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Abstract
Purpose—MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene
expression, are involved in numerous physiologic processes in normal and malignant cells. Our in
vivo study measured miRNA and gene expression changes in human blood cells in response to
ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation
exposure.

Methods and Materials—Blood from 8 radiotherapy patients in complete remission 1 or 2 was
collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both
miRNA and gene expression changes were measured by means of quantitative polymerase chain
reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional
scaling, class prediction, and gene ontology analysis were performed to investigate the potential of
miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the
radiation response.

Results—The expression levels of 45 miRNAs were statistically significantly upregulated 4
hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and
irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling.
Out of 223 differentially expressed genes, 37 were both down-regulated and predicted targets of
the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can
predict the class membership of a sample with unknown irradiation status, with accuracies of
100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene
involvement in biologic processes such as hemopoiesis and the immune response are increased
after irradiation, whereas metabolic processes are underrepresented among all differentially
expressed genes and the genes controlled by miRNAs.

Conclusions—Exposure to ionizing radiation leads to the upregulation of the expression of a
considerable proportion of the human miRNAome of peripheral blood cells. These miRNA
expression signatures can be used as biomarkers of radiation exposure.
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INTRODUCTION
MicroRNAs (miRNAs) are a class of small noncoding RNAs that have been identified as
potent regulators of gene expression. Sequencing and functional analysis show that miRNAs
control the expression of more than 50% of human genes by mRNA destabilization and
translational repression (1). At the same time, in vivo and in vitro studies have found that
miRNA control is essential for the proper execution of many processes active in normal
cells, including cell metabolism, cell differentiation, and cell signaling (2). Moreover,
numerous analyses of miRNA expression signatures in tumors have found that they are
highly specific and can be correlated with tumor state and tumor prognosis (3, 4). miRNA
dysregulation has also been identified in many other diseases (5–9).

Recently, it has been shown that ionizing radiation can induce changes in miRNA
expression profiles in normal human fibroblasts (10) and immortalized cell lines (11, 12).
Inasmuch as exposure to medical sources of radiation (13, 14) or to radiation emitted by an
improvised radiologic or nuclear device (15) poses a health risk to the exposed population,
we investigated to what degree human blood miRNA signatures can be used as biomarkers
for radiation exposure.

In the present work we studied the effects of ionizing radiation on the expression levels of
miRNAs and their predicted target genes in blood cells of patients exposed to ionizing
radiation. We found that radiation induces significant changes in both miRNA and gene
expression signatures. Importantly, despite the individual differences between the patients,
we found 45 miRNAs that were statistically significantly upregulated 4 hours after treatment
with 1.25 Gy x-rays, compared with pretreatment control samples. The expression of 27 of
these miRNAs was induced by radiation treatment in all patients.

We used these miRNA signatures to develop class prediction classifiers for samples with
unknown radiation status. We also used the miRNA target genes with downregulated
expression levels after irradiation to acquire more knowledge of the potential functional
involvement of miRNAs in the radiation response.

METHODS AND MATERIALS
Radiotherapy patients

Eight patients undergoing total body irradiation (TBI) at the Memorial Sloan-Kettering
Cancer Center in preparation for stem cell transplantation were recruited for this study. All
experiments had been approved by the institutional review boards of Memorial Sloan-
Kettering Cancer Center and Columbia University Medical Center and conformed to the
principles of the Declaration of Helsinki; all patients had declared their informed consent to
participate in the study. The patients received 1.25 Gy x-ray TBI, delivered as a single
fraction. Peripheral blood (2.5 mL) was collected before and 4 hours after irradiation.

