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A B S T R A C T

Lung cancer is a heterogeneous group of disorders that is now being subdivided into molecular
subtypes with dedicated targeted therapies. The MET receptor tyrosine kinase has been identified
as aberrantly overexpressed, potentially having activating mutations, and amplified in certain
subsets of lung cancers. The ligand hepatocyte growth factor (HGF) can also be overexpressed in
lung cancer or expressed in stroma, and both the MET receptor and the HGF ligand can be targets
for therapeutics, especially in lung cancer. Activation of MET leads to a plethora of biochemical and
biologic changes both in normal and cancerous cells. Preclinically, it has been shown that silencing
or inactivating MET leads to decreased viability of cancer cells. There are a number of compounds
against MET/HGF in clinical trials that have been shown to be active in lung cancers. This review
will summarize the biology of MET as well as its therapeutic inhibition in lung cancer.

J Clin Oncol 31:1089-1096. © 2013 by American Society of Clinical Oncology

INTRODUCTION

Cancer treatment is being revolutionized by target-
based therapeutic development. Cancers with onco-
genic addiction to multiple genetic and epigenetic
abnormalities have been well documented,1-6 with
inhibition of these abnormalities by monoclonal an-
tibodies and small-molecule inhibitors presenting
ideal clinical scenarios.7 Recently, lung cancer biol-
ogy and therapeutics have been revolutionized.
With the discovery of epidermal growth factor re-
ceptor (EGFR) mutations, echinoderm microtubule-
associated protein-like 4–anaplastic lymphoma
kinase (EML4-ALK) translocations, and the reactive
oxidant species 1 translocation, specific therapeutics
designed to target these mutations and transloca-
tions have proved to be effective.8-11 With the iden-
tification of molecular subsets in lung cancer, it is
imperative that further studies be performed as to
the various subclassifications.12 Among many tar-
gets, the MET receptor tyrosine kinase (RTK) and its
ligand hepatocyte growth factor (HGF) have been
identified as important targets in lung cancer. The
MET RTK and HGF are localized to chromosome
7q and can be overexpressed in lung cancer. The
MET gene can have activating mutations, especially
in the semaphorin (sema) domain and juxtamem-
brane (JM) domain, or be amplified.13,14

The protein product of the MET gene, HGF
receptor (HGFR), has been implicated in various
oncogenic processes including cell proliferation,
survival, invasion, motility, and metastasis. There
has been some headway in understanding mecha-
nisms responsible for HGF-mediated mitogenesis

and motogenesis. Phosphotidylinositol-3 kinase,
required for HGF-induced mitogenesis and mo-
togenesis, leads to decreased chemotaxis when in-
hibited.15 Paxillin, which is highly overexpressed in
non–small-cell lung cancer (NSCLC), shows in-
creased phosphorylation in the presence of activat-
ing HGFR mutations (T1010I and R988C).16 MET
can be activated either by binding to its ligand
HGF, overexpression/amplification, mutation, or
decreased degradation. Degradation of MET is
through the E3 ubiquitin ligase c-CBL. It has been
identified that c-CBL is decreased via loss of
heterozygosity and can sometimes be mutated in
lung cancer.17 Because there are various mecha-
nisms for MET activation, these have now been ther-
apeutically targeted in vitro, in xenograft models, in
vivo, and in clinical trials.

The silencing (via small interference RNA or
short hairpin RNA) or inactivation of MET via
micro-RNA has been shown to be important in vitro
for cell viability and downstream signaling, as well as
for biologic properties such as cell motility, cell mi-
gration, and invasion. In vitro cell line inhibition
and in vivo inhibition have been observed with
small-molecule and antibody inhibition. There is
also synergism of inhibition with cytotoxic, radia-
tion, and novel therapies for MET. We have also
shown in preclinical studies the synergistic effect of
epidermal growth factor (EGF) and HGF on prolif-
eration and downstream activation of signal trans-
duction, along with an additive effect on motility in
NSCLC cell lines. There is synergism of MET with
other RTKs such as EGFR and RON (Fig 1). In
particular, a combination of HGF and EGF tyrosine
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kinase inhibitors in our preclinical work showed synergistic apopto-
tic effect.18

