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Abstract
Computational modeling of cardiac electrophysiology is a powerful tool for studying arrhythmia
mechanisms. In particular, cardiac models are useful for gaining insights into experimental
studies, and in the foreseeable future they will be used by clinicians to improve therapy for the
patients suffering from complex arrhythmias. Such models are highly intricate, both in their
geometric structure and in the equations that represent myocyte electrophysiology. For these
models to be useful in a clinical setting, cost-effective solutions for solving the models in real time
must be developed. In this work, we hypothesized that low-cost GPGPU-based hardware systems
can be used to accelerate arrhythmia simulations. We ported a two dimensional monodomain
cardiac model and executed it on various GPGPU platforms. Electrical activity was simulated
during point stimulation and rotor activity. Our GPGPU implementations provided significant
speedups over the CPU implementation: 18X for point stimulation and 12X for rotor activity. We
found that the number of threads that could be launched concurrently was a critical factor in
optimizing the GPGPU implementations.

I. Introduction
Each year approximately 300,000 people in the US die suddenly of a cardiac arrhythmia.
Patients with arrhythmias are typically treated with pharmaceutical and/or ablation therapies.
Cardiac ablations are conducted using a catheter that delivers radio frequency energy to sites
in the heart to kill tissue from which an arrhythmia originates. To identify these ablation
sites, cardiac mapping systems calculate local depolarization times by recording
extracellular potentials (electrograms) from many locations on the endocardial surface,
which are rendered as an activation map to show the progression of electrical waves. With
activation maps, arrhythmia pathways can be rendered on a realistic geometry of the surface
of a patient’s heart. Cardiologists use the maps to guide the ablation to interrupt the pathway
and cure the arrhythmia. This type of image-guided therapy has cured many patients
suffering from arrhythmias; however, arrhythmias with complex pathways often require
multiple ablation procedures which, ultimately, may not be successful.

Computational cardiac modeling provides a powerful approach for improving the efficacy of
cardiac ablation therapy. One strategy is to use the data provided by clinical imaging
systems, such as electroanatomical mapping or high resolution MRI systems, to build a
detailed numerical model of a patient’s heart. A cardiologist could then test an ablation
procedure using the model to determine if it would successfully interrupt an arrhythmia
pathway to cure the arrhythmia. If the model does not indicate therapy success, then
alternate ablation strategies could be explored using the model.

To accomplish this goal, the time required to solve cardiac models must be significantly
reduced; especially if the model is to be solved multiple times to optimize an ablation
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strategy. This requirement demands vast computational resources that are currently only
provided by supercomputers, which typically entail high cost and strict physical constraints
(e.g., space and energy).

Recent developments in the field of high performance computing have leveraged the
computational capabilities of General-Purpose Graphics Processing Units (GPGPUs), which
have been extensively used in many research fields, e.g., bioinformatics, signal processing,
astronomy, weather forecasting, and molecular modeling. For cardiac models, parallel
computations of ionic currents at a large number of model nodes using GPGPUs shall
provide significant performance improvements over that of traditional processors (CPUs).
Previous work showed that, running on an Xbox, a GPGPU implementation of a cardiac
tissue model was twice as fast as a CPU, even for a small-scale model [1]. In this paper, we
demonstrate that significant speed-ups can be achieved when a cluster of GPGPUs are used
to solve a two dimensional monodomain cardiac action potential model.

II. Background
A. GPGPUs

General-Purpose Graphics Processing Units (GPGPUs) achieve high performance through
massively parallel processing of hundreds of computing cores. With the help of a parallel
programming model, e.g., CUDA (Compute Unified Device Architecture), application
developers can take advantage of CUDA-enabled GPUs that are available in desktop and
notebook computers, professional workstations, and supercomputer clusters.

B. Cardiac Model
In our cardiac model, transmembrane potential (Vm) at each node in a rectilinear 2D grid
was computed using a continuum approach with no-flux boundary conditions and finite
difference integration, as we have previously described [2-3]. Although the 2D model is not
clinically relevant, it allows us to quickly prototype different techniques that could then be
applied to a clinically relevant 3D model. An overview of the model and representative
results are shown in Figure 1. The general algorithm for the model is shown in Figure 2. The
differential equations were solved independently on a matrix of Nx*Ny nodes at each time
step. Therefore, within each time step there is no data inter-dependency, which fits the GPU
architecture well – ample opportunities can be exploited for data-level parallelism.

Membrane ionic current kinetics (Iion, μA/cm2) are computed using the Drouhard-Roberge
formulation of the inward sodium current (INa) [4] and the Beeler-Reuter formulations of the
slow inward current (Is), time independent potassium current (IK1), and time-activated
outward current (Ix1) [5]. Fiber orientation was 33deg. Diffusion coefficient along fibers was
0.00076 cm2/msec and diffusion across fibers was 0.00038 cm2/msec. Point stimulation and
electrical rotor activity were simulated. All simulations were checked for accuracy and
numerical stability.

