSyn [177], and alteration of
Ser129 to a phospho-mimetic Asp resulted in eliminated
[175, 176] or unchanged toxicity of αSyn [177]. These

studies suggest that the Ser129 phosphorylation of αSyn
has, if any, protective effect on DA neurons. We recently
reported that viral vector-mediated delivery of parkin pre-
vented DA neuronal loss induced by a chronic MPTP in
mice [178]. The osmotic minipump-mediated MPTP infu-
sion caused accumulation of the Ser129-phosphorylated
αSyn in DA cells, which was enhanced by overexpression
of parkin, suggesting that the phosphorylation resulted in
reduced toxicity of αSyn [178]. This result is in line with the
report by Lo Bianco et al. [179] who demonstrated that
lentiviral-parkin attenuated αSyn-induced DA cell loss by
increasing the number of the Ser129-phosphorylated αSyn-
positive inclusions in rats. The discrepancy in the neurotoxic
consequence of the αSyn Ser129 phosphorylation makes
difficulties in developing disease-modifying therapies. More
elaborate time-series examinations in primates might be
required to target this post-translational modification.

Prevention of αSyn-Induced Neuronal Cell
Death/Dysfunction

αSyn-induced neuronal cell death and dysfunction can be
targeted by several strategies. Masliah’s group has reported
effective treatment of αSyn-transgenic mice with active and
passive immunization protocols, which enabled clearance of
toxic αSyn in multiple neuronal populations simultaneously
[126, 127]. Passive immunization with a monoclonal anti-
body directed against C-terminus of αSyn (epitope: 118–
126 amino acids of αSyn) that crossed into the central
nervous system ameliorated behavioral deficits and synaptic
abnormalities in αSyn-transgenic mice [127]. Moreover, the
monoclonal antibody reduced the accumulation of calpain-
cleaved and oligomerized αSyn aggregates in neuronal cells
via lysosomal-degradation pathway [127]. They further in-
dicated that lentiviral vector-mediated transduction of beclin
1, a regulator of autophagic pathway, ameliorated the syn-
aptic and dendritic pathology in αSyn-transgenic mice [79].
The reduced accumulation of αSyn induced by the beclin 1
transduction was accompanied by enhanced lysosomal acti-
vation. These studies demonstrated that beclin 1-mediated
autophagy pathway plays an important role in the intracel-
lular degradation of αSyn and may present a novel thera-
peutic target for DLB and PD [79].

A number of studies demonstrated that parkin, PARK2-
associated ubiquitin E3 ligase, protects against αSyn-
induced cell death in vitro. Petrucelli et al. [72] showed that
αSyn A53T-mediated toxicity in primary neuronal culture,
which could be mimicked by the application of proteasome
inhibitor, was reduced by E3 ligase activity of parkin. This
study implicated that parkin and αSyn are linked in a
common pathway associated with selective DA neuronal
cell death. Another group reported that parkin could restore
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the reduced cell viability induced by wild-type αSyn via
activation of calpain [180]. The calpain-mediated cleavage
of accumulated αSyn occurred independently of proteaso-
mal degradation [180]. In Drosophila model of PD, parkin
suppressed DA neuronal death induced by overproduction
of αSyn as well as parkin-associated endothelin receptor-
like receptor (Pael-R) [181]. In rats, we have shown that
AAV vector-mediated parkin delivery ameliorated DA cell
loss induced by overexpression of wild-type αSyn [182].
On the other hand, parkin is known to interact with and
ubiquitinate synphilin-1 [183], which was isolated as αSyn-
interacting protein by yeast two-hybrid screen [184],
through nonclassical K63-linked fashion [185]. Co-
expression of αSyn and synphilin-1 resulted in the forma-
tion of Lewy body-like ubiquitin-positive cytosolic inclu-
sions [183–185], which were found to be cytoprotective
under proapoptotic stimuli [186]. A recent study indicated
that transgenic expression of synphilin-1 attenuated αSyn-
induced cell death in mice [187]. A double-transgenic
mouse for αSyn A53T-mutant and synphilin-1 exhibited
longer lifespan, improved motor performance, and reduced
neuronal degeneration in the brainstem as compared to their
single αSyn A53T-transgenic counterparts. Increased expres-
sion of beclin 1 and enhanced formation of aggresome-like
structures were observed in the double αSyn A53T/synphilin-
1-transgenic mice [187]. On the other hand, αSyn can directly
be modified with small ubiquitin-related modifier (SUMO) at
the positions of lysine 96 and 102 residues [188, 189]. The
sumoylated αSyn showed increased solubility, whereas un-
modified αSyn formed fibrils. Simultaneous substitution of
K96 and K102 to arginine residues, which significantly im-
paired the sumoylation but did not affect the ubiquitination
status of αSyn, was manifested by increased aggregation
propensity and neuronal toxicity in vitro and in vivo [189].
Regulation of αSyn sumoylation may thus have a therapeutic
potential.

We have shown previously that downregulation of SNCA
transcripts by the AAV-mediated transduction of ribozymes
provided rat DA neurons with a resistance to neurotoxin-
induced αSyn accumulation and cell death [190]. Recently,
Junn et al. [191] reported that downregulation of αSyn expres-
sion via microRNA-7 was effective for protection of αSyn
A53T-expressing cells against oxidative stress. MicroRNA-7
was abundantly expressed in neurons in the SN, striatum, and
OB in mice, the most affected areas in PD. Intoxication of mice
with MPTP caused 50 % decrease of microRNA-7 in ventral
midbrain, raising the possibility that the reduction of
microRNA-7 in PDmay cause degeneration of the nigrostriatal
system, likely through upregulating αSyn production [191].

Sirtuin family of the class III NAD+-dependent histone
deacetylases (HDACs) is involved in a variety of biological
processes and several age-associated diseases [192, 193].
One of the family members, sirtuin 1, the mammalian

ortholog of yeast Sir2, is upregulated under the conditions
of caloric restriction and resveratrol treatment, and has a
critical role in cell survival [192, 193]. On the other hand,
sirtuin 2 induces neuronal cell death through its protein
deacetylase activity [194]. The opposing mode of function
is called as yin and yang of sirtuins [195]. A potent inhibitor
of the deacetylase activity of sirtuin 2, AGK2, alleviated
αSyn-induced DA neuronal cell death in primary cell cul-
ture and Drosophila models of PD [194]. In αSyn-
aggregation experiment, where αSyn and synphilin-1 were
co-introduced, AGK2 decreased the number and increased
the size of αSyn aggregates, suggesting that the formation
of large aggregates of αSyn might affect neuronal survival
[194]. On the other hand, αSyn was found localized to the
nucleus of DA neurons in mice that were exposed to neu-
rotoxic herbicide paraquat, and associated with histones in
vitro [196]. Kontopoulos et al. [197] have shown in DA cell
line and Drosophila models that wild-type αSyn, C-
terminally tagged with nuclear localization sequence or
nuclear export sequence, enhanced or attenuated the neuro-
nal toxicity, respectively. The inherited PD-linked A53T or
A30P mutation promoted the nuclear localization of αSyn.
Intranuclear αSyn inhibited histone acetylation and admin-
istration of HDAC inhibitors, sodium butyrate or suberoy-
lanilide hydroxamic acid (SAHA), protected against the
αSyn-induced DA cell loss [197]. Valproic acid (VPA),
another HDAC inhibitor selective for class I and IIa
HDACs, has been clinically used for the treatment of bipolar
mood disorder, schizophrenia, and convulsive seizures [198,
199]. Leng and Chuang [56] reported that VPA induced
upregulation of αSyn through hyperacetylation of histone
H3 in the SNCA promoter region in rat cerebellar granule
cells and cortical neurons. The increased αSyn protein par-
ticipated in neuroprotection against glutamate-induced exci-
totoxicity. By contrast, recent study indicated that VPA
showed neuroprotective effect in rotenone-induced PD
model rats [200]. In the minipump-mediated rotenone rats,
monoubiquitinated αSyn increased its localization into the
nuclei, suggesting that the monoubiquitinated αSyn func-
tions in the nucleus to promote DA neuronal cell death. The
intranuclear translocation of αSyn and subsequent DA cell
death was attenuated by VPA treatment [200].