RNA isolation
Blood from radiotherapy patients was drawn directly into PAX-gene blood RNA tubes
(PreAnalytiX GmbH, Hombrechtikon, Switzerland) for RNA extraction. The PAXgene
Blood RNA Kit (Qiagen Inc., Valencia, CA) was used for RNA extraction according to the
manufacturer’s instructions with the exception of the dilution of buffers BR3 and BR4.
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These buffers were mixed with ethanol at a proportion of 1:1 before use because this allows
a more efficient isolation of small RNA species. RNA concentration was measured on a
NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA), and RNA
integrity was determined using the Agilent 2100 Bioanalyzer microelectrophoretic system
(Agilent Technologies, Santa Clara, CA).

Quantitative reverse-transcription polymerase chain reaction for miRNA expression
To determine miRNA expression in the patients’ blood samples, 50 ng total RNA was
reverse-transcribed with miRNA specific primers, and the resultant cDNA was loaded on a
384-well low-density TaqMan human miRNA expression array (array A) for quantitative
real-time polymerase chain reaction (PCR) according to the manufacturer’s instructions
(Applied Biosystems, Foster City, CA).

Analysis of miRNA expression data
The real-time PCR data were imported into RQ Manager v. 1.2 (Applied Biosystems) to
determine CT values. The data were then exported to Excel (Microsoft Corporation,
Redmond, WA) for preprocessing, which included the removal of the miRNAs that did not
have detectable expression levels (CT = 40) in ≥50% of both the treatment samples (samples
obtained after radiation therapy) and the control samples (samples obtained before radiation
therapy). This way of preprocessing ensures that miRNAs that are not expressed in at least
half of both the control and the treatment samples are excluded from the analysis, whereas
miRNAs that are consistently expressed in only one of the two conditions (either before or
after radiation therapy) are retained. The preprocessed data were then imported into
RealTime StatMiner v. 4.1 software (Integromics, Madrid, Spain) for normalization and
statistical testing. The average CT values of two endogenous control small nucleolar RNAs
included on the arrays, RNU6B and RNU48, were used for normalization of the expression
data. A t test for paired samples with false discovery rate (FDR) adjustment according to the
method of Benjamini and Hochberg (16) was used to determine miRNAs that had
statistically significantly changed expression levels after radiation therapy. miRNAs with an
FDR <0.08 were considered to be differentially expressed.

Microarray hybridization for gene expression
Whole genome microarrays (G4112A; Agilent Technologies) containing 44,794 probes
were used for microarray hybridization according to the manufacturer’s instructions. Before
labeling for microarray analysis, α- and β-globin mRNA was removed from the RNA
samples using the GLOBIN clear kit (Ambion Inc., Austin, TX). The RNA was labeled with
the One-Color Quick Amp labeling kit (Agilent Technologies). The microarray slides were
scanned on an Agilent G2404B Scanner. The scanned images were extracted with Feature
Extraction v. 9.1 software (Agilent Technologies) using default parameters for background
correction and flagging of nonuniform outliers.

Analysis of gene expression data
Background-corrected fluorescence intensity values were imported into BRB-ArrayTools v.
3.8.0 (16), log2-transformed, and normalized to the global array median. Nonuniform
outliers, features not significantly above background intensity in ≥50% of the samples, and
features changing ≤1.5-fold in ≥20% of the samples were filtered out. A random-variance t
test was used to determine genes differentially expressed between treatment and control
samples (17). Genes with p values of <0.001 (which corresponded to an FDR of <0.035)
were considered statistically significant. The microarray data were deposited in the gene
expression omnibus database and can be found under accession number GSE23393 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23393).
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Hierarchic clustering and multidimensional scaling
BRB-ArrayTools v. 4.1.0 software (18) was used for hierarchic clustering and
multidimensional scaling (MDS) of the miRNA expression data. Both clustering methods
are based on −ΔCT values. Specifically for this analysis, we standardized the average of the
array means of any two pairs of arrays corresponding to blood samples from the same
patient before and after irradiation to the global array mean across all samples. A Euclidean
distance metric and average-linkage clustering were used for hierarchic clustering. For
MDS, a Euclidean distance metric was used to compute a distance matrix, and the first three
principal components of miRNA expression were used as the axes for the MDS plot.