III. GPGPU-based Cardiac Arrhythmia Model
As shown in Figure 2, the general algorithm loops through each node in a 2D grid (Xstep
represents the coordinate of the X direction and Ystep the coordinate of the Y direction).
Inside the loop, the same set of functions is solved at each node. The temporal loop is
outside the nested spatial loops. Because of the sequential structure of the program, large
spatial domains and/or long-time simulations require solution times that increase as a factor
of domain area.
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Typical parallel implementations of N dimensional cardiac models are relatively
straightforward because, once the diffusion currents have been computed; there is no data
dependency between the neighboring nodes in the grid at any particular time step. Therefore,
the differential equations that represent myocyte electrophysiology (the brgates and
brcurrents functions) can be solved at each node, in any sequence.

In our GPGPU implementation of the cardiac model, the basic idea is to get rid of the double
(Xsteps and Ysteps) inner loops where data parallelism resides and the speedup can be
achieved. The outside time loop is impossible for us to eliminate. The GPGPU model works
basically the same way as the CPU model but with larger “bandwidth”: thanks to hundreds
of cores in a commodity GPGPU, the set of functions could be applied to different nodes in
the grid in parallel. Note that GPGPU computing falls into SIMD (Single Instruction
Multiple Data) category, which means that the instructions the threads execute are the same
but the data processed by these threads belong to different nodes.

We have implemented a model running on GPGPUs that completely eliminates one loop
(Xsteps or Ysteps) and reduces the number of iterations in the other. This is done by
assigning a number of threads to execute the set of functions on the corresponding grid
nodes. Theoretically, the relation between the threads and the nodes is a one-to-one
mapping. However, because limited resources (e.g. registers) are available on a GPU card, a
large number of threads can only handle a portion (say 30 columns) of grid nodes. The same
threads are used again to calculate another portion of the grid after finishing the previous
part. It is easy to achieve the assignment of threads using CUDA directives. For example,
for the 2D grid containing Nx by Ny nodes, i.e. Nx columns and Ny rows of nodes, we can
compute W columns using W*Ny threads. The following CUDA code will accomplish this
task.

In the CUDA programming model [6], a GPU device is usually viewed as a grid containing
a large amount of equally-shaped blocks, into which the threads are grouped. For the above
code, W*Ny threads are grouped into W blocks, each of which contains Ny threads. The
parameters of dimGrid and dimBlock define how the blocks (threads) align in the grid
(block). Each thread block in the grid executes on a multiprocessor and the threads in the
block execute on multiple cores inside the multiprocessor. Such parallel execution of blocks
of threads on W columns of data reduces the initial double loops shown in Figure 2 to one
small loop as follows.

Considering multiple threads would concurrently execute the Vmdiff function, serialized
execution is needed because each node would update the diffusion terms of the neighbors in
this function and eventually multiple threads would be writing to the same memory location.
Without serialization, this would potentially lead to data overwritten and incoherence, and as
a result, produce incorrect simulation results. To solve this problem, we utilized atomic add
operations in the Vmdiff function. Note that normal arithmetic operations are used in other
functions, as there are no updates to neighboring nodes. Both GPU cards we used in the
experiments support the atomic add operation.
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IV. Results
A. Environment

We ran our GPGPU-based model on two different GPU cards and the CPU-based model
was run on the respective machines they reside on. The first machine had 4 Intel E5520
2.26GHz Quad Core (total 16 cores) CPUs, 8MB L1 cache and 16GB memory. It also had a
Tesla C1060GPU card which contains 30 multiprocessors, each having 8 cores (total 240
cores) and 4GB global memory. The second machine had 2 Intel E5530 2.4GHz Quad Core
(total 8 cores) CPUs, with 8MB L1 cache and 24GB memory, as well as a Fermi Tesla
C2050 GPU card, which has 14 multiprocessors, each with 32 cores (total 448 cores), and
3GB global memory. The CUDA driver version was 3.1 on Tesla C1060 and 3.2 on Tesla
C2050.

B. Scalability and Performance
We report the scalability and performance results for both point stimulation and electrical
rotor activity on two GPU cards. Both GPUs ran the same code. We use a well-developed
CPU-implementation [3] as the basis for comparison. While we didn’t specifically optimize
the CPU code, we feel that our current GPU implementations can be further improved by
utilizing shared memory, grouping threads into more blocks, etc. Our GPU implementation
is a straightforward port of the CPU implementation.

1. Point stimulation—Table 1 shows the input parameters used for the stimulation of
different sizes as well as the runtimes on the two GPU cards. Nx (Ny) in the leftmost
column specifies the number of nodes in X (Y) dimension of a grid. The size of the grids we
experimented with varied from 64*64 to 448*448.