On the other hand, abnormally accumulating αSyn was
found to induce ER stress via blocking the vesicular traf-
ficking from ER to Golgi network [201]. In genome-wide
screen, Rab guanosine triphosphatase YPT1 (a member of
Rab subfamily that belongs to Ras superfamily) was identi-
fied to modify the cell toxicity of abnormal αSyn and
associate with cytoplasmic αSyn inclusions in yeast cells.
Transgenic expression of Rab1 (the murine YPT1 ortholog)
rescued the loss of DA neuronal cells in Drosophila and C.
elegans models of αSyn overexpression [201]. This re-
search group indicated in the following experiments that
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αSyn disrupts localization of several Rab proteins [202].
Transduction of RAB8A, the human homolog of yeast
Sec4p and a close paralog to Rab1, and another neuron-
specific RAB3A that functions at the synapse were also able
to provide substantial rescue against αSyn-induced DA
neurodegeneration in C. elegans and primary midbrain cul-
ture [202].

Rapamycin is an allosteric inhibitor of mammalian target
of rapamycin (mTOR), an intracellular serine/threonine pro-
tein kinase involved in various cellular processes including
cell growth and proliferation, protein synthesis, and autoph-
agy [reviewed in 203]. Rapamycin has been clinically used
as immunosuppressant drug to prevent the graft rejection
and is now extensively studied as promising anticancer
agents because of its anti-proliferative properties [203].
Recent two reports indicated that systemic treatment with
rapamycin protected DA neurons from death in MPTP
mouse model of PD [204, 205]. The neuroprotective molec-
ular cascade upregulated by systemic rapamycin was dis-
tinct in these two reports. One indicated that rapamycin
blocked mTOR complex 1-induced upregulation of pro-
cell death RTP801 protein, which inactivate mTOR complex
2-mediated phosphorylation of pro-survival Akt kinase
[203, 204]. In the other report, mitochondria-derived ROS
induced permeabilization of lysosomal membranes that
resulted in accumulation of altered mitochondria and unde-
graded autophagosomes [203, 205]. The lysosomal mem-
brane permeabilization also induced ectopic release of
lysosomal proteases cathepsin B and D to the cytosol, which
can cause the digestion of vital proteins or the activation of
additional hydrolases, including caspases. All of these path-
ogenic events, including apoptotic cell death, can be atten-
uated by rapamycin treatment. In particular, rapamycin was
shown to restore impairment of lysosome-mediated clear-
ance of autophagosome, by boosting lysosomal biogenesis
and promoting autophagolysosome formation [203, 205].
αSyn-transgenic mouse model of DLB and PD [136], which
displayed elevation of mTOR, reduction of autophagy-
related protein 7 (Atg7) levels, and the presence of abundant
and abnormal autophagosomes, was also healed with rapa-
mycin [206]. Intracerebral infusion of rapamycin into the
lateral ventricle of αSyn-transgenic mice enhanced clear-
ance of αSyn protein accumulating in neuronal cell bodies
and synapses and redistribution to the axons, through upre-
gulation of autophagy pathway. This study further indicated
lentiviral vector-mediated Atg7 expression resulted in re-
duced accumulation of αSyn and amelioration of associated
neurodegenerative alterations [206].

Neurotrophic factors including glial cell line-derived
neurotrophic factor (GDNF) and its closely related family
protein Neurturin have provided promising therapeutic
effects in various animal neurotoxin models and phase I
clinical trials for PD [reviewed in 207]. However,

surprisingly, AAV or lentiviral vector-mediated GDNF de-
livery did not prevent DA neuronal cell loss induced by the
virally overexpressed αSyn of wild-type or A30P mutant
[208, 209]. The difference in neuroprotective efficacy of
GDNF raises important issues pertinent to the relevance
for the therapeutic use of GDNF and Neurturin in the
patients with PD.

Conclusion

αSyn has a central role in the pathogenesis of PD and other
α-synucleinopathies, and a proper regulation of production,
distribution, modification, and degradation of αSyn is cru-
cial for neuronal functions and viability. Correction of the
impairments in these multiple aspects of αSyn protein in its
life cycle should provide disease modification remedies for
the patients suffering from the devastating neurological
disorders.

Acknowledgments This work was supported by grants from Japan
Science and Technology Agency (JST), Core Research for Evolutional
Science and Technology (CREST); Grants-in-Aid from the Research
Committee of CNS Degenerative Diseases, the Ministry of Health,
Labour and Welfare of Japan; the Research Grant for Longevity Sci-
ences from the Ministry of Health, Labour and Welfare of Japan; and
grants (#S0801035) from the Ministry of Education, Culture, Sports,
Science, and Technology (MEXT) of Japan.

Conflicts of interest The authors declare there is no conflict of
interest.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts
and future prospects. Nat Rev Genet 7:306–318

2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R,
Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature
388:839–840

3. Shults CW (2006) Lewy bodies. Proc Natl Acad Sci U S A
103:1661–1668

4. Jenner P (2008) Molecular mechanisms of L-DOPA-induced
dyskinesia. Nat Rev Neurosci 9:665–677

5. Deep-Brain Stimulation for Parkinson’s Disease Study Group
(2001) Deep-brain stimulation of the subthalamic nucleus or the
pars interna of the globus pallidus in Parkinson’s disease. N Engl
J Med 345:956–963

6. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic bio-
logical phenomenon with wide-ranging implications in tissue
kinetics. Br J Cancer 26:239–257

7. Hengartner MO (2001) Apoptosis: corralling the corpses. Cell
104:325–328

476 Mol Neurobiol (2013) 47:466–483



8. Yuan J, Lipinski M, Degterev A (2003) Diversity in the mecha-
nisms of neuronal cell death. Neuron 40:401–413

9. Baehrecke EH (2005) Autophagy: dual roles in life and death?
Nat Rev Mol Cell Biol 6:505–510

10. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-
eating and self-killing: crosstalk between autophagy and apopto-
sis. Nat Rev Mol Cell Biol 8:741–752

11. Kroemer G, Levine B (2008) Autophagic cell death: the story of a
misnomer. Nat Rev Mol Cell Biol 9:1004–1010

12. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases
to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

