
Shrinkage Estimators for a Composite
Measure of Quality Conceptualized as a
Formative Construct
Michael Shwartz, Erol A. Peköz, Cindy L. Christiansen,
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Objective. To demonstrate the value of shrinkage estimators when calculating a com-
posite quality measure as the weighted average of a set of individual quality indicators.
Data Sources. Rates of 28 quality indicators (QIs) calculated from theminimum data-
set from residents of 112 Veterans Health Administration nursing homes in fiscal years
2005–2008.
Study Design. We compared composite scores calculated from the 28 QIs using both
observed rates and shrunken rates derived from a Bayesian multivariate normal-bino-
mial model.
Principal Findings. Shrunken-rate composite scores, because they take into account
unreliability of estimates from small samples and the correlation among QIs, have
more intuitive appeal than observed-rate composite scores. Facilities can be profiled
based on more policy-relevant measures than point estimates of composite scores, and
interval estimates can be calculated without assuming the QIs are independent.
Usually, shrunken-rate composite scores in 1 year are better able to predict the
observed total number of QI events or the observed-rate composite scores in the
following year than the initial year observed-rate composite scores.
Conclusion. Shrinkage estimators can be useful when a composite measure is
conceptualized as a formative construct.
Key Words. Composite measures, Bayesian models, quality indicators

The number of indicators developed to measure quality of patient care has
expanded rapidly as pressures to improve quality have increased. Some of
these indicators are different measures of the same underlying construct.
Many of the indicators, however, measure different dimensions of quality that
reflect the multiple objectives of provider organizations and the needs of
diverse stakeholders. Individual indicators are useful in identifying specific
areas for improvement and tracking improvement progress; however, to
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assess overall performance, it is useful to aggregate individual quality indica-
tors (QIs) into a composite measure (Institute of Medicine 2006). A composite
measure provides a useful summary of the extent to which management has
created a culture of quality and designed processes to ensure quality through-
out the organization. It allows senior leaders to benchmark their organiza-
tion’s performance against high-performing organizations and to monitor
changes over time. For individual patients, who must select one facility for
their care, a composite measure is a way of combining diverse information
into one more easily processed number. And composite measures allow
researchers to identify and then study characteristics of high-performing orga-
nizations, departments, or teams and to develop models to guide organiza-
tional transformation.

When one considers a composite measure of quality, one often has in
mind an underlying latent construct called “quality” that is manifested in the
particular QIs. This latent construct, called a reflective construct to indicate that
the construct is reflected in the individual QIs (in the same sense that a stu-
dent’s underlying mathematics ability is reflected in his or her scores on a
series of mathematics tests), is one type of composite measure (Edwards and
Bagozzi 2000). When conceptualized as a reflective construct, the direction of
causality is from the construct to the QIs, that is, the QIs are high or low
because the underlying construct “quality” is good or bad. The implication of
this conceptualization is that the QIs should be highly correlated. In this arti-
cle, we consider 28 QIs derived from the minimum dataset (MDS) that are
used to evaluate nursing home care (Zimmerman 2003). Though subsets of
the MDS-based QIs may be correlated, in general there is a relatively low cor-
relation across most of theMDS indicators (Mor et al. 2003).

Alternatively, a compositemeasurecanbeconceptualizedasa formative con-
struct. In this case, the construct is formed from or defined by the individual QIs,
usually by taking a weighted or unweighted average of the QIs (Nardo et al.
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2005). One would not necessarily expect individual QIs that comprise a forma-
tiveconstruct tobecorrelated. In fact, individualQIsareoften selected tobroaden
the definition of quality and reflect its different dimensions, not to add measures
that are highly correlated with existing measures. In this article, we treat the
composite measure calculated from the individual QIs as a formative construct.
We use opportunity-based weights to combine the individual QIs, the approach
used byCMS in its pay-for-performance program (Premier 2003), as well as sev-
eral alternative weighting schemes (AHRQQuality Indicators 2008a,b).

A challenge when examining individual QIs across a range of facilities is
that sample sizes are often small, and they vary across facilities. In this situa-
tion, shrinkage estimators can be of value (Efron and Morris 1977; Christian-
sen and Morris 1997; Normand, Glickman, and Gatsonis 1997; Burgess et al.
2000; Greenland 2000; Landrum, Bronskill, and Normand 2000; Arling et al.
2007; O’Brien et al. 2007; and Staiger et al. 2009). Rather than estimating the
“true” proportion experiencing a QI event at a particular facility as
the observed proportion at that facility, a simple shrinkage estimator estimates
the “true” proportion at a facility as the weighted average of the observed pro-
portion at the facility and the observed proportion at some larger set of facili-
ties that include the particular facility. As a result, the estimate of the “true”
proportion is “pulled” or “shrunken” toward the overall proportion in the lar-
ger set of facilities. The amount of shrinkage depends both on the sample size
at the particular facility and the extent to which performance differs across
facilities. The articles referenced above discuss the advantages of these types
of shrinkage estimators and several papers have applied shrinkage estimators
to individual MDS-based QIs (e.g., Berlowitz et al. 2002; Arling et al. 2007).