Class prediction
BRB-ArrayTools v. 4.1.0 (18) was also used to perform miRNA-based class prediction
using the ΔCT values of the differentially expressed miRNAs. The prediction methods used
were compound covariate predictor, diagonal linear discriminant analysis, K-nearest
neighbors (for K = 1 and 3), nearest centroid, and support vector machines. The ΔCT values
were paired among samples collected from the same patient (i.e., the ability of the classifier
to correctly assign each member of a pair to the correct irradiation condition, before or after
radiation therapy, was tested). In addition, we constructed unpaired classifiers; these
classifiers were normalized to the global array means within groups (before and after
radiation therapy) and used the same prediction methods as the paired classifiers. The
robustness of each predictor was assessed by the leave-one-out cross-validated
misclassification error rate with 10,000 random permutations, which produced error p values
of less than 0.02 for all predictors.

Gene ontology analysis
Predicted target genes of the differentially expressed miRNAs were determined in the
downregulated gene pool, obtained by the gene expression analysis, using
TargetScanHuman v. 5.1 (19). Targets included both phylogenetically conserved and poorly
conserved targets with context scores of ≤−0.3, corresponding to log2 gene expression ratios
of ≤−0.3, as determined by multivariate linear regression fitting of gene expression
microarray data (19). The differentially expressed downregulated genes that were predicted
targets of the differentially expressed miRNAs, and all differentially expressed genes, were
uploaded to the PANTHER GO database v. 7.0 (20), which classifies genes according to GO
terms, using published scientific experimental evidence. Gene set enrichment analysis was
performed for the biologic process category, with all genes expressed above fluorescence
background level serving as the reference set.

RESULTS
Patient characteristics, irradiation conditions, and blood collection

All patients were scheduled to receive myeloablative fractionated radiation before
autologous or allogenic stem cell transplants. They were in complete remission 1 or 2 at the
time of irradiation and had blood cell counts within the normal limits. No patient had been
treated with radiation before. All patients had a history of leukemia or lymphoma, and
chemotherapy treatment regimens had been completed more than a month before TBI (Table
1). Blood was collected directly in fixing solution before and 4 hours after radiation
treatment with the first fraction of 1.25 Gy x-rays. This method of blood collection preserves
the in vivo miRNA expression signatures in the collected samples.
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miRNA expression analysis and clustering
A total of 195 miRNAs (out of 377 on the array) were expressed in the patient blood cells,
using our filtering criteria. The PCR data were subjected to thorough statistical analysis,
which included four steps: (1) normalization of the expression data for all arrays, (2)
calculation of the differences in ΔCT values between samples collected before and after
radiation treatment for all patients, (3) comparison of the ΔCT difference scores and
calculation of p values by means of a paired t test, and (4) calculation of the FDR for the
results from Step 3.

Normalization is a crucial issue in gene (including miRNA) expression studies, and different
normalization methods can lead to different results and conclusions (21, 22). For this reason,
we evaluated multiple normalization methods. These include normalization with any of the
endogenous control genes supplied with the array (RNU6B, RNU44, and RNU48) and
combinations thereof, normalization with any of the five most stably expressed miRNAs
(those that had the lowest standard deviations between CT values across arrays: hsa-
miR-331-3p, miR-494, miR-320, miR-532-3p, and miR-191) and combinations thereof, and
normalization to the RNA loading amount. All tested normalization methods produced
similar results. Finally, we chose the two most stably expressed endogenous controls for
normalization because they are better applicable to cross-comparison analyses between
different experiments. A total of 94 miRNAs with p values <0.05 were identified. The
expressed miRNAs were subjected to an additional FDR analysis to account for multiple
comparisons. Only miRNAs with an FDR <0.08 were considered to be differentially
expressed, which means that only 8% of the miRNAs declared as differentially expressed
were expected to be false positives. Moreover, we selected only miRNAs with an absolute
fold change of more than two. Applying these criteria, we identified 45 differentially
expressed miRNAs. These miRNAs and their predicted target genes among the statistically
significantly downregulated genes (see below) are shown in Table 2. Notably, all detected
differentially expressed miRNAs had increased expression levels after irradiation. We did
not detect any statistically significantly downregulated miRNAs, although we found
downregulated miRNAs in every patient after irradiation. Very importantly, 27 of these
miRNAs were upregulated in all patients. This number increased to 39 when 1 patient with a
distinctively different miRNA expression profile was removed from the analysis.
Normalized expression levels of all expressed miRNAs are shown in Table E1.