STRUCTURE AND FUNCTION OF MET AND HGF

The human MET gene located at 7q21-q31 was discovered in 1984 as
a fusion partner with Tpr in the transforming fusion oncogene TPR-
MET in an immortalized osteosarcoma cell line.14 With activation of
MET, there is homodimerization and thus activation of kinase activity
(Fig 2).19 The MET precursor is post-translationally digested and
glycosylated, leading to the formation of a 50-kDa extracellular
�-chain and transmembrane 140-kDa �-chain. The �-chain has ho-
mologous structural domains shared with other proteins, including
the sema domain, plexin-semaphorin-integrin domain, four IPT
(immunoglobin-like fold shared by plexins and transcription factors)
repeats, a transmembrane domain, tyrosine kinase domain, and JM
domain. HGF is the natural and only ligand for MET activation. HGF
was identified initially as a growth factor for hepatocytes and as a
fibroblast-derived cell motility factor.20,21 HGF has six domains (an
N-terminal domain, four kringle domains, and a C-terminal domain).
HGF precursor secreted by mesenchymal cells is cleaved into
disulfide-linked heterodimer.22 It has been shown to bind with the
sema domain of MET.23,24

DYSREGULATION OF MET EXPRESSION

Regulation of MET activation in oncogenic addiction is different than
normal MET signaling. Elevated MET levels are sufficient for onco-
genic transformation, as shown by in vitro conversion of human
osteoblasts into osteosarcoma cells.25 NSCLC cell lines have shown

MET overexpression, with high expression of both MET and HGF as-
sociated with higher pathologic tumor stage and worse prognosis.26-28

Several factors influencing MET expression have been identified. Pen-
nacchietti et al29 have shown that hypoxic areas of tumors overexpress
MET, with hypoxic activation leading to transcription of the MET
proto-oncogene, higher MET levels, and amplification of HGF signal-
ing. On inhibition of MET expression, hypoxia-induced invasive
growth was prevented. The Wnt pathway has also been implicated in
controlling MET expression in colorectal cancer.30 PAX5 is a nuclear
transcription factor required for B-cell development. In lung cancer,
the PAX5 protein is strongly expressed in small-cell lung cancer
(SCLC), whereas PAX8 is expressed in NSCLC.31 PAX5 is frequently
coexpressed with MET or phosphorylated MET in intermediate-grade
and high-grade neuroendocrine tumors including atypical carcinoids,
SCLCs, and large-cell neuroendocrine tumors. The transcriptional
control of MET can be through PAX transcription factors.

HGF-DEPENDENT SIGNALING THROUGH ITS RECEPTOR

Binding of soluble HGF to cell surface–expressed HGFR leads to
receptor dimerization and tyrosine kinase activation with initiation of
signaling cascades. In normal signaling through receptor activation,
the transient signaling process is terminated by recruitment of CBL
(E3 ubiquitin ligase), which binds to Y1003, an important regulatory
site within the JM domain of HGFR, leading to ubiquitination of
HGFR with internalization into clathrin-coated vesicles. In oncogenic
ligand-independent signaling, HGFR containing the Y1003 mutation
is not ubiquitinated, leading to decreased lysosomal degradation, in-
creased stability, and continued oncogenic activation.32 MET receptor
activates a number of downstream signaling molecules that affect
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Fig 1. Synergism between MET/recepteur
d’origine nantais (RON) and epidermal growth
factor receptor (EFGR). mTOR, mammalian
target of rapamycin.
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pathways for cell cycle, cytoskeletal function, cell survival/antiapopto-
sis, cell proliferation and differentiation, and a number of other func-
tional pathways.33

MUTATIONS AND AMPLIFICATION OF MET IN LUNG CANCER

MET gene mutations with both somatic and germline variants
have been described in various human cancers, including he-
reditary papillary renal cell carcinoma (MET kinase mutations
were first identified in hereditary papillary renal cell carcinoma)
and thoracic malignancies.34 In lung cancer, MET gene muta-
tions are found both in extracellular and JM domains. The
extracellular sema domain, encoded by exon 2, is required for
receptor dimerization and activation.35 The presence of these
mutations has been clearly defined in lung cancer; however,
because of certain histologic and ethnic variation, their biologic
relevance still needs to be defined. JM domain mutations have
been characterized in SCLC tissue samples and cell lines
(S1040P, T992I, and R970C) and other cancers including mel-
anoma (N930S) and gastric carcinoma (P991S). Kinase activity
of HGFR is required for activation of downstream signaling
pathways. No kinase domain mutations have been identified in

lung cancer, but somatic and germline mutations have been
reported in papillary renal cell carcinoma and hereditary papil-
lary renal cell carcinoma, respectively.36,37