13. Artal-Sanz M, Tavernarakis N (2005) Proteolytic mechanisms in
necrotic cell death and neurodegeneration. FEBSLett 579:3287–3296

14. Christofferson DE, Yuan J (2010) Necroptosis as an alternative
form of programmed cell death. Curr Opin Cell Biol 22:263–268

15. Vandenabeele P, Galluzzi L, Vanden BT, Kroemer G (2010)
Molecular mechanisms of necroptosis: an ordered cellular explo-
sion. Nat Rev Mol Cell Biol 11:700–714

16. Hartmann A, Troadec JD, Hunot S, Kikly K, Faucheux BA,
Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch EC (2001)
Caspase-8 is an effector in apoptotic death of dopaminergic
neurons in Parkinson’s disease, but pathway inhibition results in
neuronal necrosis. J Neurosci 21:2247–2255

17. Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical
detection of apoptosis in Parkinson’s disease. J Neurol Sci
137:120–123

18. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP,
Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y
(1997) Apoptosis and autophagy in nigral neurons of patients
with Parkinson’s disease. Histol Histopathol 12:25–31

19. Kosel S, Egensperger R, von Eitzen U, Mehraein P, Graeber MB
(1997) On the question of apoptosis in the parkinsonian substan-
tia nigra. Acta Neuropathol 93:105–108

20. Banati RB, Daniel SE, Blunt SB (1998) Glial pathology but absence
of apoptotic nigral neurons in long-standing Parkinson’s disease.
Mov Disord 13:221–227

21. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW
(1998) A fluorescent double-labeling method to detect and con-
firm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44:
S142–S148

22. Hirsch EC, Hunot S, Faucheux B, Agid Y, Mizuno Y, Mochizuki
H, Tatton WG, Tatton N, Olanow WC (1999) Dopaminergic
neurons degenerate by apoptosis in Parkinson’s disease. Mov
Disord 14:383–385

23. Barzilai A, Melamed E (2003) Molecular mechanisms of selec-
tive dopaminergic neuronal death in Parkinson’s disease. Trends
Mol Med 9:126–132

24. Vila M, Przedborski S (2003) Targeting programmed cell death in
neurodegenerative diseases. Nat Rev Neurosci 4:365–375

25. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms
and models. Neuron 39:889–909

26. Sperandio S, de Belle I, Bredesen DE (2000) An alternative,
nonapoptotic form of programmed cell death. Proc Natl Acad
Sci U S A 97:14376–14381

27. Wyllie AH, Golstein P (2001) More than one way to go. Proc
Natl Acad Sci U S A 98:11–13

28. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng
X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber
SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a
specific cellular target of necrostatins. Nat Chem Biol 4:313–321

29. Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy
RC, Chua BH (2007) Necrostatin-1 protects against glutamate-
induced glutathione depletion and caspase-independent cell death
in HT-22 cells. J Neurochem 103:2004–2014

30. Goedert M (2001) Alpha-synuclein and neurodegenerative dis-
eases. Nat Rev Neurosci 2:492–501

31. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s dis-
ease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci
3:932–942

32. Auluck PK, Caraveo G, Lindquist S (2010) Alpha-synuclein:
membrane interactions and toxicity in Parkinson’s disease.
Annu Rev Cell Dev Biol 26:211–233

33. Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR,
Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex
assembly in vivo and in vitro. Science 329:1663–1667

34. Burgoyne RD, Morgan A (2011) Chaperoning the SNAREs: a
role in preventing neurodegeneration? Nat Cell Biol 13:8–9

35. Tobaben S, Thakur P, Fernandez-Chacon R, Sudhof TC, Rettig J,
Stahl B (2001) A trimeric protein complex functions as a synaptic
chaperone machine. Neuron 31:987–999

36. Sharma M, Burre J, Sudhof TC (2011) CSP-alpha promotes
SNARE-complex assembly by chaperoning SNAP-25 during
synaptic activity. Nat Cell Biol 13:30–39

37. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM,
Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha
in preventing neurodegeneration. Cell 123:383–396

38. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK,
Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expres-
sion of alpha-synuclein reduces neurotransmitter release by inhib-
iting synaptic vesicle reclustering after endocytosis. Neuron
65:66–79

39. Darios F, Ruiperez V, Lopez I, Villanueva J, Gutierrez LM,
Davletov B (2010) Alpha-synuclein sequesters arachidonic acid
to modulate SNARE-mediated exocytosis. EMBO Rep 11:528–
533

40. Yasuda T, Mochizuki H (2010) The regulatory role of alpha-
synuclein and parkin in neuronal cell apoptosis; possible impli-
cations for the pathogenesis of Parkinson’s disease. Apoptosis
15:1312–1321

41. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A,
Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES,
Chandrasekharappa S, Athanassiadou A, Papapetropoulos T,
Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe
LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene
identified in families with Parkinson’s disease. Science
276:2045–2047

42. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S,
Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro
mutation in the gene encoding alpha-synuclein in Parkinson’s
disease. Nat Genet 18:106–108

43. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R,
Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B,
Llorens V, Gomez TE, del Ser T, Munoz DG, de Yebenes JG
(2004) The new mutation, E46K, of alpha-synuclein causes
Parkinson and Lewy body dementia. Ann Neurol 55:164–173

44. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S,
Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R,
Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C,
Cookson MR, Muenter M, Baptista M, Miller D, Blancato J,
Hardy J, Gwinn-Hardy K (2003) Alpha-synuclein locus triplica-
tion causes Parkinson’s disease. Science 302:841

45. Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H,
Imai H, Kitami T, Sato K, Kuroda R, Tomiyama H, Mizoguchi K,
Murata M, Toda T, Imoto I, Inazawa J, Mizuno Y, Hattori N
(2006) Clinical heterogeneity of alpha-synuclein gene duplication
in Parkinson’s disease. Ann Neurol 59:298–309

46. Winkler S, Hagenah J, Lincoln S, Heckman M, Haugarvoll K,
Lohmann-Hedrich K, Kostic V, Farrer M, Klein C (2007) Alpha-
synuclein and Parkinson disease susceptibility. Neurology
69:1745–1750

47. Fuchs J, Tichopad A, Golub Y, Munz M, Schweitzer KJ, Wolf B,
Berg D, Mueller JC, Gasser T (2008) Genetic variability in the

Mol Neurobiol (2013) 47:466–483 477



SNCA gene influences alpha-synuclein levels in the blood and
brain. FASEB J 22:1327–1334

48. Mata IF, Shi M, Agarwal P, Chung KA, Edwards KL, Factor SA,
Galasko DR, Ginghina C, Griffith A, Higgins DS, Kay DM, Kim
H, Leverenz JB, Quinn JF, Roberts JW, Samii A, Snapinn KW,
Tsuang DW, Yearout D, Zhang J, Payami H, Zabetian CP (2010)
SNCA variant associated with Parkinson disease and plasma
alpha-synuclein level. Arch Neurol 67:1350–1356

49. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M,
Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H,
Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H,
Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y,
Toda T (2009) Genome-wide association study identifies com-
mon variants at four loci as genetic risk factors for Parkinson’s
disease. Nat Genet 41:1303–1307

50. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR,
Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG,
Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M,
Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS,
Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor
BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug M,
Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J,
Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O,
Hardy JA, Singleton AB, Gasser T (2009) Genome-wide associ-
ation study reveals genetic risk underlying Parkinson’s disease.
Nat Genet 41:1308–1312

51. Jowaed A, Schmitt I, Kaut O, Wullner U (2010) Methylation
regulates alpha-synuclein expression and is decreased in
Parkinson’s disease patients’ brains. J Neurosci 30:6355–6359

52. Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, Date H, Tsuji
S, Iwata A (2010) CpG demethylation enhances alpha-synuclein
expression and affects the pathogenesis of Parkinson’s disease.
PLoS One 5:e15522

53. Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C,
AdameA, Rockenstein E,Masliah E (2011) Alpha-synuclein seques-
ters Dnmt1 from the nucleus: a novel mechanism for epigenetic
alterations in Lewy body diseases. J Biol Chem 286:9031–9037

54. da Costa CA, Ancolio K, Checler F (2000) Wild-type but not
Parkinson’s disease-related ala-53 – > Thr mutant alpha-synuclein
protects neuronal cells from apoptotic stimuli. J Biol Chem
275:24065–24069

55. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002)
Dopamine-dependent neurotoxicity of alpha-synuclein: a mecha-
nism for selective neurodegeneration in Parkinson disease. Nat
Med 8:600–606

56. Leng Y, Chuang DM (2006) Endogenous alpha-synuclein is
induced by valproic acid through histone deacetylase inhibition
and participates in neuroprotection against glutamate-induced
excitotoxicity. J Neurosci 26:7502–7512

57. Jin H, Kanthasamy A, Ghosh A, Yang Y, Anantharam V,
Kanthasamy AG (2011) Alpha-synuclein negatively regulates
protein kinase C delta expression to suppress apoptosis in dopa-
minergic neurons by reducing p300 histone acetyltransferase
activity. J Neurosci 31:2035–2051

58. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001)
Kinetic stabilization of the alpha-synuclein protofibril by a
dopamine-alpha-synuclein adduct. Science 294:1346–1349

59. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE,
Lansbury PT Jr (2000) Acceleration of oligomerization, not
fibrillization, is a shared property of both alpha-synuclein muta-
tions linked to early-onset Parkinson’s disease: implications for
pathogenesis and therapy. Proc Natl Acad Sci U S A 97:571–
576

60. Goldberg MS, Lansbury PT Jr (2000) Is there a cause-and-effect
relationship between alpha-synuclein fibrillization and Parkinson’s
disease? Nat Cell Biol 2:E115–E119

61. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC,
Cotman CW, Glabe CG (2003) Common structure of soluble
amyloid oligomers implies common mechanism of pathogenesis.
Science 300:486–489

62. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and
neurodegeneration: separating the responsible protein aggregates
from the innocent bystanders. Annu Rev Neurosci 26:267–
298

63. Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M,
Giese A, Kretzschmar H, Hengerer B, Kostka M (2007) Different
species of alpha-synuclein oligomers induce calcium influx and
seeding. J Neurosci 27:9220–9232

64. Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y,
Mizuno H, Spencer B, Rockenstein E, Trejo M, Platoshyn O,
Yuan JX, Masliah E (2008) Mechanisms of hybrid oligomer
formation in the pathogenesis of combined Alzheimer’s and
Parkinson’s diseases. PLoS One 3:e3135

65. Giehm L, Svergun DI, Otzen DE, Vestergaard B (2011) Low-
resolution structure of a vesicle disrupting alpha-synuclein olig-
omer that accumulates during fibrillation. Proc Natl Acad Sci
U S A 108:3246–3251

66. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S,
Hetzer C, Loher T, Vilar M, Campioni S, Tzitzilonis C, Soragni
A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage
FH, Riek R (2011) In vivo demonstration that alpha-synuclein
oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199

67. Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs
physiologically as a helically folded tetramer that resists aggre-
gation. Nature 477:107–110

68. Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LTT,
Liao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, Ju S,
Cookson MR, Asturias FJ, Agar JN, Webb BN, Kang C, Ringe D,
Petsko GA, Pochapsky TC, Hoang QQ (2011) A soluble alpha-
synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci
U S A 108:17797–17802

69. Shimura H, SchlossmacherMG, Hattori N, FroschMP, Trockenbacher
A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001)
Ubiquitination of a new formof alpha-synuclein by parkin fromhuman
brain: implications for Parkinson’s disease. Science 293:263–269

70. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH,
Rodriguez M, Hirsch EC, Farrer M, Schapira AH, Halliday G (2010)
Missing pieces in the Parkinson’s disease puzzle. Nat Med
16:653–661

71. Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001)
Expression of A53T mutant but not wild-type alpha-synuclein in
PC12 cells induces alterations of the ubiquitin-dependent degra-
dation system, loss of dopamine release, and autophagic cell
death. J Neurosci 21:9549–9560

72. Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, Kehoe K,
Vink L, Choi P, Wolozin B, Farrer M, Hardy J, Cookson MR
(2002) Parkin protects against the toxicity associated with mutant
alpha-synuclein: proteasome dysfunction selectively affects cate-
cholaminergic neurons. Neuron 36:1007–1019

73. Tanaka Y, Engelender S, Igarashi S, Rao RK, Wanner T, Tanzi
RE, Sawa A, Dawson VL, Dawson TM, Ross CA (2001)
Inducible expression of mutant alpha-synuclein decreases protea-
some activity and increases sensitivity to mitochondria-dependent
apoptosis. Hum Mol Genet 10:919–926

74. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin
B (2003) Aggregated and monomeric alpha-synuclein bind to the
S6′ proteasomal protein and inhibit proteasomal function. J Biol
Chem 278:11753–11759

75. Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson
VL, Dawson TM, Ross CA (2005) Endoplasmic reticulum stress
and mitochondrial cell death pathways mediate A53T mutant
alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811

478 Mol Neurobiol (2013) 47:466–483



76. Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil
KB, Jensen PH (2004) Proteasomal inhibition by alpha-synuclein
filaments and oligomers. J Biol Chem 279:12924–12934

77. Emmanouilidou E, Stefanis L, Vekrellis K (2010) Cell-produced
alpha-synuclein oligomers are targeted to, and impair, the 26S
proteasome. Neurobiol Aging 31:953–968

78. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC
(2003) Alpha-synuclein is degraded by both autophagy and the
proteasome. J Biol Chem 278:25009–25013

79. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R,
Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene trans-
fer activates autophagy and ameliorates the neurodegenerative
pathology in alpha-synuclein models of Parkinson’s and Lewy
body diseases. J Neurosci 29:13578–13588

80. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type
alpha-synuclein is degraded by chaperone-mediated autophagy and
macroautophagy in neuronal cells. J Biol Chem 283:23542–23556

81. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A,
Gordon DE, Peden AA, Lichtenberg M, Menzies FM,
Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein
DC (2010) Alpha-synuclein impairs macroautophagy: implica-
tions for Parkinson’s disease. J Cell Biol 190:1023–1037

82. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D
(2004) Impaired degradation of mutant alpha-synuclein by
chaperone-mediated autophagy. Science 305:1292–1295

83. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli
J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A,
Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D,
Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks
chaperone-mediated autophagy. J Clin Invest 118:777–788

84. Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in
Parkinson’s disease. Biochim Biophys Acta 1792:643–650

85. Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-
linked oxidation in brain mitochondria by 1-methyl-4-phenyl-
pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-
1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

86. Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE (1987)
MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729

87. Devi L, Raghavendran V, Prabhu BM, Avadhani NG,
Anandatheerthavarada HK (2008) Mitochondrial import and ac-
cumulation of alpha-synuclein impair complex I in human dopa-
minergic neuronal cultures and Parkinson disease brain. J Biol
Chem 283:9089–9100

88. Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000)
Dityrosine cross-linking promotes formation of stable alpha-
synuclein polymers. Implication of nitrative and oxidative stress
in the pathogenesis of neurodegenerative synucleinopathies. J
Biol Chem 275:18344–18349

89. Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P,
Marsden CD (1987) Increased nigral iron content in postmortem
parkinsonian brain. Lancet 2:1219–1220

90. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P,
Marsden CD (1989) Increased nigral iron content and alterations
in other metal ions occurring in brain in Parkinson’s disease. J
Neurochem 52:1830–1836

91. Takanashi M, Mochizuki H, Yokomizo K, Hattori N, Mori H,
Yamamura Y, Mizuno Y (2001) Iron accumulation in the sub-
stantia nigra of autosomal recessive juvenile parkinsonism
(ARJP). Parkinsonism Relat Disord 7:311–314

92. Mochizuki H, Imai H, Endo K, Yokomizo K, Murata Y, Hattori
N, Mizuno Y (1994) Iron accumulation in the substantia nigra of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
hemiparkinsonian monkeys. Neurosci Lett 168:251–253

93. He Y, Thong PS, Lee T, Leong SK, Mao BY, Dong F, Watt F
(2003) Dopaminergic cell death precedes iron elevation in
MPTP-injected monkeys. Free Radic Biol Med 35:540–547

94. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D,
Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick
LM, Nunez MT, Garrick MD, Raisman-Vozari R, Hirsch EC
(2008) Divalent metal transporter 1 (DMT1) contributes to neuro-
degeneration in animal models of Parkinson’s disease. Proc Natl
Acad Sci U S A 105:18578–18583

95. Hirsch EC (2009) Iron transport in Parkinson’s disease.
Parkinsonism Relat Disord 15:S209–S211

96. Roth JA, Singleton S, Feng J, Garrick M, Paradkar PN (2010)
Parkin regulates metal transport via proteasomal degradation of
the 1B isoforms of divalent metal transporter 1. J Neurochem
113:454–464

97. Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M,
Wolozin B (2000) The A53T alpha-synuclein mutation increases
iron-dependent aggregation and toxicity. J Neurosci 20:6048–
6054

98. Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B
(2002) Magnesium inhibits spontaneous and iron-induced aggre-
gation of alpha-synuclein. J Biol Chem 277:16116–16123

99. Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A,
Wagner R, Glabe CG, Finger S, Heinzelmann U, Garidel P, Duan
W, Ross CA, Kretzschmar H, Giese A (2008) Single particle
characterization of iron-induced pore-forming alpha-synuclein
oligomers. J Biol Chem 283:10992–11003

100. Chew KC, Ang ET, Tai YK, Tsang F, Lo SQ, Ong E, Ong WY,
Shen HM, Lim KL, Dawson VL, Dawson TM, Soong TW (2011)
Enhanced autophagy from chronic toxicity of iron and mutant
A53T alpha-synuclein: implications for neuronal cell death in
Parkinson disease. J Biol Chem 286:33380–33389

101. Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD,
Wakefield LK, Morrison A, Lwin A, Colegial C, Allman JM,
Schiffmann R (2004) Neuropathology provides clues to the path-
ophysiology of Gaucher disease. Mol Genet Metab 82:192–207

102. Yap TL, Gruschus JM, Velayati A, Westbroek W, Goldin E,
Moaven N, Sidransky E, Lee JC (2011) Alpha-synuclein interacts
with glucocerebrosidase providing a molecular link between
Parkinson and Gaucher diseases. J Biol Chem 286:28080–28088

103. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell
GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher
disease glucocerebrosidase and α-synuclein form a bidirectional
pathogenic loop in synucleinopathies. Cell 146:37–52

104. Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM,
Passini MA, Grabowski GA, Schlossmacher MG, Sidman RL,
Cheng SH, Shihabuddin LS (2011) CNS expression of glucocer-
ebrosidase corrects alpha-synuclein pathology and memory in a
mouse model of Gaucher-related synucleinopathy. Proc Natl
Acad Sci U S A 108:12101–12106

105. Velayati A, Yu WH, Sidransky E (2010) The role of glucocere-
brosidase mutations in Parkinson disease and Lewy body disor-
ders. Curr Neurol Neurosci Rep 10:190–198

106. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B,
Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD
et al (1990) Grafts of fetal dopamine neurons survive and improve
motor function in Parkinson’s disease. Science 247:574–577

107. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao
R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D,
Fahn S (2001) Transplantation of embryonic dopamine neurons
for severe Parkinson’s disease. N Engl J Med 344:710–719

108. Hagell P, Piccini P, Bjorklund A, Brundin P, Rehncrona S,
Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks
DJ, Lindvall O (2002) Dyskinesias following neural transplanta-
tion in Parkinson’s disease. Nat Neurosci 5:627–628

109. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin
MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB
(2003) A double-blind controlled trial of bilateral fetal nigral
transplantation in Parkinson’s disease. Ann Neurol 54:403–414

Mol Neurobiol (2013) 47:466–483 479



110. Olanow CW, Gracies JM, Goetz CG, Stoessl AJ, Freeman T,
Kordower JH, Godbold J, Obeso JA (2009) Clinical pattern and
risk factors for dyskinesias following fetal nigral transplantation
in Parkinson’s disease: a double blind video-based analysis. Mov
Disord 24:336–343

111. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ,
Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H,
Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted
neurons in subjects with Parkinson’s disease suggest host-to-graft
disease propagation. Nat Med 14:501–503

112. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW
(2008) Lewy body-like pathology in long-term embryonic nigral
transplants in Parkinson’s disease. Nat Med 14:504–506

113. Frost B, Diamond MI (2010) Prion-like mechanisms in neurode-
generative diseases. Nat Rev Neurosci 11:155–159

114. Goedert M, Clavaguera F, Tolnay M (2010) The propagation of
prion-like protein inclusions in neurodegenerative diseases.
Trends Neurosci 33:317–325

115. Angot E, Steiner JA, Hansen C, Li JY, Brundin P (2010) Are
synucleinopathies prion-like disorders? Lancet Neurol 9:1128–
1138

116. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and
exocytosis of alpha-synuclein and its aggregates. J Neurosci
25:6016–6024

117. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD,
Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-
produced alpha-synuclein is secreted in a calcium-dependent
manner by exosomes and impacts neuronal survival. J Neurosci
30:6838–6851

118. Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR,
Trojanowski JQ, Lee VM (2009) Exogenous alpha-synuclein
fibrils seed the formation of Lewy body-like intracellular inclu-
sions in cultured cells. Proc Natl Acad Sci U S A 106:20051–
20056

119. Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M (2010) Seeded
aggregation and toxicity of alpha-synuclein and tau: cellular
models of neurodegenerative diseases. J Biol Chem 285:34885–
34898

120. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L,
Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and
neuronal cell death through neuron-to-neuron transmission of
alpha-synuclein. Proc Natl Acad Sci U S A 106:13010–13015

121. Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G,
Outeiro TF, Melki R, Kallunki P, Fog K, Li JY, Brundin P (2011)
Alpha-synuclein propagates from mouse brain to grafted dopa-
minergic neurons and seeds aggregation in cultured human cells.
J Clin Invest 121:715–725

122. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM,
Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011)
Exogenous alpha-synuclein fibrils induce Lewy body pathology
leading to synaptic dysfunction and neuron death. Neuron 72:57–
71

123. Mougenot AL, Nicot S, Bencsik A, Morignat E, Verchere J,
Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration
of a synucleinopathy in a transgenic mouse model. Neurobiol
Aging 33:2225–2228

124. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B,
Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-
synuclein activates microglia: a process leading to disease pro-
gression in Parkinson’s disease. FASEB J 19:533–542

125. Klegeris A, Giasson BI, Zhang H, Maguire J, Pelech S, McGeer
PL (2006) Alpha-synuclein and its disease-causing mutants in-
duce ICAM-1 and IL-6 in human astrocytes and astrocytoma
cells. FASEB J 20:2000–2008

126. Masliah E, Rockenstein E, Adame A, Alford M, Crews L,
Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T,

Games D, Schenk D (2005) Effects of alpha-synuclein immuni-
zation in a mouse model of Parkinson’s disease. Neuron 46:857–
868

127. Masliah E, Rockenstein E, Mante M, Crews L, Spencer B,
Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT, Mueller-
Steiner S, Seubert P, Barbour R, McConlogue L, Buttini M,
Games D, Schenk D (2011) Passive immunization reduces be-
havioral and neuropathological deficits in an alpha-synuclein
transgenic model of Lewy body disease. PLoS One 6:e19338

128. Fernagut PO, Chesselet MF (2004) Alpha-synuclein and trans-
genic mouse models. Neurobiol Dis 17:123–130

129. Kahle PJ (2008) Alpha-synucleinopathy models and human neu-
ropathology: similarities and differences. Acta Neuropathol
115:87–95

130. Crabtree DM, Zhang J (2012) Genetically engineered mouse
models of Parkinson’s disease. Brain Res Bull 88:13–32

131. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass
R, Blakely RD, Wong G (2003) Dopaminergic neuronal loss and
motor deficits in Caenorhabditis elegans overexpressing human
alpha-synuclein. J Neurochem 86:165–172

132. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H,
Tsunoda M, Mitani S, Iwatsubo T (2006) Familial Parkinson
mutant alpha-synuclein causes dopamine neuron dysfunction in
transgenic Caenorhabditis elegans. J Biol Chem 281:334–340

133. Cao P, Yuan Y, Pehek EA, Moise AR, Huang Y, Palczewski K,
Feng Z (2010) Alpha-synuclein disrupted dopamine homeostasis
leads to dopaminergic neuron degeneration in Caenorhabditis
elegans. PLoS One 5:e9312

134. Feany MB, Bender WW (2000) A Drosophila model of
Parkinson’s disease. Nature 404:394–398

135. Mizuno H, Fujikake N, Wada K, Nagai Y (2010) Alpha-
synuclein transgenic Drosophila as a model of Parkinson’s dis-
ease and related synucleinopathies. Parkinsons Dis 2011:212706

136. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto
M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic
loss and inclusion body formation in alpha-synuclein mice:
implications for neurodegenerative disorders. Science 287:1265–
1269

137. Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson
TM, Copeland NG, Jenkins NA, Price DL (2002) Human alpha-
synuclein-harboring familial Parkinson’s disease-linked Ala-53 –
> Thr mutation causes neurodegenerative disease with alpha-
synuclein aggregation in transgenic mice. Proc Natl Acad Sci U
S A 99:8968–8973

138. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins
NA, Price DL, Lee MK (2006) Parkinson’s disease alpha-
synuclein transgenic mice develop neuronal mitochondrial degen-
eration and cell death. J Neurosci 26:41–50

139. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee
VM (2002) Neuronal alpha-synucleinopathy with severe move-
ment disorder in mice expressing A53T human alpha-synuclein.
Neuron 34:521–533

140. Sotiriou E, Vassilatis DK, Vila M, Stefanis L (2010) Selective
noradrenergic vulnerability in alpha-synuclein transgenic mice.
Neurobiol Aging 31:2103–2114

141. Lim Y, Kehm VM, Lee EB, Soper JH, Li C, Trojanowski JQ, Lee
VM (2011) Alpha-syn suppression reverses synaptic and memory
defects in a mouse model of dementia with Lewy bodies. J
Neurosci 31:10076–10087

142. Zhou W, Freed CR (2004) Tyrosine-to-cysteine modification of
human alpha-synuclein enhances protein aggregation and cellular
toxicity. J Biol Chem 279:10128–10135

143. Zhou W, Milder JB, Freed CR (2008) Transgenic mice over-
expressing tyrosine-to-cysteine mutant human alpha-synuclein:
a progressive neurodegenerative model of diffuse Lewy body
disease. J Biol Chem 283:9863–9870

480 Mol Neurobiol (2013) 47:466–483



144. Emmer KL, Waxman EA, Covy JP, Giasson BI (2011) E46K
human alpha-synuclein transgenic mice develop Lewy-like and
tau pathology associated with age-dependent, detrimental motor
impairments. J Biol Chem 286:35104–35118

145. Liu CW, Giasson BI, Lewis KA, Lee VM, Demartino GN,
Thomas PJ (2005) A precipitating role for truncated alpha-
synuclein and the proteasome in alpha-synuclein aggregation:
implications for pathogenesis of Parkinson disease. J Biol
Chem 280:22670–22678

146. Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L,
Dawson TM, Jakala P, Hartmann T, Price DL, Lee MK (2005)
Aggregation promoting C-terminal truncation of alpha-synuclein
is a normal cellular process and is enhanced by the familial
Parkinson’s disease-linked mutations. Proc Natl Acad Sci U S
A 102:2162–2167

147. Crowther RA, Jakes R, Spillantini MG, Goedert M (1998)
Synthetic filaments assembled from C-terminally truncated
alpha-synuclein. FEBS Lett 436:309–312

148. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA
(2000) Fiber diffraction of synthetic alpha-synuclein filaments
shows amyloid-like cross-beta conformation. Proc Natl Acad
Sci U S A 97:4897–4902

149. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany
MB (2007) Aggregated alpha-synuclein mediates dopaminergic
neurotoxicity in vivo. J Neurosci 27:3338–3346

150. Tofaris GK, Garcia RP, Humby T, Lambourne SL, O’Connell M,
Ghetti B, Gossage H, Emson PC, Wilkinson LS, Goedert M,
Spillantini MG (2006) Pathological changes in dopaminergic
nerve cells of the substantia nigra and olfactory bulb in mice
transgenic for truncated human alpha-synuclein(1-120): implica-
tions for Lewy body disorders. J Neurosci 26:3942–3950