In Table 1, dx and dt are spatial and temporal parameters of the cardiac model respectively.
The simulated length in x-dimension is Lx (2cm). “dx”, which is equal to dy, is calculated as
Lx/Nx and “simulation steps” is calculated as total/dt (total means the overall simulated time
is 250msecs). We fed the same input to the model running on CPU and two GPUs and also
recorded the execution times for comparison. The last two columns in the table are the
runtimes in seconds on the Tesla C1060 GPU and the Tesla C2050 GPU.

In terms of correctness, the model outputs are identical between the original CPU
(sequential) implementation and the GPGPU (parallel) implementation. The voltage curve
for each node is similar the one in Figure 1-C. The picture at the top of Figure 3 is a
snapshot of the transmembrane potential for sampled nodes in the 2D grid; the grid size is
384*384. The sample interval is one node in both directions of the grid so the coordinates
are less than 192. The bottom graph shows the voltage curve of a node at the final stage of
simulation. The X axis shows that the total simulated time (in msec) is 250 and the Y axis
shows the values of the potential voltage (in mV) during the simulation.

Figure 4 shows the speedups we achieved on both the Tesla C1060 and the Tesla C2050
over the sequential version. The X axis is the grid size from 64*64 to 448*448, the Y axis is
the relative speedup value. One can see that both cards can yield more than 16X speedups
running on large input sizes like 384*384 and 448*448. While the sequential model takes
one or two days to finish, both GPU models finish in one or two hours. The larger the input
size, the larger the speedups we can get from both GPU cards. Note that, as shown in the last
two columns in Table 1, the Fermi-architecture Tesla C2060 runs faster than the Tesla
C1050 for all input sizes. We stop at the grid size of 448*448 because limited threads could
be launched in a thread block, given limited resources (e.g. registers) on the GPU cards. For
the 448*448 case, we were able to assign 30 blocks of threads to run the code and each of
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the 30 blocks contained 448 threads. Our future work will include scaling our model to run
with even larger grid sizes.

2. Electrical rotor—For the electrical rotor activity, we ran our model with 2D grid size
(Nx*Ny) ranging from 256*256 to 448*448. Table 2 displays the input parameters and the
run times on two GPUs for these sizes. The input parameters have the same meaning as in
Table 1. Here 500msecs is the simulated time and all the dt values are 0.025, so the
simulations all took 20,000 steps. Lx, the simulated length, is 10cm.

We again got identical outputs between the CPU and GPU implementations. The final
voltage values for all nodes at the end of simulation are represented graphically at the top of
Figure 5, and the voltage curve for each node during the simulation is shown at the bottom
of Figure 5. The grid size in the top figure is 384*384: voltage values for all nodes in the
grid are displayed. In the bottom figure, the X axis is the time (in msecs) and the Y axis is
the Voltage (in mV). 500msec is the last millisecond of simulation. We have similar curves
and graphs for other grid sizes as well.

Figure 6 shows the GPU speedups over CPU from running various problem sizes on the
Tesla C1060 and the TeslaC2050. The X axis represents the grid size and the Y axis shows
the speedup value. The two cards yield at least 10X speedups for all the input sizes. The
program running on GPU would finish in minutes compared to hours on the CPU. Also, the
general trend is that the bigger input sizes lead to better speedups. For example, the Tesla
C2050 ran 14.5, 15, 17.4 and 16.5 faster than CPU with grid size of 256*256, 320*320,
384*384 and 448*448 respectively. We can also see from the rightmost columns of Table 2
that the Tesla C2050 GPU outperformed the Tesla C1060 by as much as 50%.

V. Conclusions
In this paper, we ported an existing cardiac arrhythmia model to GPGPUs and significantly
reduced the running time. We ran our GPGPU-based simulation on Tesla C1060 and Tesla
C2050 and compared the results to the CPU implementation. We found that the outputs were
identical and the speedups could reach as high as 18X upon point stimulation and 12X on
electrical rotor activity. We believe that computational modeling of cardiac
electrophysiology can benefit from running on GPGPUs, which are a cost-effective tool for
a clinical setting. In the future, we plan to extend our work to run 3D models with realistic
geometries.
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Figure 1.
A: Cardiac muscle is modeled as a large geometrical network of nodes that are
electronically coupled. B: The electrical potential of the cell membrane at each node is
represented as a large set of differential equations. C: Numerical integration of the
differential equations provides transmembrane voltage (action potentials) at each node. D:
Spatiotemporal visualization of transmembrane voltage reveals electrophysiological
mechanisms of arrhythmias (an electrical rotor is shown).
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Figure 2.
General code that is solved at each time step to compute transmembrane potential (Vm).
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Figure 3.
GPGPU implementation: results of the model for point stimulation. Top: an image of
transmembrane potential. Bottom: transmembrane potential for one node.
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Figure 4.
Speedups from Tesla C1060 and Tesla C2050 given different input sizes.
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Figure 5.
GPGPU implementation: results of the model for reentrant activity. Top: an image of
transmembrane potential. Bottom: transmembrane potential for one node.
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Figure 6.
Speedups from the Tesla c1060 and the Tesla c2050 on electrical rotor simulation for
different sizes.
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