Although the EGFR tyrosine kinase inhibitors (TKIs) gefitinib
and erlotinib have shown activity in NSCLC, acquired resistance to
these agents ultimately leads to disease progression. In 2007, Lutter-
bach et al38 showed MET gene amplification and overexpression in
NSCLC cell lines. Later, Engelman et al39 showed that amplification of
MET causes gefitinib resistance by driving ERBB3 (human epidermal
growth factor receptor 3) -dependent activation of PI3K. Other stud-
ies showed a MET amplification rate of approximately 20% in patients
with acquired EGFR TKI resistance.40 As Pao and Chmielecki42 have
advocated, cells with MET amplification seem to undergo a kinase
switch under EGFR blockade and bank on MET signaling instead to
maintain activation of AKT through increased phosphorylation in the
presence of EGFR-TKIs. In concept, this form of acquired resistance to
EGFR blockade might be neutralized by simultaneous blockade of
MET. Multiple studies have reported primary MET amplification in
NSCLC adenocarcinoma ranging from 2% to 20%, particularly in
EGFR-TKI–naive patients.43-45 MET amplification leads to overex-
pression of the MET receptor and to activation of downstream signal
transduction. In particular, the PI3K/AKT pathway is activated.
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Fig 2. Targeting of the hepatocyte growth factor (HGF)/MET pathway. HGF-dependent activation of the MET pathway can be disrupted through extracellular
therapies that interfere with HGF binding to MET. Intracellular approaches can inhibit HGF-dependent and -independent mechanisms that lead to phosphorylation
of MET kinase substrates.
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Small-molecule inhibitors are effective against MET-amplified tu-
mors.46 A number of trials have studied MET/HGF, and these are
summarized in the next section (Table 1).

CURRENT CLINICAL ADVANCES IN LUNG CANCER
MET INHIBITION

MET Inhibitors for Preclinical Use

There has been extensive preclinical work done on MET inhibi-
tors, which has paved the way for further clinical trials with these
agents. K252a (Fermentek Biotechnology, Jerusalem, Israel), a stauro-
sporine analog isolated from Nocardiopsis soil fungi, showed inhibi-
tion of both the wild-type (WT) and the mutant (M1268T) MET
function at nanomolar concentrations.47 SU11274 (Sugen, Redwood
City, CA), a MET-specific kinase inhibitor, has demonstrated inhibi-

tion of HGF-induced motility and invasion of epithelial and carci-
noma cells.48 PHA-665752 (Pfizer, New York, NY), a MET-specific
kinase inhibitor, demonstrated suppression of both HGF-dependent
and constitutive MET phosphorylation.49 Furthermore, some tumors
harboring MET amplifications were noted to be highly sensitive to
treatment with PHA-665752. CGEN241 (Compugen, Tel Aviv, Is-
rael), a decoy MET (soluble truncated MET receptor), inhibits MET
activation mediated by both HGF-dependent and -independent
mechanisms, because decoys prevent both ligand binding and MET
receptor homodimerization. This agent was noted to be highly
efficient in inhibiting tumor growth and preventing metastasis in
animal models.50 OA-5D5 (Genentech, South San Francisco, CA), a
one-armed antibody, inhibits HGF-induced MET phosphorylation,
proliferation, and migration of U87-MG cells along with enhance-
ment of staurosporin-induced apoptosis in vitro. Local treatment

Table 1. Trials of Compounds Targeting MET/HGF

Compound Company Mechanism of Inhibition Phase of Study/Type of Tumor

Monoclonal anti-HGF antibodies
AMG 102 (rilotumumab) Amgen Human IgG2 MoAb against HGF Preclinical and phase I and II; active phase