The different samples were subjected to hierarchic clustering (Fig. 1A). This clustering
method grouped the patient samples according to irradiation condition, which confirms that
despite individual differences between patients, radiation induces similar changes in the
expression levels of specific miRNAs. We also performed an MDS analysis, which is a
classification method that visualizes global differences between samples (Fig. 1B). The
results show that irradiated and nonirradiated samples occupy separate subspaces in the
three-dimensional graphic representation. This demonstrates again the significance of the
differences of the miRNA signatures between the two conditions. Clustering results,
including all expressed miRNAs, regardless of statistical significance, are shown in Fig. E1.

Gene expression analysis
Out of the 10,009 features that were expressed above background intensity and that fulfilled
the filtering criteria, as described in Methods and Materials, 8,763 were unique. Of these,
275 had a p value <0.001 comparing preirradiation expression levels with expression 4
hours after TBI; this corresponds to an FDR of <0.035, calculated according to the method
of Benjamini and Hochberg (16) (Table E2). These genes were considered to be
differentially expressed. Out of the differentially expressed genes, 223 could be assigned a
HUGO gene symbol (http://www.genenames.org) (23).
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Class prediction
The miRNA ΔCT values were used to build class prediction classifiers to test to what degree
class prediction is able to indicate the irradiation status of patients’ blood samples based on
their miRNA expression profiles. The leave-one-out cross-validation method was used to
test the robustness of the classifiers.

Two types of classifiers were constructed. One contained all 45 differentially expressed
miRNAs. For the other classifier, only the six differentially expressed miRNAs that showed
an expression fold change of >5 after irradiation (hsa-miR-143, 570, 548d-3p, 376a, 590-5p,
and 190) were used.

Both paired and unpaired classifiers were constructed. A pair consisted of the pre- and
postexposure samples from the same patient. Both types of paired classifiers performed with
an accuracy of 100% in all classification methods used (i.e., they correctly determined the
irradiation status before or after radiation therapy of all paired samples).

The unpaired classifiers were normalized to the global array means within groups (before
and after radiation therapy) to improve the performance of the classifiers and minimize the
effect of outlier samples. The classifiers containing all 45 upregulated miRNAs performed
with an accuracy of 100% in all classification methods used. However, the classifiers built
from the six miRNAs with the highest fold changes had accuracies between 81% and 88%,
depending on the classification method used.

We did not build gene expression–based classifiers in this study because a larger study
submitted for publication describes the development of such classifiers (24).

Prediction of miRNA target genes
A two-step procedure was used for miRNA target determination: (1) identification of the
potential miRNA target genes by gene expression analysis and (2) software-assisted
identification of the miRNA targets in the pool of downregulated genes. The 98 genes found
to be statistically significantly downregulated in our gene expression analysis were selected
as potential miRNA targets. To determine the targets of the 45 upregulated miRNAs in this
gene pool, we used TargetScanHuman v. 5.1 software (2, 19), which uses sequence- and
motif-based algorithms for miRNA target prediction. Only high-probability target genes
with context scores of ≤−0.3 and at least one conserved or poorly conserved miRNA target
site, as defined by phylogenetic tree analysis, were selected. According to this analysis, 37
downregulated genes were predicted targets of the differentially expressed miRNAs (Tables
2 and 3). These genes were used for the subsequent gene ontology (GO) analysis.