The 28 QIs we consider, often called the Nursing Home Quality Indica-
tors, are provided to nursing homes through the National Automated Quality
Indicator System and used by regulators as a preliminary step in the certifica-
tion process (Castle and Ferguson 2010). These indicators are routinely moni-
tored by the Veterans Health Administration (VA) and sent monthly to each
VA long-term care facility (called Community Living Centers, CLCs).

For VA CLCs, we first calculate a composite score from the observed
rate of each of the 28 QIs at each facility. We then use a Bayesian multivariate
normal-binomial model to calculate a shrunken estimate of the rate of eachQI
at each facility, which are combined into a composite score. We consider two
questions: (1) to what extent are the composite scores and facility rankings
different when the composite score is calculated from shrunken estimates
rather than observed rates? and (2) to what extent are predictions of next
year’s performance better when based on shrunken estimates rather than
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observed rates? The last question is particularly important because the esti-
mate best able to predict the future is the estimate that best approximates per-
sistent levels of performance over time.

METHODS

Quality Indicators

As part of the Omnibus Budget Reconciliation Act of 1987, nursing homes
were required to use a standardized data collection instrument, the Resident
Assessment Instrument (RAI), for quarterly patient assessments and care plan-
ning. The MDS, a core component of the RAI, is a summary assessment of
each long-stay nursing home resident, that is, those in the nursing home for at
least 90 days. The 28 MDS-based QIs we consider consist of 24 separate
indicators, four of which are stratified into high-risk versus low-risk categories
(see footnote, Table 1). For some indicators, there are eligibility criteria for
inclusion in the denominator. Hence, within a facility, the denominator for
each indicator may differ. We consider the indicators calculated from the last
full MDS assessment on each patient in the fiscal year. We use data from fiscal
years (FY) 2005 (October 2004 through September 2005) through FY 2008.

VACommunity Living Centers

Between FY05 and FY07, the VA operated 132 CLCs. In this analysis, we con-
sider 112 of these facilities that in FY07 met the following volume criteria: at
least one of the 28 QIs had a denominator of at least 10 residents (implying
there were at least 10 long-stay residents in the facility) and at least a third of
all residents were long-stay (based on average daily census). In FY08, there
were several facility closures. Hence, we tend to focus on data from the FY05
to FY07 period. However, when making predictions for the next year, we also
use FY08 data.

Weights Used to Create the Composite Score

Anumber of differentweighting schemes have been proposed to combine indi-
vidual quality indicators into a composite score.We consider the following:

1. Facility-specific opportunity-based weights: Let Yij = the number of
QI events of type i in facility j, for i = 1,…,28 QIs; j = 1,…,112
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facilities; and nij = the number of patients eligible for QI event i in
facility j.

P28
i¼1 nij = total “opportunities for a QI event to occur in

facility j and nij=
P28

i¼1 nij = the proportion of total opportunities that
are associated with QI i in facility j. The ratio nij=

P28
i¼1 nij is the

opportunity-based weight associated with QI event i in facility j. We
denote this ratio by Oij. The composite score for facility
j ¼ P28

i¼1 Oij ðYij=nij Þ ¼
P28

i¼1 Yij=
P28

i¼1 nij . Thus, the composite
score for facility j is the sum of the number of QI events at the facility
divided by the sum of the opportunities to develop QI events. We
denote the composite score for facility j based on observed rates and
facility-specific opportunity-based weights by Co

j .
2. Population-derived opportunity-based weights: Some see an advan-

tage in a single set of weights that is used by all facilities and prefer
calculating opportunity-based weights from the sum of the “opportu-
nities” across facilities. Thus, the weight for QI i = ∑jnij/∑ijnij. We
call these weights population-derived opportunity-based weights.

3. Equal weights: Aweight of (1/24 = 0.042) is given to each QI that is
not stratified and 0.021 to the high- and low-risk categories that com-
prise the stratified QIs.