I/Ib/II studies in multiple solid tumors
Ficlatuzumab (AV-299; formerly

SCH 900105)
AVEO Anti-HGF/c-MET antibody Preclinical and phase I and II; phase Ib/II

study of AV-299 in combination with
gefitinib in Asian patients with NSCLC

TAK 701 Millennium Humanized MoAb to HGF Preclinical and phase I-III; phase I in solid
tumors

Monoclonal anti-MET antibodies
MetMab (onartuzumab) Genentech Single-armed humanized modified 5D5

anti-MET antibody
Preclinical and phase I-III; combination

with erlotinib in NSCLC
DN30 Metheresis MoAb Preclinical; reduces MET activation in

GTL16 cells
CE-355621 Pfizer Monoclonal antibody that binds to the

extracellular domain of MET
Preclinical

OA-5D5 Genentech One-armed (OA) variant of the anti-c-
MET antibody 5D5

Preclinical; inhibits HGF-induced MET
phosphorylation, proliferation, and
migration of U87-MG cells in vitro

Small-molecule MET inhibitors
ARQ-197 (tivantinib) ArQule Non–ATP-competitive, MET-specific

inhibitor
Preclinical and phase I-III; tivantinib plus

erlotinib (MARQUEE and ATTENTION
trials)

XL184 (cabozantinib) Exelixis/Bristol-Myers Squibb Dual inhibitor of MET and VEGF Preclinical and phase I-III; phase III in
medullary thyroid cancer

Crizotinib Pfizer MET and ALK kinase inhibitor Preclinical and phase I-III
XL880 (foretinib) Exelixis/GlaxoSmithKline Tyrosine kinase (MET, VEGF, Flt-3, KIT,

PDGFR-�, and Tie-2) inhibitor
Preclinical and phase I and II; active phase

II study in renal papillary cell carcinoma
SGX523 SGX Pharmaceuticals ATP-competitive inhibitor of the MET

receptor tyrosine kinase
Preclinical and phase I; phase I in

advanced solid tumors
MGCD265 MethylGene MET and VEGF receptor tyrosine

kinase inhibitor
Preclinical and phase I and II; phase I/II

with erlotinib or docetaxel in patients
with advanced malignancies or NSCLC

AMG 208 Amgen Small-molecule inhibitor of MET (ligand
dependent and ligand independent)

Preclinical and phase I; phase I in
advanced solid tumors

PF-04217903 Pfizer ATP-competitive small molecule
inhibitor of MET kinase

Preclinical and phase I

BMS777607 Bristol-Myers Squibb Selective, orally available ATP-
competitive MET kinase inhibitor

Preclinical and phase I; phase I in advance
solid tumors

JNJ38877605 Johnson & Johnson Small-molecule inhibitor of MET Preclinical and phase I; phase I in advance
solid tumors

Decoy MET
CGEN241 Compugen Decoy MET (truncated form of the

c-MET receptor)
Preclinical and phase I

Abbreviations: ATTENTION, Asian Trial of Tivantinib Plus Erlotinib for NSCLC Without EGFR Mutation; HGF, hepatocyte growth factor; IgG, immunoglobulin G;
MARQUEE, MET Inhibitor ARQ 197 Plus Erlotinib Versus Erlotinib Plus Placebo in NSCLC; MoAb, monoclonal antibody; NSCLC, non–small-cell lung cancer; PDGFR,
platelet-derived growth factor receptor; VEGF, vascular endothelial growth factor.
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inhibited growth of intracranial U87-MG xenografts with evidence of
reduced angiogenesis.51

Clinical Data of MET Inhibitors in Lung Cancer

There are a number of clinical trials for MET and HGF that
have come to fruition recently. Emphasized in the next section are
some of the trials that have been preliminarily reported and some
that are ongoing. As more therapeutic responses are identified, we
believe that a number of trials will also be forthcoming against lung
cancer (Table 1).