Gene ontology analysis of miRNA and gene expression
The goal of the GO analysis is to predict the effect of the upregulated miRNAs on cell
functions. The downregulated genes predicted to be targeted by the radiation-induced
miRNAs, and all differentially expressed genes, were uploaded to the PANTHER v. 7.0 GO
database (20), and gene-set enrichment analysis was performed in the biologic process
category. An overview of the biologic processes overrepresented or underrepresented in the
pools of the differentially expressed genes and the genes targeted by miRNAs, compared
with all genes expressed above fluorescence background level, is given in Table 4. Our
results predict that miRNAs could control about 30% of the biologic processes that are
regulated by the products of the radiation-induced genes. Specifically, the analysis suggests
that TBI results in an increased miRNA control of genes involved in hemopoiesis and the
immune response, whereas metabolic processes are underrepresented among the genes
controlled by miRNAs (Fig. 2). A GO analysis of the genes differentially expressed upon
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radiation exposure showed that processes such as the immune response, signal transduction,
the response to stress, the cell cycle, apoptosis, and hemopoiesis are enriched in these genes,
but, as for the miRNA target analysis, the differentially expressed genes are
underrepresented in metabolic processes, compared with the reference gene set (Fig. E2).

DISCUSSION
Recently, high-throughput assays have been successfully used for radiation biodosimetry.
The power of gene expression profiles to discriminate irradiated from nonirradiated samples
and low-dose exposure from high-dose exposure has been demonstrated in ex vivo– and in
vivo–irradiated blood samples (25–27). In parallel, miRNA-related studies have shown that
miRNA expression signatures define cell functions and cell types with high precision and in
some cases better than gene expression. miRNA expression profiles correctly classified
poorly differentiated tumors (28), different types of breast cancers (29), lung cancers (30),
and many other diseases, including those not related to cancer (5). Moreover, ionizing
radiation changes the miRNA expression profiles of normal human fibroblasts (10) and
immortalized cell lines (11, 12). However, to date no study has characterized miRNA
expression signatures in humans irradiated in vivo as far as we are aware. Given that blood
cells are among the most radiation-sensitive cells in the human body, we investigated the
potential of radiation-induced miRNA expression profiles in peripheral blood cells to
provide high-resolution biomarkers for radiation exposure. Such biomarkers could be used
to monitor the presence and duration of radiation effects in individuals exposed to ionizing
radiation in therapeutic or diagnostic settings.

We measured miRNA expression profiles in blood cells from 8 patients in complete
remission 1 or 2. We found that 45 miRNAs (23% of all miRNAs detected in blood cells)
showed statistically significant changes in expression levels 4 hours after irradiation with a
dose of 1.25 Gy x-rays when compared with preirradiation control samples. This result
indicates an extensive shift in miRNA expression, with important consequences for cell
functions. Notably, all differentially expressed miRNAs showed increased expression levels
after irradiation. We did detect underexpressed miRNAs in every patient, but they were not
statistically significantly downregulated across all patients. The predominance of
upregulated miRNAs could be a characteristic of the early radiation response in blood cells.
Importantly, 27 of the 45 radiation-induced miRNAs were upregulated in every patient.
When 1 patient who had a markedly different miRNA expression profile from those of the
other patients was excluded from the analysis, the number of miRNAs upregulated across all
patients increased to 39. The high consistency of miRNA expression changes in human
blood cells across individuals emphasizes the great value of miRNA signatures as radiation
biomarkers. Although we identified a large number of radiation-induced miRNAs, a
limitation of our study is that we do not have results for different doses and time points after
irradiation because of the difficulties associated with obtaining human samples. Another
limitation is the relatively small number of patients we studied. This limits the statistical
power of our analysis and might explain why we did not detect any statistically significantly
downregulated miRNAs. It also limits the data available for developing class prediction
classifiers. Moreover, the microarray gene expression data were not replicated; however, a
larger radiotherapy-induced gene expression study, based on a substantially larger patient
population, has been submitted for publication by our group (24).