4. Population-derived numerator-based weights: The weight for QI i in
each facility = ∑jYij/∑ijYij.

As Booysen (2002) notes, “no weighting system is above criticism.” We
agree with Babbie (1995) that, in the absence of strong justification for differ-
ential weights, equal weighting should be the norm. The weights most clearly
consistent with the intent of equal weighting are facility-specific opportunity-
based weights. As the resulting composite can be calculated as the sum of the
number of residents experiencing each QI event divided by the sum of the
number of residents at-risk for each QI event, a decrease in one QI event,
regardless of the specific indicator, has the same impact on the composite.
In addition, the composite resulting from opportunity-based weights can be
interpreted as the likelihood an average resident experiences a QI event. For
these two reasons, we prefer facility-specific opportunity-based weights and
emphasize results using these weights in what follows. To the extent most resi-
dents are eligible for most of the QIs (which is the situation in our case), popu-
lation-derived opportunity-based weights and equal weighting will result in
composites similar to those resulting from facility-specific opportunity-based
weights. Population-derived numerator-based weights assign higher weights
to more prevalent QIs. Hence, results using these weights are likely to be
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different from the other sets of weights to the extent there are large differences
in the prevalence of certain QIs.

To calculate the 95 percent confidence interval for the composite score
for a particular facility when facility-specific opportunity-based weights are
used, we need the variance of

P28
i¼1 Yij=

P28
i¼1 nij

� �
. When only facility-level

data are available, this variance can only be calculated under the assumption
that the QIs are independent (Teixeira-Pinto and Normand 2008). The corre-
lation matrix for FY07 data included in Supplemental Material shows that
although about half the correlations of QI rates are between -0.10 and 0.10, 25
percent of the correlations are >0.20 or <�0.20, and a little over 20 percent
are negative.

Bayesian Multivariate Normal-Binomial Model

Let pij = “true” rate of QI event i, i = 1,…,28, for facility j, j = 1,…,112.
These are the “shrunken” rates. We use a multivariate normal distribution to
model these rates. The data for the model are the observed facility-level Yijs
and the nijs defined above. The model is

Yij jnij ; pij
� ��Binomial nij ; pij

� �
;

logitðp1jÞ; . . .; logitðp28j Þ j c;R
� ��N28ðc;RÞ;

,
where N28 (c,Σ) is a 28-dimensionmultivariate normal distribution withmean
vector c and covariance matrix Σ. We specify a noninformative multivariate
normal prior for the mean vector c and use a Wishart distribution for the
inverse covariance matrix T = Σ�1. To calculate the shrunken composite
score of quality at facility j, we use the posterior mean (conditional on the data)
of the facility-specific opportunity-based weighted sum

P28
i¼1 Oijpij . We denote

the composite score for facility j based on shrunken rates by Cs
j . We also calcu-

late the composite score using the other weighting schemes.
We estimate model parameters using Gibbs sampling as implemented in

WinBUGS (Spiegelhalter et al. 2003). This Markov Chain Monte Carlo
(MCMC) estimation method generates samples of model parameters from the
posterior distribution of the parameters, given the data and prior distributions
of the parameters. Because we place noninformative priors on the parameters,
the posterior distributions are driven by the data. (See Supplemental Material
for the WinBUGs program and specification of the noninformative priors.)
We use as point estimates of the parameters the average of the values from the
Gibbs samples. We also report 95 percent credible intervals for parameter
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estimates. These intervals are the range within which we are 95 percent sure
the true value of the parameter lies. These intervals take into account correla-
tion among the QIs.

Analysis

We calculate composite scores from both shrunken and observed QI rates for
FY05, FY06, FY07, and FY08. When not otherwise specified, the composite
scores are calculated using facility-specific opportunity-based weights. Policy
makers and others often identify high- and low-performing facilities as those
ranked in the top or bottom decile or quintile based on these types of point
estimates of parameters. However, facility rankings are very unstable (Gold-
stein and Spiegelhalter 1996). One advantage of using MCMC simulation to
estimate parameters is that useful statistics in addition to point estimates can
be calculated. We illustrate this by calculating the probability each facility,
based on its shrunken-rate composite score, is in the top or bottom quintile
(i.e., among the top or bottom 22 facilities) and then rank facilities based on
these probabilities. We show these probabilities for FY07, as well as the
observed-rate and shrunken-rate composite scores and ranks for facilities with
greater than a 50 percent chance of being in the top and bottom quintiles; that
is, it is more likely than not they are in the quintile. To further profile facilities,
we show the 95 percent credible intervals for the FY07 shrunken-rate compos-
ite scores and the 95 percent confidence intervals for the observed-rate com-
posite scores, and compare facilities identified as statistically significantly
above or below average based on these intervals.