THERAPEUTIC MONOCLONAL ANTIBODIES SPECIFIC
TO MET/HGF

AMG 102

AMG 102 (rilotumumab; Amgen, Thousand Oaks, CA) is a
humanized monoclonal antibody directed against HGF that interferes
with the interaction between HGF and MET, preventing MET activa-
tion.52 Immunoprecipitation experiments show that AMG 102 pref-
erentially binds to the mature, active form of HGF.53 AMG 102 has
shown enhancement of efficacy of temozolomide or docetaxel in
U87-MG cells and xenograft models.54 A phase Ib study of AMG 102
in combination with bevacizumab or motesanib in advanced solid
tumors showed acceptable toxicity, with treatment-emergent adverse
events among patients receiving AMG 102 plus bevacizumab being
generally mild and including fatigue (75%), nausea (58%), constipa-
tion (42%), and peripheral edema (42%).55 Currently, a phase I/II
study of AMG 102 and erlotinib in patients with recurrent or progres-
sive advanced-stage NSCLC is being conducted (NCT01233687).

Ficlatuzumab

Ficlatuzumab (AV-299; AVEO, Cambridge, MA), formerly
known as SCH 900105, discovered by AVEO through its Human
Response Platform, is a potent anti-HGF/MET antibody currently in
phase II development. Clinical data from phase I studies of ficlatu-
zumab indicated a favorable tolerability profile56,57 with good com-
binability with the EGFR inhibitors erlotinib and gefitinib and no
dose-limiting toxicities up to the highest dose tested (20 mg/kg). In
June 2011, patient enrollment was completed for an ongoing phase II
trial evaluating ficlatuzumab in combination with gefitinib as first-line
therapy for patients with WT and mutant EGFR NSCLC. Complete
data from this study are still pending.

MetMAb

Genentech developed a single-armed humanized modified 5D5
anti-MET antibody specifically designed as a monovalent antibody to
avoid agonistic activity that may occur when a bivalent antibody binds
two MET molecules.58 MetMAb (onartuzumab; Genentech-Roche)
binds to the sema domain of MET, inhibiting HGF from binding to
MET, thereby blocking ligand-induced MET dimerization and activa-
tion of the intracellular kinase domain,51 leading to inhibition of the
downstream signaling activity and cellular response.59 A phase Ib trial
established the safety and recommended dose (15 mg/kg every
3 weeks). 60

Efficacy data were recently presented for MetMAb from a global,
randomized, double-blind phase II study comparing MetMAb plus
erlotinib with placebo plus erlotinib in second- and third-line NSCLC.

One hundred twenty eight patients were randomly assigned between
two arms with 95%, 88%, and 75% tissue available for MET immu-
nohistochemistry (IHC), EGFR/KRAS mutational analysis, and MET
fluorescent in situ hybridization (FISH) analysis, respectively. In
MET-positive NSCLC, which constituted more than half the pop-
ulation (54%), MetMAb plus erlotinib resulted in clinically and
statistically improved progression-free survival and overall sur-
vival (OS), with OS benefit noted both in MET FISH � five copies
positive and FISH-negative/IHC 2�/3� patients (n � 65; hazard
ratio, 0.37; median OS, 12.6 months for MetMAb plus erlotinib v
4.6 months for placebo plus erlotinib; P � .002). The benefit
observed in FISH-negative/IHC-positive patients (P � .09) signi-
fied that IHC might be a more sensitive MetMab response predic-
tor.61 Recently, Catenacci at al62 showed a complete response for 2
years in a patient with chemotherapy-refractory metastatic gastric
cancer with high MET gene polysomy and pretreatment evidence
of autocrine production of HGF.

MET KINASE INHIBITORS

Tivantinib

Tivantinib (ARQ-197) is an oral, non–ATP-dependent selective
MET inhibitor (ArQule [Woburn, MA] in partnership with Daiichi
Sankyo [Tokyo, Japan] and Asian licensee Kyowa Hakko Kirin
[Tokyo, Japan]) developed for the potential treatment of solid tumors,
including NSCLC. Tivantinib inhibits MET autophosphorylation and
is highly selective for the inactive or unphosphorylated form of
MET.63 Exposure to tivantinib results in the inhibition of proliferation
of MET-expressing cancer cell lines as well as the induction of caspase-
dependent apoptosis in cell lines with constitutive MET activity.64