A major concern for any comparative analysis of data derived from total blood cell
populations before and after irradiation is that blood cell subsets may change after
irradiation because of the radiation sensitivity of white blood cells. According to estimates
of the effect of irradiation on blood cell counts, the lymphocyte depletion rate constant is
very low for doses of up to 1 Gy, and the decrease in the number of white blood cells has
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been estimated to be 6% 12 hours after irradiation (31, 32). On the basis of these data, we
assumed that a dose of 1.25 Gy would not induce a significant change in the numbers of
blood cells for the 4-hour time point that we used. This implies that the miRNA and gene
expression changes we observed were due to functional changes in the irradiated cells and
were not the consequence of cell subset depletion. Although workable biomarkers can be
developed for class prediction even when blood cell subsets change in response to
irradiation, the postulation of subset constancy substantially facilitates the interpretation of
the results of the GO analysis.

We attempted to cross-validate our results with other studies. We did not find any other
published work describing radiation-induced miRNA expression changes in blood cells for
comparison. A comparison of our findings with radiation-induced miRNA expression
profiles in other cell types shows very little overlap, probably because of cell type
differences (10–12). Additionally, far fewer miRNAs were induced by ionizing radiation in
non–blood cells, which could be explained by differences in radiation sensitivity or the
molecular milieu of transformed cells, which generally express lower numbers of miRNAs
(28).

Because of the high number of differentially expressed miRNAs identified in our study, we
developed radiation classifiers that can predict the irradiation status of blood samples. Both
paired and unpaired classifiers constructed from all differentially expressed miRNAs
performed with an accuracy of 100%. The robust performance of the unpaired classifiers is
especially important because their functioning does not require pre-exposure control
samples. These results encourage the pursuit of additional studies that further investigate the
potential of miRNAs to serve as reliable biomarkers of radiation exposure.

We estimated the effects of the radiation-induced miR-NAs on cell processes by combining
gene expression, software-assisted miRNA target analysis, and GO data analysis. A strength
of our study is that we determined radiation-induced gene expression changes in addition to
miRNA profiles. Consequently, we possess information on physiologically downregulated
genes, and we do not solely rely on bioinformatics-based predictions of miRNA targets.
Overall, 38% of the downregulated genes were predicted targets of the upregulated
miRNAs, using our context-score cutoff criterion. It should be noted that only
downregulated, not translationally repressed, mRNAs are included in this number because
the detection of translationally repressed mRNAs requires different methods. Our GO
analysis showed that miRNA target genes are involved in hemopoiesis, the immune
response, B cell–mediated immunity, and other processes. Interestingly, miRNA control of
genes involved in metabolic processes is decreased, most likely because of
underrepresentation of genes involved in metabolic processes among the differentially
expressed genes.

In summary, our study shows that radiation induces a robust miRNA expression response in
peripheral blood cells. The results of our study expand our knowledge of the processes
activated in blood cells after radiation exposure and can be used as the foundation for the
further development of reliable radiation biomarkers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Significant changes in miRNA signatures after irradiation. (A) Hierarchic clustering. A heat
map shows miRNA expression levels for all samples (columns) and miRNAs (rows). All
patient control samples (labels starting with C) form a separate cluster from the samples
obtained after radiation therapy (labels starting with R). (B) Multidimensional scaling.
Control samples (shown in green) and samples that were collected after total body
irradiation (displayed in red) form two separate clusters.
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Fig. 2.
Regulation of several biologic processes by miRNAs after total body irradiation. Gene
ontology analysis of the predicted miRNA target genes revealed the biologic processes in
which the predicted target genes significantly responding to radiation are overrepresented
(red columns) or underrepresented (blue columns). Processes above the horizontal dashed
line show statistically significant over- or underrepresentation at a p value of <0.05.
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Table 2