To evaluate the fit of the multivariate normal-binomial model, we com-
pare the number of QI events of type i in facility j in a specific year t to the
number predicted by the model. To indicate year, we add a subscript t to
the variables. Specifically, let pij(t) = estimated value of pij in year t, nij(t) = the
number of patients eligible for QI event i in facility j in year t, and Yij(t) = the
number of QI events of type i in facility j in t. We calculate

½YijðtÞ � nijðtÞpijðtÞ�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nijðtÞpijðtÞ 1� pijðtÞ

� �r
, a measure of the number of stan-

dard deviations that observed differs from expected. If our model is reason-
able, approximately 95 percent of the data should be within two standard
deviations of what is expected.

Our main interest is in evaluating how well a composite score based on
this year’s data is able to predict next year’s data. There are two types of data
that one might reasonably predict: one, the number of QI events that occur
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next year; and two, the composite rate next year. Predicting the number of QI
events is most reasonable for those composite scores that approximate the
likelihood of developing a QI event, which, as noted above, is the case for all
of the weighting methods except numerator-based weights. Predicting next
year’s composite rate is appropriate for all methods. When next year’s com-
posite rates are predicted, a difference in rates is treated the same regardless of
facility size; when next year’s QI events are predicted, a difference in rates
contributes more to the error when it is from a larger facility.

When predicting cases, the prediction error for facility j in time
period (t + 1) when using shrunken rates from time period t equals
½Pi Yijðtþ1Þ � C s

jðtÞ
P

i nijðtþ1Þ�; when predicting rates, the prediction error
equals ½C s

jðtþ1Þ � C s
jðtÞ�. There are comparable prediction errors when making

predictions based on the observed rates in time period t (calculated using
Co
jðtÞ). We summarize the errors two ways: one, the square root of the average

of the sum of the squared errors over the j facilities; and two, the average of
the sum of the absolute values of the errors over the j facilities. We repeat this
analysis for the different weighting approaches. We also consider comparable
errors when predicting individual QI observed numbers of events and rates in
each facility in time period (t + 1) from individual QI rates (as opposed to
composite rates) in time period t.

RESULTS

Before reporting overall results, we illustrate the way in which the Bayesian
multivariate normal-binomial model “shrinks” estimates. Table 1 shows for
eachQI in one facility the observed rate, the shrunken rate, and the number of
eligible residents; it shows for each QI the observed rate across all facilities.
Consider QI 1. There were no cases observed in this facility in FY07. Over all
facilities, 7.6 residents per 1,000 experienced this QI event. Is it reasonable to
believe, based on the 16 eligible cases in this facility, that the “true” rate for the
facility is zero? A Bayesian would say “no.” The facility probably is better than
average with respect to this QI, but it is probably not perfect. The shrunken
estimate, which gives some weight to observed rate of zero and some to the
population rate of 7.6/1,000, is 4.6/1,000, which reflects this compromise. QI
2 and QI 3 indicate the same type of shrinkage. QI 7 and QI 12 also indicate
typical shrinkage, but in this case, the shrunken estimate is between a high
observed rate and a lower population rate. The actual amount of shrinkage in
each of these situations depends on the sample size for the QI at the facility
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Table 1: Illustrating Shrinkage Estimators Based on the Multivariate
Normal-Binomial Model

Quality
Indicator*

Facility
Observed Rate

Facility
Shrunken Rate

Population
Rate Denominator

1 0.000 0.0046 0.0076 16
2 0.000 0.0728 0.1022 18
3 0.000 0.0313 0.0629 13
4 0.200 0.0942 0.2660 5
5 0.000 0.0616 0.1002 18
6 0.000 0.0283 0.0424 18
7 0.889 0.8321 0.7283 18
8 0.000 0.0379 0.0586 14
9 0.182 0.2240 0.3228 11
10 0.7978 0.8601 0
11 0.000 0.1693 0.1028 3
12 0.278 0.2008 0.1424 18
13 0.000 0.0043 0.0016 18
14 0.056 0.0742 0.0770 18
15 0.111 0.1662 0.1383 18
16 0.000 0.1015 0.0658 18
17 0.000 0.0031 0.0027 18
18 0.000 0.0513 0.0636 18
19 0.176 0.1433 0.1333 17
20 0.111 0.0749 0.0773 18
21 0.000 0.0972 0.1552 17
22 0.3641 0.4586 0
23 0.176 0.1323 0.1927 17
24 0.000 0.0446 0.0418 18
25 0.000 0.0045 0.0055 18
26 0.000 0.0167 0.0250 18
27 0.125 0.0912 0.0416 8
28 0.400 0.3155 0.1786 10

