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Abstract
Progress in developing treatments for diabetic neuropathy is slowed by our limited understanding
of how disturbances in metabolic substrates- glucose and fatty acids- produce nerve injury. In this
review, we present the current oxidative stress hypothesis and experimental data that support it.
We identify weaknesses in our understanding of diabetes-disordered metabolism in the
neurovascular unit; i.e. in critical cell types of the microvascular endothelium, peripheral sensory
neurons, and supporting Schwann cells. Greater understanding of peripheral nervous system
bioenergetics may provide insight into new drug therapies or improvements in dietary
interventions in diabetes or even pre-diabetes.

Diabetic neuropathy (DN) is a frequent and severe complication of diabetes. It is more
common and persistent in patients with type 2 than type 1 diabetes (Young, et al., 1993) and,
over time, DN affects approximately 60% of all patients with the disease (Vincent and
Feldman, 2004). DN is characterized by progressive, lengthdependent loss of peripheral
nerve axons in a stocking and glove (distal to proximal) pattern (Said, 2007), resulting in
pain, decreased sensation and eventually complete loss of sensation. In the United States,
DN is the leading cause of diabetes-related hospital admissions and non-traumatic
amputations (Boulton, et al., 2005; Edwards, et al., 2008; Feldman, 2008; Feldman, et al.,
2003). DN predominantly occurs in a distal symmetrical pattern, with progressive skin
denervation (reduced intraepidermal nerve fiber density) (Said, 2007; Sullivan, et al., 2007)
over the duration of diabetes (Shun, et al., 2004), and a proximal-distal graded loss of
myelinated fiber density observed in the peripheral nerves (Johnson, et al., 1986).

The condition of diabetes mellitus is characterized by hyperglycemia. For decades, the
persistent or recurrent periods of hyperglycemia have been thought to produce the
microvascular complications of diabetes including neuropathy, determined through
epidemiological studies (Diabetes Control and Complications Trial Research Group, 1993
(Chisholm, 1993), Epidemiology of Diabetes Interventions and Complications, 1999
(1999)). More recent studies also suggest a link between dyslipidemia, a common risk factor
for macro- and microvascular disease, and diabetic neuropathy (Vincent, et al., 2009).
Hyperglycemia and dyslipidemia are predicted to produce gross aberrations in global energy
balance and metabolism that could lead to cellular injury and neuropathy. Energy deficits
are also predicted to underlie the pathophysiological pattern of distal to proximal injury
through impaired ability to produce energy at the extremities of long axons far from the cell
body. Despite the facts that energy metabolism is generally well understood and that there
has been substantial research into bioenergetic failures that produce DN, there is little
experimental data to support the hypothesis for the fundamental cellular mechanisms behind
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nerve injury. This lack of a clear mechanism or mechanisms has prevented the development
of effective targeted treatments to prevent or reverse DN. In this paper, we consider the
oxidative stress theory of diabetes complications and available bioenergetics data obtained
in the peripheral nervous system (PNS) in order to identify areas that may be fruitful for
developing greater understanding of DN.

An association between hyperglycemia-derived production of reactive oxygen species
(ROS) and the development of DN is well-accepted (Brownlee, 2001; Tomlinson and
Gardiner, 2008), with a primary mechanism contributing to the onset and progression of DN
suggested to be related to hyperglycemia-induced overproduction of superoxide (O2

•−) by
the mitochondrial electron transport chain (Brownlee, 2001; Nishikawa, et al., 2000) (Fig.
1). In systemic hyperglycemia, elevated glucose content in sciatic nerve (SCN) (Obrosova,
et al., 2005) (Kishi, et al., 1999; Thurston, et al., 1995), and increased oxidative stress in
plasma, SCN and dorsal root ganglia (DRG) (Vincent, et al., 2004b), as well as in vitro
hyperglycemia-induced DRG neuron mitochondrial injury (Vincent, et al., 2005; Vincent, et
al., 2004a) all support to the prevailing hypothesis that glycolytic flux is increased in the
diabetic PNS (Brownlee, 2001; Tomlinson and Gardiner, 2008), contributing to
mitochondrial ROS generation. Furthermore, enhanced fatty acid oxidation and lipotoxicity
is implicated in the pathophysiology of type 2 diabetic cardiomyopathy (van de Weijer, et
al., 2011) and nephropathy (Murea, et al., 2010). However, experimental evidence for
increased metabolic flux through glycolysis or beta-oxidation in diabetic PNS is lacking.
Brain glucose utilization is more widely studied. Data suggest that neurons continue to
metabolize glucose during hyperglycemia via non-glycolytic mechanisms, and that there is a
complex interplay between astroglia and neurons in order to utilize metabolic substrates that
is not well understood (Izawa, et al., 2009). Further understanding of the utilization of
energy substrates in specific nerve cell types is critical.