Tivantinib is metabolized rapidly by CYP2C19 and moderately by
CYP3A4. Patients with functionally inferior CYP2C19 genotype (*2/
*2,*2/*3*,*3/*3) are distinguished as poor metabolizers (PMs). Racial
disparity was noted with the rate of PMs to be approximately 20% in
Asians and 3% in whites in one Japanese study. CYP2C19 genotype
noticeably affected the exposure to tivantinib, with CYP2C19 PMs
showing higher exposure. This led to a 360-mg twice per day dose for
extensive metabolizers and a 240-mg twice per day dose for PMs.
Results from ARQ 197-209, a global randomized, placebo-controlled,
phase II clinical trial of erlotinib plus tivantinib versus erlotinib plus
placebo in previously treated, EGFR inhibitor–naive patients with
locally advanced or metastatic NSCLC, were recently presented. One
hundred sixty-seven patients were randomly assigned to erlotinib plus
tivantinib (84 patients) or erlotinib plus placebo (83 patients), with
some imbalances noted in treatment arms in NSCLC histology (ade-
nocarcinoma in 54% of patients receiving erlotinib plus tivantinib and
64% receiving erlotinib plus placebo) and predictive molecular geno-
types (EGFR mutations: 7% and 13% in tivantinib and placebo arms,
respectively; KRAS mutations: 12% and 6% in tivantinib and placebo
arms, respectively). Progression-free survival was prolonged with er-
lotinib plus tivantinib (hazard ratio, 0.81; 95% CI, 0.57 to 1.15;
P � .23). It was particularly impressive in patients with nonsquamous
histology, EGFR WT status, and KRAS mutations. Safety analysis
revealed no major differences between arms with adverse events.65 A
follow-up phase III trial has been initiated. Nine hundred eighty-
eight patients are planned to be stratified by the number of prior
therapies, sex, smoking history, and EGFR and KRAS mutation
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status. This study is powered to detect a significant improvement in
median OS in the erlotinib plus tivantinib arm over erlotinib
alone.66 A similar study is under way in Osaka, Japan (sponsored by
Kyowa Hakko Kirin), with a primary objective of determining
whether the combination regimen of tivantinib with erlotinib will
improve OS in EGFR WT patients with locally advanced or meta-
static nonsquamous NSCLC (NCT01377376).

Cabozantinib

Cabozantinib (XL184/BMS-907351; Exelixis [South San Fran-
cisco, CA]/Bristol-Myers Squibb [Princeton, NJ]) is a potent inhibitor
of MET and vascular endothelial growth factor receptor 2 (VEGFR2)
that also inhibits RET, KIT, AXL, and FLT3.67 Cabozantinib has been
shown to inhibit endothelial cell tubule formation, cellular migration
and invasion, tumor cell proliferation in a variety of tumor types in
vitro, and MET/VEGFR2 phosphorylation in vivo. It also disrupts the
tumor vasculature, leading to tumor and endothelial cell death in a
dose-dependent fashion. In a phase II study in men with metastatic
castrate-resistant prostate cancer with up to one previous chemother-
apy treatment, cabozantinib resulted in tumor response, partial or
complete resolution of lesions on bone scan, and symptom relief.68

Yakes et al67 showed that treatment with cabozantinib did not result in
any increase in lung tumor burden in an experimental model of
metastasis, which has been observed with other vascular endothelial
growth factor signaling inhibitors that do not target the MET pathway.
Data from a phase Ib/II study of cabozantinib with and without
erlotinib in patients with NSCLC were recently presented with the
primary objectives being tolerability of erlotinib with cabozantinib,
maximum-tolerated dose, and pharmacokinetic and pharmacody-
namics parameters. Combination treatment resulted in a substantial
decrease in pMET and pERK. There was no evidence of drug-drug
interaction, with encouraging clinical activity of cabozantinib plus
erlotinib in a largely erlotinib-pretreated population, including pa-
tients with EGFRT790M mutation and MET amplification. Interim
results of a phase II randomized discontinuation trial in patients with
advanced solid tumors were recently presented. All eligible patients
had progressive measurable disease with or without bone metastasis.
Patients received cabozantinib 100 mg daily over a 12-week lead-in
stage. With nine different types of solid tumors, 398 of 483 patients (60
patients with NSCLC and 21 patients with SCLC) were evaluated.
Forty percent of patients with NSCLC were on study treatment for
more than 3 months. Results from the NSCLC cohort (n � 60)
showed partial response in six patients (five with adenocarcinoma and
one with squamous histology) with RECIST response (� 30%) in 11
patients. Overall, 39 partial responses and one complete response were
observed in 490 patients. Tolerability profile was consistent with that
of other TKIs.69