miRNAs upregulated after radiation therapy and their predicted target genes

miRNA name FC −ΔΔCT
* SEM† Predicted miRNA target genes‡

hsa-miR-143§ 16.442 4.039 1.3488 HLA-DOA, SPIB

hsa-miR-570 11.281 3.496 1.1493 BACH2, CCNB1, CENPF, KIAA1407, PASK, TPD52

hsa-miR-548d-3p§ 9.842 3.299 0.9426 BACH2, CCR6, CDKN1C, BIRC5, HIP1R, MYC, NCAPG, RRAS2

hsa-miR-376a§ 9.584 3.261 0.9302 KIAA1407, TPD52

hsa-miR-590-5p 5.840 2.546 0.7749 AGPAT5, BCL7A, NCAPG

hsa-miR-190§ 5.166 2.369 0.5568 AK5, BACH2

hsa-miR-101§ 4.743 2.246 0.5648 AP3M2, CEP55, STMN1

hsa-miR-598 3.866 1.951 0.4307 N/A¶

hsa-miR-140-5p§ 3.606 1.851 0.5054 AGPAT5

hsa-miR-199a-3p§ 3.492 1.804 0.4475 N/A¶

hsa-miR-29c§ 3.476 1.798 0.5258 BACH2, FCRLA

hsa-miR-21§ 3.439 1.782 0.4347 AGPAT5, BCL7A, NCAPG

hsa-miR-142-5p§ 3.384 1.759 0.4119 CCNB1, CCR6, NR1D2

hsa-miR-301a§ 3.232 1.692 0.4824 APCDD1, FAM129C, JAKMIP1

hsa-let-7f 3.212 1.683 0.5007 E2F5

hsa-miR-454 3.202 1.679 0.5101 APCDD1, FAM129C, JAKMIP1

hsa-miR-126 3.142 1.652 0.5111 N/A¶

hsa-miR-106b§ 3.135 1.648 0.5209 APCDD1, E2F5, PDCD1

hsa-miR-19a 3.132 1.647 0.5129 AGPAT5, CD96, FAM129C, JAKMIP1, SEMA4C

hsa-miR-148a 3.092 1.628 0.4486 HLA-DOA, STAP1

hsa-miR-660§ 3.022 1.595 0.4928 AGPAT5

hsa-miR-221 3.002 1.586 0.5171 AQP3, MS4A1, MYC, PDCD1, STMN1

hsa-miR-374a§ 2.962 1.567 0.4561 AGPAT5, AK5, APCDD1, BACH2, KIAA1407, PDCD1, TPD52

hsa-miR-17§ 2.930 1.551 0.4232 APCDD1, E2F5, PDCD1

hsa-miR-20a 2.919 1.545 0.4861 APCDD1, E2F5, PDCD1

hsa-miR-27a§ 2.889 1.531 0.3449 NR1D2

hsa-miR-340§ 2.828 1.500 0.4540 AGPAT5, NR1D2

hsa-miR-106a§ 2.794 1.482 0.4696 APCDD1, E2F5, PDCD1

hsa-miR-20b 2.637 1.399 0.4225 APCDD1, E2F5, PDCD1

hsa-miR-502-5p§ 2.627 1.394 0.3727 BACH2, CCR6

hsa-miR-142-3p 2.604 1.381 0.4016 E2F5, NR1D2

hsa-miR-16 2.547 1.349 0.4487 CEP55, PDCD1

hsa-miR-26b 2.522 1.334 0.3743 AGPAT5

hsa-let-7g§ 2.518 1.333 0.3483 E2F5

hsa-miR-130a 2.486 1.314 0.4343 APCDD1, FAM129C, JAKMIP1
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miRNA name FC −ΔΔCT
* SEM† Predicted miRNA target genes‡