151. Garcia-Reitbock P, Anichtchik O, Bellucci A, Iovino M, Ballini
C, Fineberg E, Ghetti B, Della CL, Spano P, Tofaris GK, Goedert
M, Spillantini MG (2010) SNARE protein redistribution and
synaptic failure in a transgenic mouse model of Parkinson’s
disease. Brain 133:2032–2044

152. Wakamatsu M, Ishii A, Iwata S, Sakagami J, Ukai Y, Ono M,
Kanbe D, Muramatsu S, Kobayashi K, Iwatsubo T, Yoshimoto M
(2008) Selective loss of nigral dopamine neurons induced by
overexpression of truncated human alpha-synuclein in mice.
Neurobiol Aging 29:574–585

153. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der
Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N,
Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva
R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton
AB (2004) Cloning of the gene containing mutations that cause
PARK8-linked Parkinson’s disease. Neuron 44:595–600

154. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S,
Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer
RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-
Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK,
Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant
parkinsonism with pleomorphic pathology. Neuron 44:601–
607

155. Zabetian CP, Samii A, Mosley AD, Roberts JW, Leis BC, Yearout
D, Raskind WH, Griffith A (2005) A clinic-based study of the
LRRK2 gene in Parkinson disease yields new mutations.
Neurology 65:741–744

156. Li X, Tan YC, Poulose S, Olanow CW, Huang XY, Yue Z (2007)
Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase
activity that is altered in familial Parkinson’s disease R1441C/G
mutants. J Neurochem 103:238–247

157. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross
CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-
associated mutations in leucine-rich repeat kinase 2 augment
kinase activity. Proc Natl Acad Sci U S A 102:16842–16847

158. Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C,
Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng
JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H (2009) Leucine-
rich repeat kinase 2 regulates the progression of neuropathology
induced by Parkinson’s-disease-related mutant alpha-synuclein.
Neuron 64:807–827

159. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ
3rd, Shen J (2010) Loss of leucine-rich repeat kinase 2 causes
impairment of protein degradation pathways, accumulation of
alpha-synuclein, and apoptotic cell death in aged mice. Proc
Natl Acad Sci U S A 107:9879–9884

160. Klein RL, King MA, Hamby ME, Meyer EM (2002)
Dopaminergic cell loss induced by human A30P alpha-
synuclein gene transfer to the rat substantia nigra. Hum Gene
Ther 13:605–612

161. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE,
Muzyczka N, Mandel RJ, Bjorklund A (2002) Parkinson-like neuro-
degeneration induced by targeted overexpression of alpha-synuclein
in the nigrostriatal system. J Neurosci 22:2780–2791

162. Lo BC, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002)
Alpha-synucleinopathy and selective dopaminergic neuron loss
in a rat lentiviral-based model of Parkinson’s disease. Proc Natl
Acad Sci U S A 99:10813–10818

163. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H (2004)
Overexpression of alpha-synuclein in rat substantia nigra results
in loss of dopaminergic neurons, phosphorylation of alpha-
synuclein and activation of caspase-9: resemblance to pathoge-
netic changes in Parkinson’s disease. J Neurochem 91:451–
461

164. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ,
Bjorklund A (2003) Nigrostriatal alpha-synucleinopathy induced
by viral vector-mediated overexpression of human alpha-
synuclein: a new primate model of Parkinson’s disease. Proc
Natl Acad Sci U S A 100:2884–2889

165. Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T,
Muzyczka N, Mandel RJ, Baker H, Ridley RM, Kirik D
(2007) Long-term consequences of human alpha-synuclein
overexpression in the primate ventral midbrain. Brain 130:799–
815

166. Yasuda T, Nihira T, Ren YR, Cao XQ, Wada K, Setsuie R,
Kabuta T, Wada K, Hattori N, Mizuno Y, Mochizuki H (2009)
Effects of UCH-L1 on alpha-synuclein over-expression mouse
model of Parkinson’s disease. J Neurochem 108:932–944

167. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P,
Zolotukhin S, Reier PJ, Mandel RJ, Muzyczka N (2004)
Recombinant AAV viral vectors pseudotyped with viral capsids
from serotypes 1, 2, and 5 display differential efficiency and cell
tropism after delivery to different regions of the central nervous
system. Mol Ther 10:302–317

168. Mandel RJ, Manfredsson FP, Foust KD, Rising A, Reimsnider S,
Nash K, Burger C (2006) Recombinant adeno-associated viral
vectors as therapeutic agents to treat neurological disorders. Mol
Ther 13:463–483

169. Chung CY, Koprich JB, Siddiqi H, Isacson O (2009) Dynamic
changes in presynaptic and axonal transport proteins combined
with striatal neuroinflammation precede dopaminergic neuronal
loss in a rat model of AAV alpha-synucleinopathy. J Neurosci
29:3365–3373

170. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E,
Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-
synuclein is phosphorylated in synucleinopathy lesions. Nat
Cell Biol 4:160–164

171. Sugeno N, Takeda A, Hasegawa T, Kobayashi M, Kikuchi A,
Mori F, Wakabayashi K, Itoyama Y (2008) Serine 129 phosphor-
ylation of alpha-synuclein induces unfolded protein response-
mediated cell death. J Biol Chem 283:23179–23188

Mol Neurobiol (2013) 47:466–483 481



172. Chau KY, Ching HL, Schapira AH, Cooper JM (2009)
Relationship between alpha synuclein phosphorylation, protea-
somal inhibition and cell death: relevance to Parkinson’s disease
pathogenesis. J Neurochem 110:1005–1013

173. Chen L, Feany MB (2005) Alpha-synuclein phosphorylation
controls neurotoxicity and inclusion formation in a Drosophila
model of Parkinson disease. Nat Neurosci 8:657–663

174. Lee KW, Chen W, Junn E, Im JY, Grosso H, Sonsalla PK, Feng
X, Ray N, Fernandez JR, Chao Y, Masliah E, Voronkov M,
Braithwaite SP, Stock JB, Mouradian MM (2011) Enhanced
phosphatase activity attenuates alpha-synucleinopathy in a mouse
model. J Neurosci 31:6963–6971

175. Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G,
Manfredsson FP, Mandel RJ, Muzyczka N (2008) The phosphor-
ylation state of Ser-129 in human alpha-synuclein determines
neurodegeneration in a rat model of Parkinson disease. Proc
Natl Acad Sci U S A 105:763–768

176. Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D,
Abbas-Terki T, Iwatsubo T, Unser M, Aebischer P (2009)
Phosphorylation does not prompt, nor prevent, the formation of
alpha-synuclein toxic species in a rat model of Parkinson’s dis-
ease. Hum Mol Genet 18:872–887

177. McFarland NR, Fan Z, Xu K, Schwarzschild MA, Feany MB,
Hyman BT, McLean PJ (2009) Alpha-synuclein S129 phosphor-
ylation mutants do not alter nigrostriatal toxicity in a rat model of
Parkinson disease. J Neuropathol Exp Neurol 68:515–524