*QI 1, incidence of new fractures; QI 2, prevalence of falls; QI 3, prevalence of behavioral
symptoms affecting others, high risk; QI 4, prevalence of behavioral symptoms affecting others,
low risk; QI 5, prevalence of symptoms of depression; QI 6, prevalence of depression with no
antidepressant therapy; QI 7, use of nine or more different medications; QI 8, incidence of
cognitive impairment; QI 9, prevalence of bladder or bowel incontinence, high risk; QI10,
prevalence of bladder or bowel incontinence, low risk; QI11, prevalence of occasional or frequent
bladder or bowel incontinence without a toileting plan; QI12, prevalence of indwelling catheters;
QI13, prevalence of fecal impaction; QI14, prevalence of urinary tract infection; QI15, prevalence
of weight loss; QI16, prevalence of dehydration; QI17, prevalence of tube feeding; QI18,
prevalence of bedfast residents; QI19, incidence of decline in late-loss ADLs (activities of daily liv-
ing); QI20, incidence of decline in ROM (range of motion); QI21, prevalence of antipsychotic use
in the absence of psychotic or related conditions, low risk; QI22, prevalence of antipsychotic use
in the absence of psychotic or related conditions, high risk; QI23, prevalence of any anxiety/hyp-
notic use; QI24, prevalence of hypnotic use more than two times in the last week; QI25,
prevalence of daily physical restraints; QI 26, prevalence of little or no activity; QI27, prevalence
of stage 1–4 pressure ulcers, high risk; QI28, prevalence of stage 1–4 pressure ulcers, low risk.
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and the amount of variation in the QI rates across facilities. When there is
more variation across all facilities, one trusts the population rate somewhat
less as a reasonable estimate for a specific facility and hence there is less
shrinkage; when there is little variation across facilities, one trusts the popula-
tion rate more and there is more shrinkage.

QI 4 illustrates “nontypical” shrinkage—the shrunken estimate is not
between the observed rate and the higher population rate but significantly
lower than the observed rate. The reason for this is because of the nature
of the variance/covariance matrix for the 28 QIs. Shrinkage depends not
just on the population rate of a particular QI but on performance on other
QIs with which the particular QI is correlated. QI 4 is highly correlated
with QI 5 (0.64) and QI 6 (0.52) (numbers in parentheses are the correla-
tion coefficients). The observed facility rate on both of these QIs is zero,
well below the respective population rates. The low value of the shrunken
estimate for QI 4 reflects these very low rates of correlated QIs. QI 16 pro-
vides another “nontypical” example in which there is shrinkage past the
overall mean. In this case, the observed rate is below the population rate,
but the shrunken rate is above the population rate. QI 16 is relatively
highly correlated with QI 18 (0.32) and QI 28 (0.37). The observed rate for
QI 28 is very high relative to population rate. QI 18 has a low observed
rate. However, it is correlated with QI 19 (0.28), QI 27 (0.27), and QI 28
(0.35). All three of these QIs have observed rates above the population
rates, which contribute to the high shrunken estimate for the true rate of
QI 16 at this facility.

Finally, note QIs 10 and 22, where there were no eligible cases. This is a
missing data problem. If these QIs had zero correlation with other indicators,
the shrunken estimate would be the population rate. In fact, it is somewhat
lower, reflecting that the QIs with which these indicators are correlated have
somewhat lower rates than the population rates.

Model predictions are consistent with the data. The percentage of cases
in which the observed number of residents experiencing eachQI in each facil-
ity in a particular year is more than two standard deviations from model-pre-
dicted values for that year are, for FY05 through FY08, as follows: 2.6, 5.7,
5.8, and 3.4 percent.

Table 2 shows those facilities with at least a 50 percent chance of being
in the top quintile (Part A) and bottom quintile (Part B), as well as the facilities’
shrunken-rate and observed-rate composite scores and ranks. In Part A of the
Table, comparing the 13th and 15th ranked facility based on shrunken rates
highlights the value of the probability information: though the shrunken rates
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are very similar, the 13th ranked facility has over a 92 percent chance of being
in the top quintile, while the 15th ranked facility, which has a much smaller
sample size, has only a 71 percent chance. The probabilities provide in one
number not only a basis for ranking but also a measure of confidence that the
facility really is a top-quintile performer. The top 23 facilities based on shrun-
ken-rate composite scores are the same facilities that have over a 50 percent
chance of being in the top quintile, though the order of the facilities differs
somewhat by ranking approach. Twenty-one of the top 23 facilities based on
the observed-rate composite score are among the 23 facilities with the highest
estimated probability of being in the top quintile. The two facilities not
included are small and, despite point estimates that place them in the top quin-
tile, in fact have under a 35 percent chance of being in that quintile. The same
pattern can be seen for facilities with the highest probability of being in the
bottom quintile.