The uptake and utilization of glucose are not insulin dependent in peripheral neurons
(Greene and Winegrad, 1979). Glucose transporters (GLUT) are required for facilitated
glucose uptake, peripheral neurons are dependent upon GLUT3 (Simpson, et al., 2008), and
Schwann cells utilize both GLUT3 and GLUT1 for facilitated glucose uptake (Magnani, et
al., 1996). To our knowledge, the effects of diabetes on this GLUT1 and GLUT3- mediated
glucose transport have not been investigated. Glucose accumulates in SCN in alloxan-
induced diabetes in rats at 26 weeks (Thurston, et al., 1995), and in streptozotocin (STZ)-
induced diabetic rats at 4 weeks (Kishi, et al., 1999) and 6 weeks (Obrosova, et al., 2005),
suggesting no impairment of facilitated glucose transport into the nerve in experimental
diabetes. However, Kishi et al (Kishi, et al., 1999) demonstrate that despite this elevated
SCN glucose content in STZ-diabetic rats after one month of diabetes, both nerve and DRG
glucose uptake are reduced compared with controls. Thus, changes in glucose transporter
expression and activity warrant consideration and future investigation in the detailed
evaluation of peripheral nerve bioenergetics in diabetes. In the face of poor glucose control,
if bioenergetics proves to be a key to neuron injury, an ability to target specific glucose
transporters may be one way to protect peripheral neurons against an energy substrate crisis.

In his unifying hypothesis, based primarily on research in endothelial cells, Brownlee
(Brownlee, 2001) proposed that ROS inhibition of GAPDH activity (Du, et al., 2000) leads
to accumulation of glyceraldehyde-3- phosphate and upstream glycolytic metabolites, which
are then diverted into alternative pathways including the advanced glycation end products
pathway, PKC pathway, hexosamine pathway, and polyol pathway (Brownlee, 2001).
Specifically, hyperglycemia is associated with overproduction of tricarboxylic acid (TCA)
cycle-derived electron donors, subsequent increased mitochondrial O2

•− production (Du, et
al., 2001) and O2

•−-induced inhibition of GAPDH in cultured endothelial cells (Du, et al.,
2000). Work by Thurston and colleagues partially supports this theory in peripheral nerves:
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glucose-6-phosphate and fructose-1,6-bisphosphate are elevated following 26 weeks of
alloxan-induced diabetes (Thurston, et al., 1995). However, in the same study, elevated
nerve lactate and ATP lead to the conclusion that there is increased glycolysis and decreased
TCA cycle activity, although no TCA cycle intermediates were measured or quantified
(Thurston, et al., 1995) to better support this conclusion.

Hexokinase directs glucose into the glycolytic pathway under normoglycemic conditions,
however, there is a glucose concentration-dependent activation of aldose reductase in nerve
(Greene and Lattimer, 1983; Greene, et al., 1987; Greene, et al., 1984). Thus, activation of
the polyol pathway is a prominent metabolic feature of diabetic rat peripheral nerve
(Obrosova, et al., 2005; Stevens, et al., 1994). Early in the course of diabetes, this polyol
flux promotes NADPH depletion, decreased ATP production and neuron injury (Stevens, et
al., 1994). Additionally, aldose reductase is localized to Schwann cells in the peripheral
nerve (Kern and Engerman, 1982), and polyol pathway hyperactivity is associated with
diminished energy flux in diabetic nerve (Greene and Lattimer, 1984; Greene and Lattimer,
1986). Hexokinase saturation and maximal glycolytic flux is one of the proposed
mechanisms underlying the accumulation of nerve glucose and its direction into the polyol
pathway in diabetes (Tomlinson and Gardiner, 2008); however, there appear to be no data in
the literature on the degree of hexokinase activity in diabetic nerve. Gardiner and colleagues
(Gardiner, et al., 2007) observed complex effects of STZ-induced diabetes on hexokinase I
expression in rat DRG and suggested that metabolic flux through the glycolytic pathway is
reduced in diabetes. Studies on excised rat retinas (Ola, et al., 2006) concluded that glucose
metabolism downstream of hexokinase is not elevated by hyperglycemia or diabetes, but
that intermediates of alternative glucose metabolism, such as those of the polyol pathway,
are increased. In clinical trials, inhibitors of aldose reductase have generally failed to
produce the desired results in decreasing the progression of neuropathy, although study data
continue to suggest that improvements in the inhibitors and trial design may ultimately
produce a therapeutic benefit (Tsai and Burnakis, 1993).