178. Yasuda T, Hayakawa H, Nihira T, Ren YR, Nakata Y, Nagai M,
Hattori N, Miyake K, Takada M, Shimada T, Mizuno Y,
Mochizuki H (2011) Parkin-mediated protection of dopami-
nergic neurons in a chronic MPTP-minipump mouse model
of Parkinson disease. J Neuropathol Exp Neurol 70:686–697

179. Lo BC, Schneider BL, Bauer M, Sajadi A, Brice A, Iwatsubo T,
Aebischer P (2004) Lentiviral vector delivery of parkin prevents
dopaminergic degeneration in an alpha-synuclein rat model of
Parkinson’s disease. Proc Natl Acad Sci U S A 101:17510–17515

180. Kim SJ, Sung JY, Um JW, Hattori N, Mizuno Y, Tanaka K, Paik
SR, Kim J, Chung KC (2003) Parkin cleaves intracellular alpha-
synuclein inclusions via the activation of calpain. J Biol Chem
278:41890–41899

181. Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B (2003) Parkin
suppresses dopaminergic neuron-selective neurotoxicity induced
by Pael-R in Drosophila. Neuron 37:911–924

182. Yamada M, Mizuno Y, Mochizuki H (2005) Parkin gene therapy
for alpha-synucleinopathy: a rat model of Parkinson’s disease.
Hum Gene Ther 16:262–270

183. Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross
CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the
alpha-synuclein-interacting protein, synphilin-1: implications for
Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150

184. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK,
Kleiderlein JJ, Margolis RL, Troncoso JC, Lanahan AA, Worley
PF, Dawson VL, Dawson TM, Ross CA (1999) Synphilin-1
associates with alpha-synuclein and promotes the formation of
cytosolic inclusions. Nat Genet 22:110–114

185. Lim KL, Chew KC, Tan JM, Wang C, Chung KK, Zhang Y,
Tanaka Y, Smith W, Engelender S, Ross CA, Dawson VL,
Dawson TM (2005) Parkin mediates nonclassical, proteasomal-
independent ubiquitination of synphilin-1: implications for Lewy
body formation. J Neurosci 25:2002–2009

186. Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM
(2004) Aggresomes formed by alpha-synuclein and synphilin-1
are cytoprotective. J Biol Chem 279:4625–4631

187. Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA,
Copeland NG, Troncoso JC, Pletnikov M, Dawson TM, Martin
LJ, Moran TH, Lee MK, Borchelt DR, Ross CA (2010)
Synphilin-1 attenuates neuronal degeneration in the A53T

alpha-synuclein transgenic mouse model. Hum Mol Genet
19:2087–2098

188. Dorval V, Fraser PE (2006) Small ubiquitin-like modifier
(SUMO) modification of natively unfolded proteins tau and
alpha-synuclein. J Biol Chem 281:9919–9924

189. Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH,
Bossis G, Urlaub H, Zweckstetter M, Kugler S, Melchior F, Bahr
M, Weishaupt JH (2011) Sumoylation inhibits alpha-synuclein
aggregation and toxicity. J Cell Biol 194:49–60

190. Hayashita-Kinoh H, YamadaM, Yokota T, Mizuno Y, Mochizuki H
(2006) Down-regulation of alpha-synuclein expression can rescue
dopaminergic cells from cell death in the substantia nigra of
Parkinson’s disease rat model. Biochem Biophys Res Commun
341:1088–1095

191. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM
(2009) Repression of alpha-synuclein expression and toxicity by
microRNA-7. Proc Natl Acad Sci U S A 106:13052–13057

192. Gan L, Mucke L (2008) Paths of convergence: sirtuins in aging
and neurodegeneration. Neuron 58:10–14

193. Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins–novel
therapeutic targets to treat age-associated diseases. Nat Rev Drug
Discov 7:841–853

194. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn
KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ,
Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG
(2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxic-
ity in models of Parkinson’s disease. Science 317:516–519

195. Dillin A, Kelly JW (2007) The yin-yang of sirtuins. Science
317:461–462

196. Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach
S, Di Monte DA, Uversky VN, Fink AL (2003) Nuclear locali-
zation of alpha-synuclein and its interaction with histones.
Biochemistry 42:8465–8471

197. Kontopoulos E, Parvin JD, Feany MB (2006) Alpha-synuclein
acts in the nucleus to inhibit histone acetylation and promote
neurotoxicity. Hum Mol Genet 15:3012–3023

198. Kazantsev AG, Thompson LM (2008) Therapeutic application of
histone deacetylase inhibitors for central nervous system disor-
ders. Nat Rev Drug Discov 7:854–868

199. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010)
Molecular and therapeutic potential and toxicity of valproic acid.
J Biomed Biotechnol 2010:479364

200. Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile
A (2010) Valproic acid is neuroprotective in the rotenone rat
model of Parkinson’s disease: involvement of alpha-synuclein.
Neurotox Res 17:130–141

201. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar
B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA,
Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC,
Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-
Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models.
Science 313:324–328

202. Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su
LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM,
Barlowe C, Lindquist S (2008) The Parkinson’s disease protein
alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl
Acad Sci U S A 105:145–150

203. Bove J, Martinez-Vicente M, Vila M (2011) Fighting neurode-
generation with rapamycin: mechanistic insights. Nat Rev
Neurosci 12:437–452

204. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S, Greene LA
(2010) Rapamycin protects against neuron death in in vitro and in
vivo models of Parkinson’s disease. J Neurosci 30:1166–1175

205. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A,
Boya P, Vila M (2010) Pathogenic lysosomal depletion in
Parkinson’s disease. J Neurosci 30:12535–12544

482 Mol Neurobiol (2013) 47:466–483



206. Crews L, Spencer B, Desplats P, Patrick C, Paulino A,
Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E
(2010) Selective molecular alterations in the autophagy pathway
in patients with Lewy body disease and in models of alpha-
synucleinopathy. PLoS One 5:e9313

207. Yasuda T, Mochizuki H (2010) Use of growth factors for the treat-
ment of Parkinson’s disease. Expert Rev Neurother 10:915–924

208. Lo BC, Deglon N, Pralong W, Aebischer P (2004) Lentiviral nigral
delivery of GDNF does not prevent neurodegeneration in a genetic
rat model of Parkinson’s disease. Neurobiol Dis 17:283–289

209. Decressac M, Ulusoy A, Mattsson B, Georgievska B, Romero-
Ramos M, Kirik D, Bjorklund A (2011) GDNF fails to exert
neuroprotection in a rat alpha-synuclein model of Parkinson’s
disease. Brain 134:2302–2311

Mol Neurobiol (2013) 47:466–483 483


	α-Synuclein and Neuronal Cell Death
	Abstract
	Introduction
	Neuronal Cell Death in PD Brains: Apoptotic or Non-apoptotic?
	Physiological Functions of αSyn
	Pathogenic Roles of αSyn in PD
	Prion-Like Cell-to-Cell Transmission of αSyn
	αSyn-Transgenic Animals
	Viral Vector-Mediated αSyn Overexpression Models
	Phosphorylation and Neurotoxicity of αSyn
	Prevention of αSyn-Induced Neuronal Cell Death/Dysfunction
	Conclusion
	References