The statistics on the shrunken-rate and observed-rate composites are
fairly similar across years. Using FY07 data to illustrate, minimum, median,
and maximum rates using shrunken rates were 0.068, 0.127, and 0.184; using
observed rates, they were 0.066, 0.124, and 0.190, respectively. As expected
since extreme rates are shrunken toward the average, the range of composite
scores when using shrunken rates is somewhat smaller than when using
observed rates. When using the shrunken-rate composite instead of the
observed-rate composite, 40 facilities have lower ranks (indicating worse per-
formance). For these facilities, the median change in rank is 6; the 75th and
90th percentile change and the maximum change are 9, 13, and 33. Fifty-five
facilities have higher ranks. For these facilities, the median change in rank is 4;
the 75th and 90th percentile change and the maximum change are 8, 11,
and 20.

Figure 1A shows the point estimates and 95 percent credible intervals
for the shrunken-rate composite scores in FY07. There are 27 facilities where
the upper end of the 95 percent credible interval is below the population aver-
age, indicating these are high-performing facilities. There are 28 facilities
where the lower end of the 95 percent credible interval is above the popula-
tion average, indicating these are low-performing facilities. The high-perform-
ing facilities are clearly distinguishable from the low-performing facilities.
However, many of the high- and low-performing facilities are not clearly dis-
tinguishable from subsets of the average-performing facilities. Figure 1B
shows the point estimates and 95 percent confidence intervals for the
observed-rate composite scores (facilities are portrayed in the same order as in
Figure 1A). On average, the 95 percent confidence intervals are about 12
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Table 2: Top (Bottom)-Ranked Facilities Based on the Probability the
Shrunken-Rate Composite Score* Is in the Top (Bottom) Quintile

A. 23 Facilities with Greater Than a 50%Chance the Shrunken-Rate Composite Score Is in the Top Quintile

Probability in
Top Quintile

Shrunken
Rate

Shrunken
Rank

Observed
Rate

Observed
Rank

Number
of Cases

1.000 0.068 1 0.066 1 222
1.000 0.081 2 0.080 2 149
1.000 0.089 3 0.083 3 87
0.996 0.095 4 0.087 4 77
0.993 0.100 12 0.103 22 109
0.993 0.099 10 0.096 11 135
0.990 0.098 8 0.098 13 174
0.989 0.097 6 0.091 7 104
0.982 0.099 9 0.096 9 69
0.981 0.096 5 0.087 5 29
0.957 0.097 7 0.098 14 55
0.955 0.100 14 0.099 17 86
0.948 0.099 11 0.100 19 93
0.921 0.100 13 0.098 15 44
0.870 0.103 18 0.102 21 64
0.808 0.106 19 0.104 23 137
0.778 0.102 16 0.090 6 23
0.708 0.101 15 0.099 16 10
0.667 0.103 17 0.097 12 23
0.659 0.106 20 0.101 20 36
0.558 0.109 22 0.106 25 37
0.542 0.107 21 0.093 8 10
0.512 0.109 23 0.105 24 28

B. 19 Facilities with Greater Than a 50%Chance the Shrunken-Rate Composite Score Is in the Bottom
Quintile

Probability in
Bottom Quintile

Shrunken
Rate

Shrunken
Rank

Observed
Rate

Observed
Rank

Number
of Cases

1.000 0.169 108 0.176 109 69
1.000 0.171 110 0.183 110 68
1.000 0.184 112 0.190 112 25
1.000 0.167 106 0.167 104 82
0.992 0.168 107 0.173 107 60
0.988 0.170 109 0.173 108 35
0.986 0.173 111 0.187 111 20
0.955 0.164 104 0.171 106 20
0.902 0.156 102 0.154 96 157
0.865 0.164 105 0.168 105 26
0.841 0.155 100 0.161 103 74

continued
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Table 2. Continued

B. 19 Facilities with Greater Than a 50%Chance the Shrunken-Rate Composite Score Is in the Bottom
Quintile

Probability in
Bottom Quintile

Shrunken
Rate

Shrunken
Rank

Observed
Rate

Observed
Rank

Number
of Cases

0.810 0.153 98 0.155 99 154
0.742 0.157 103 0.153 94 35
0.713 0.155 101 0.153 95 24
0.690 0.153 99 0.154 98 51
0.638 0.151 97 0.150 91 225
0.540 0.149 95 0.158 102 71
0.534 0.149 94 0.154 97 130
0.511 0.150 96 0.150 92 79

*Composite scores calculated using facility-specific opportunity-based weights.
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Figure 1: (A) Shrunken-Rate Composite Scores and 95%Credible Intervals,
FY07. (B) Observed Rate Composite Scores and 95% Confidence Intervals,
FY07.