Work by Tretter and colleagues involving the relationship between key enzymes of the TCA
cycle and oxidative stress suggests that in the absence of metabolite flux from glycolysis to
the TCA cycle, ROS and subsequent further ROS generation by the TCA cycle itself (Tretter
and Adam-Vizi, 2005) may contribute to mitochondrial dysfunction. Aconitase, catalyzing
the citrate to isocitrate reaction in the TCA cycle, is inhibited by ROS, including O2

•−

(Gardner and Fridovich, 1992; Gardner, et al., 1995) and H2O2 (Tretter and Adam-Vizi,
2005). When aconitase is fully inhibited by H2O2 in nerve terminals, α-ketoglutarate
dehydrogenase (α-KGDH; catalyzing the α-KG to succinyl-CoA reaction) remains
functional and a segment of the TCA cycle (α-KG to oxaloacetate) is maintained by
glutamate, which is converted to α-KG via transamination (see (Tretter and Adam-Vizi,
2005) for comprehensive explanation). ROS-mediated inhibition of aconitase may cause this
truncated TCA cycle to come into effect in diabetic tissues (Fig. 2). This truncated segment
of the TCA cycle has been suggested to function in the absence of glucose (Erecinska, et al.,
1996; Yudkoff, et al., 1994), and, it could be inferred, when glucose is metabolized by non-
glycolytic pathways. Additionally, α-KGDH is itself a source of ROS production, the level
of which increases when α-KG is utilized as a fuel source over glucose in isolated brain
synaptosomes (Tretter and Adam-Vizi, 2004). Thus, in a state of oxidative stress and/or
decreased glycolysis, aconitase is completely inhibited, and α-KGDH remains sufficiently
active to deliver electron donors to the electron transport chain, but further contributes to the
production of ROS (Fig. 2). We have demonstrated loss of aconitase activity in response to
hyperglycemia in DRG neurons in vitro (Vincent, et al., 2005) but the consequences in
regards to ongoing energy metabolism in these cells remain to be determined.
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Thus, the prevailing theory that excessive glycolytic metabolism is responsible for the
generation of harmful reactive oxygen species (ROS), mitochondrial injury, and DN
(Brownlee, 2001; Tomlinson and Gardiner, 2008) is based on studies that are disparate,
incomplete, and performed across multiple tissue and cell types. In addition, to our
knowledge, there are no studies that address the interplay between glucose, fatty acids and
peripheral nerve energy metabolism in diabetes, nor the relationships between
microvascular, Schwann cell, and neuronal metabolism. With the development of
quantitative mass spectroscopy techniques, further metabolite studies demand attention. An
understanding of diabetic metabolic abnormalities distinct to the PNS may be crucial to
developing effective treatments for DN-related peripheral nerve disease. These data, then,
can more fully support the multiple mechanisms that are proposed to be involved in
cumulative neuron and nerve injury in diabetes that include oxidative stress, loss of
neurotrophic support, insulin resistance, myelin dysfunction, and inflammation (Vincent, et
al., 2011).
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Figure 1.
Prevailing view that excessive glycolytic metabolism is responsible for the generation of
harmful reactive oxygen species (ROS), mitochondrial injury, and diabetic neuropathy.
White boxes, experimental evidence derived from neuronal tissue and cells; black boxes,
associations based on hypotheses derived from multiple, non-neuronal tissue and cell types.
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Figure 2.
Proposed relationship between diabetes, ROS and the TCA cycle.
In a state of oxidative stress and/or decreased glycolysis, aconitase is inhibited. α-KGDH
remains sufficiently active to permit truncated TCA cycling and delivery of electron donors
to the electron transport chain, but further contributes to the production of ROS. α-KGDH,
alpha-ketoglutarate dehydrogenase; ROS, reactive oxygen species.
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