Crizotinib

The anaplastic lymphoma kinase (ALK) became a potential
therapeutic target after the discovery of the fusion protein
EML4-ALK in a small Japanese study.70 Recently, the US Food and
Drug Administration approved crizotinib (PF-2341066; Pfizer) for
patients with NSCLC harboring EML4-ALK gene rearrangement.
Interestingly, crizotinib was initially developed by Pfizer as an
orally bioavailable, ATP-competitive, small-molecule MET inhib-
itor showing good efficacy in preclinical71,72 and phase I studies.73 Zou
et al71 showed that crizotinib potently inhibited HGF-stimulated en-

dothelial cell survival and invasion, as well as serum-stimulated tubu-
logenesis in vitro. Crizotinib showed dose-dependent antitumor
efficacy with strong correlation to inhibition of MET phosphorylation
in vivo.71 MET signaling inhibition by crizotinib in MET-amplified
lung cancer cell lines has been shown to induce apoptosis along with
inhibition of AKT and extracellular signal–regulated kinase phos-
phorylation.74 Recently, there have been case reports of rapid dura-
ble clinical response with crizotinib in patients with NSCLC with
absence of ALK rearrangement and de novo MET amplification.
This clinical benefit most likely is attributable to the MET-
inhibitory property of crizotinib.46 Similar results were shown in
another case report study showing rapid radiographic and clinical
improvement after treatment with crizotinib in a MET-amplified
recurrent glioblastoma multiforme.75

Foretinib

Foretinib (XL880, EXEL-2880, GSK1363089; Exelixis/
GlaxoSmithKline [Philadelphia, PA]) is a small-molecule kinase in-
hibitor that targets members of the HGF and vascular endothelial
growth factor RTK families (dual VEGFR2/MET inhibitor). It also has
inhibitory activity toward Flt-3, KIT, PDGFR-�, and Tie-2 but at
significantly higher concentrations; therefore, it is not a potent inhib-
itor of these receptors particularly in vivo and in phenotypic assays.
Three phase I studies have been completed studying the maximum-
tolerated dose and bioavailability.76 Two phase II studies have been
completed in patients with head and neck cancer and gastric cancer.
There is currently a randomized phase I/II trial looking at adverse
effects of erlotinib with or without the MET/VEGFR2 inhibitor
foretinib. This trial is designed to investigate how well foretinib works
in treating patients with locally advanced or metastatic NSCLC who
have not responded to previous chemotherapy.

SUMMARY

There have been extensive preclinical/clinical studies performed to
elucidate the mechanism of the MET/HGF inhibitory pathway in lung
cancer and other solid malignancies. However, questions still remain
regarding how to best use this pathway in NSCLC. We must deter-
mine, either on a clinical or molecular basis, the subset of patients with
NSCLC who will benefit from MET inhibition therapy, as a single
agent or in combination. Looking at MET amplification, mutation,
and overexpression, as well as HGF levels in the context of EGFR and
KRAS mutations, is important in determining the right cohort for
these agents. Standardization and optimization of MET amplification/
expression by FISH, chromogenic in situ hybridization, or IHC is
going to be decisive in future clinical developments. It is crucial to
develop a companion diagnostic, along with predictive biomarkers,
for anti-MET/HGF therapeutics.

Furthermore, we must determine whether these agents should
be used as first-line or second-line therapy and in combination or
alone. Clinical trials with MetMab and tivantinib have been
used in a primary setting with some emerging data regarding use of
these agents either alone or in combination in EGFR-TKI–naive
patients with NSCLC. However, cabozantinib has been used in the
secondary setting. Ultimately, one could also envision using these
inhibitors in earlier stages, as well as in combination with radia-
tion therapies.
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Looking at our experience with other TKIs in NSCLC, ac-
quired resistance to these agents seems to be an unavoidable
consequence. We still have to investigate this issue and make
concerted efforts toward identifying potential mechanisms in-
volved in resistance. With our deeper understanding of tumor
biology and molecular pathways, evaluating rebiopsy specimens
can be a valid option for finding areas of resistant disease in
tumor samples and discovering new molecular mutations and
treating them accordingly.
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