*Facilities in both figures are organized from low score to high score based on the shrunken-rate
composite score. Composite scores are calculated using facility-specific opportunity-based
weights. Dashed line is the average score.
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percent larger than the 95 percent credible intervals. Thirty facilities are
identified as high performers (including 24 of the 27 facilities identified using
the 95 percent credible intervals), and 30 facilities are identified as low
performers (including 25 of the 28 facilities flagged as low performers using
the 95 percent credible intervals).

Table 3A shows the percentage reduction in error when making pre-
dictions using the shrunken-rate composite score instead of the observed-rate
composite score and, in parentheses, the size of error when using the shrun-
ken-rate composite. For the first three weighting schemes, with one exception
(predictions of FY06 data from FY05 composite scores calculated using facil-
ity-specific opportunity-based weights), there is a smaller prediction error
when the composite score is based on shrunken rates. When numerator-
based weights are used, the value of the shrunken-rate composite is less
apparent. (In Supplemental Materials, we show scatter plots of the errors
when predicting number of cases using shrunken-rates vs. observed rates for
the two ways of measuring error and for the three time periods examined.)
As expected, the actual sizes of the errors when predicting cases are very sim-
ilar when facility-specific opportunity-based weights, population-derived
opportunity-based weights, and equal weights are used. This reflects the fact
that with the exception of the QIs stratified into high and low risk, most resi-
dents are eligible for most of the QIs. As a result, none of the weights associ-
ated with a QI are above 0.052 for any of these approaches. In contrast,
using numerator-based weights, a weight of 0.268 is assigned to QI 7 (use of
9 or more medications) and 0.077, 0.063, and 0.059 to the next three most
prevalent QIs (QI 9, QI 4, and QI 10). It is not surprising that there are very
large errors when a composite calculated using numerator-based weights is
used to predict the number of QI events next year. It is interesting that even
when numerator-based weight composites are used to predict next year’s
numerator-based weight composite, the errors are larger than when the other
weighting approaches are used.

Table 3B shows the percentage reduction in error when this year’s
shrunken rate for QI i in facility j instead of the observed rate for QI i in facility
j is used to predict next year’s observed number of QI events and QI rates for
QI i in facility j. For the two types of errors and the 3 years of analysis, with
one exception (squared errors in the FY06/FY07 analysis when predicting
cases), shrunken-rate composites have lower prediction errors. (In Supple-
mentalMaterials, we show scatter plots of the individual QI/facility prediction
errors when predicting cases using shrunken rates vs. observed rates compos-
ites to make the predictions.)
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DISCUSSION AND CONCLUSIONS

Shrinkage estimators, as illustrated above, have a number of advantages. First,
they can be thought of as a way of adjusting or “smoothing” observed rates to
reflect the reliability of the observed rates. The adjustment takes into account
the relationship between the observed rate of each QI in a facility and the pop-
ulation rate of that QI, as well as the observed rate and population rate of other
QIs with which the QI is correlated. As we demonstrate in Table 1, shrinkage
estimators are particularly attractive when observed rates are from small facili-
ties. Second, the MCMC method used to estimate model parameters also

Table 3: Predicting Next Year’s Data: Comparison of Errors Using Shrun-
ken andObserved Quality Indicator Rates

Predicting
FY06 from

FY05 Estimates

Predicting
FY07 from

FY06 Estimates

Predicting
FY08 from

FY07 Estimates

A. Composite scores: Percentage reduction in error (size of error) using shrunken-rate composite*
Facility-specific opportunity-based weights
Mean squared error: cases �1.9 (32.8) 2.5 (24.6) 4.6 (40.5)
Mean absolute deviation: cases �2.0 (24.2) 6.7 (17.4) 4 (31.9)
Mean squared error: rates 2.9 (.021) 7.9 (.017) 10.0 (.020)
Mean absolute deviation: rates �1.3 (.017) 9.0 (.013) 8.1 (.016)