hsa-miR-29a§ 2.479 1.310 0.4175 BACH2, FCRLA

hsa-miR-195 2.412 1.270 0.4078 CEP55, PDCD1

hsa-miR-93§ 2.409 1.268 0.4132 APCDD1, E2F5, PDCD1

hsa-miR-185§ 2.303 1.204 0.3238 EHMT2, ITM2C, MS4A1, NCAPG, TPD52

hsa-miR-24 2.228 1.155 0.3269 HIP1R, PRSS33, SCAMP5

hsa-miR-145§ 2.211 1.145 0.2897 BACH2

hsa-miR-148b 2.161 1.112 0.3640 HLA-DOA, STAP1

hsa-miR-103§ 2.116 1.081 0.3657 CDKN1C, PDCD1, TPD52

hsa-miR-362-5p§ 2.080 1.057 0.2430 N/A¶

hsa-miR-222§ 2.050 1.036 0.3153 AQP3, MS4A1, MYC, PDCD1, STMN1

Abbreviations: FC = fold change; SEM = standard error of the mean; N/A = not applicable.

*
−ΔΔCT equals log2(FC).

†
 SEM of individual −ΔΔCT values = − [(ΔCT after irradiation) − (ΔCT before irradiation)].

‡
 Predicted miRNA target genes among the genes statistically significantly downregulated after radiotherapy; miRNAs belonging to the same

family have the same targets.

§
 These miRNAs were upregulated in all 8 patients.

¶
 These miRNAs do not have any predicted targets among the genes statistically significantly downregulated after radiotherapy. These miRNAs

might control protein synthesis by means of translational repression, rather than mRNA destabilization and downregulation.
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Table 3

Genes that are both downregulated and predicted targets of upregulated miRNAs

Gene symbol Expression ratio SEM

FCRLA 0.1118 0.03063

MS4A1 0.1759 0.04833

E2F5 0.2886 0.01194

BCL7A 0.3363 0.05564

FAM129C 0.3515 0.03859

SPIB 0.3988 0.09082

STAP1 0.4022 0.05387

TPD52 0.4524 0.03860

KIAA1407 0.4601 0.04552

PRSS33 0.4638 0.07454

HIP1R 0.4793 0.08530

SCAMP5 0.4805 0.02610

BIRC5 0.4821 0.06725

APCDD1 0.4958 0.06256

CDKN1C 0.5030 0.05420

JAKMIP1 0.5052 0.07040

CCR6 0.5126 0.04589

ITM2C 0.5150 0.05083

BACH2 0.5172 0.04652

CEP55 0.5241 0.05009

AK5 0.5487 0.06124

HLA-DOA 0.5557 0.04204

CCNB1 0.5592 0.06380

AQP3 0.5673 0.05703

NR1D2 0.5699 0.03268

STMN1 0.5718 0.05456

AGPAT5 0.5719 0.06280

MYC 0.5739 0.05366

AP3M2 0.5757 0.05129

SEMA4C 0.5840 0.05398

CENPF 0.5893 0.04902

EHMT2 0.5959 0.05342

NCAPG 0.5977 0.05996

PASK 0.6040 0.04210

CD96 0.6052 0.06322

RRAS2 0.6109 0.06773

PDCD1 0.6586 0.04782

Abbreviation: SEM = standard error of the mean.
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Table 4

Number of biologic processes over- or underrepresented in relevant gene sets*

Gene set Overrepresented processes† Underrepresented processes†

Differentially expressed genes‡ 33 3

Putatively targeted genes§‡ 8 3

*
Gene set enrichment analysis was performed using the biologic process category of the PANTHER database (23).

†
 Out of a total of 131 processes in the biologic process category.

‡
 All genes expressed above fluorescence background level were used as the reference set.

§
 Genes that were both downregulated and predicted by Target-Scan (22) to be miRNA targets.
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