Population-derived opportunity-based weights
Mean squared error: cases 0.1 (33.0) 4.4 (25.3) 5.2 (40.3)
Mean absolute deviation: cases 2.7 (24.2) 7.1 (17.5) 5.2 (31.2)
Mean squared error: rates 4.2 (.021) 7.1 (.017) 10.3 (.020)
Mean absolute deviation: rates 2.1 (.016) 9.0 (.013) 9.1 (.016)

Equal weights
Mean squared error: cases 3.4 (60.0) 5.1 (31.3) 16.5 (36.3)
Mean absolute deviation: cases 2.1 (43.3) 5.9 (22.3) 17.6 (28.5)
Mean squared error: rates 7.3 (.028) 8.0 (.021) 17.8 (.018)
Mean absolute deviation: rates 7.3 (.022) 6.5 (.017) 19.6 (.014)

Population-derived numerator-based weights
Mean squared error: cases 0.3 (393) �0.2 (390) 1.7 (594)
Mean absolute deviation: cases 2.7 (332) �1.6 (333) �0.0 (520)
Mean squared error: rates �0.0 (.035) �1.2 (.227) 0.1 (.226)
Mean absolute deviation: 3.3 (.028) �2.2 (.224) �1.2 (.220)

B. Individual quality indicators in a facility: Percentage reduction in error*
Mean squared error: cases 3.1 �0.9 3.0
Mean absolute deviation: cases 2.4 16.3 1.7
Mean squared error: rates 4.2 2.8 3.7
Mean absolute deviation: rates 15.6 16.1 9.5

*Percentage reduction in error = (observed-rate error � shrunken-rate error)/observed-rate
error. A negative value indicates the observed-rate error is smaller than the shrunken-rate error.
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allows estimation of statistics that may be of more policy relevance than point
estimates of rates. We illustrate this by estimating the probability that each
facility is in the top or bottom quintile based on their shrunken-rate composite
score. When point estimates are used, pretty much the same facilities are
identified as being in the top and bottom quintile whether based on shrunken-
rate composites or observed-rate composites. However, the likelihood that
facilities ranked in the top or bottom quintile are actually in that quintile differ.
In a pay-for-performance program, one might well want to increase payments
to top-quintile facilities that have higher likelihoods of actually being in the
top quintile and reduce penalties of bottom-quintile facilities that have smaller
likelihoods of actually being in the bottom quintile. Third, the 95 percent
intervals associated with shrunken-rate estimates are credible intervals, that is,
intervals within which there is a 95 percent chance the estimated parameter
lies. This type of interval estimates is more meaningful than the frequentist 95
percent confidence interval and is in fact the way in which many people incor-
rectly interpret a 95 percent confidence interval. Also, using MCMC meth-
ods, the 95 percent credible interval can be calculated without assuming QIs
are independent. Finally, the shrunken-rate composite scores fairly consis-
tently have smaller prediction errors than observed-rate composite scores.
The difference in errors is usually not large, but it does hold up across years,
ways of measuring errors, and, with the exception of numerator-based
weights, weighting approaches. Also, when predicting facility-specific individ-
ual QI events, shrunken rates usually do better. Staiger et al. (2009) have
shown that you are better able to predict rates for an individual surgery if you
use a composite measure that takes into account other surgeries with which
the particular surgery is correlated. We found the same thing for the MDS-
based QIs: you can predict individual QIs better if you take into account other
QIs with which the particular indicator is correlated.

It is worth noting that because only facility-level data were available, we
were not able to examine composite measures created by aggregating individ-
ual-level experiences. For example, we could not analyze the number of indi-
viduals experiencing a QI event or average number of QI events per
individual. Thoughmostmajor profiling efforts do not reportmeasures created
by aggregating individual-level experience, it would be interesting to exam-
ine the value of shrunken estimates for these types of compositemeasures.

Our use of a Bayesian multivariate normal model was motivated by the
work of Landrum, Normand, and Rosenheck (2003), who, like us, estimated
shrunken rates for a number of quality measures, which were then combined
into composites. O’Brien et al. 2007 used a similar approach to combine
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measures from four domains into a composite measure for evaluating cardiac
surgery. For the policy and nontechnical reader, we have attempted to provide
more understanding of the way shrinkage works in these types of models; we
show that predictions from the multivariate normal-binomial model are con-
sistent with the data, and as noted, we have compared predictions of the future
using both shrunken and observed rates to calculate the composite, something
that at least to our knowledge has not been done when constructing composite
measures of performance.

Our results cannot be generalized beyond the particular setting and
quality measures we considered. Nevertheless, they do suggest the potential of
using shrinkage methods when calculating a composite measure that is
conceptualized as a formative construct.
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