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Utilizing multiple biomarkers is increasingly common in epidemiology. However, the combined impact of corre-

lated exposure measurement error, unmeasured confounding, interaction, and limits of detection (LODs) on in-

ference for multiple biomarkers is unknown. We conducted data-driven simulations evaluating bias from

correlated measurement error with varying reliability coefficients (R), odds ratios (ORs), levels of correlation

between exposures and error, LODs, and interactions. Blood cadmium and lead levels in relation to anovulation

served as the motivating example, based on findings from the BioCycle Study (2005–2007). For most scenarios,

main-effect estimates for cadmium and lead with increasing levels of positively correlated measurement error

created increasing downward or upward bias for OR > 1.00 and OR < 1.00, respectively, that was also a function

of effect size. Some scenarios showed bias for cadmium away from the null. Results subject to LODs were

similar. Bias for main and interaction effects ranged from −130% to 36% and from −144% to 84%, respectively.

A closed-form continuous outcome case solution provides a useful tool for estimating the bias in logistic regres-

sion. Investigators should consider how measurement error and LODs may bias findings when examining bio-

markers measured in the same medium, prepared with the same process, or analyzed using the same method.

biomarkers; cadmium; environmental epidemiology; lead; measurement error; reliability

Abbreviations: DAG, directed acyclic graph; LOD, limit of detection; MSE, mean squared error; OR, odds ratio.

Accurately identifying health effects from chemical
exposures among populations is essential, as chemical ex-
posures are widespread and discordant conclusions complicate
risk assessment. Although issues concerning exposure timing
are increasingly being addressed in the environmental epide-
miologic literature, the biomarker measurement process and
limits of detection (LODs) are often overlooked as sources of
bias. Assessing interactions between biomarkers of chemical
exposure is increasingly common, yet bias in interaction pa-
rameters from correlated error has not been quantified. Such
correlations could arise between chemical exposures stemming
from similar sources or subject to a common cause, or during
the measurement process if the biomarkers were measured in
the same medium and were subject to LODs.
Imperfect measurement complicates inference (1). With 1

continuous biomarker and independent random measurement
error, effect estimates are usually biased toward the null (2, 3).

Independent random measurement error in the context of
confounding between exposures can induce bias in either
direction (4). Less well studied is correlated exposure
measurement error, which may occur when biomarkers are
measured using the same collection, preparation, and mea-
surement methods. When only 1 variable is truly associated
with the outcome, correlated measurement error between
exposure and a confounder tends to induce less bias than
correlation between exposures (5), and it can bias results
upward when odds ratio (OR) > 1.00 and downward when
OR < 1.00 (6). Measurements are limited by values below
the laboratory LOD. Appropriate substitution for values
below the LOD can minimize bias (7–10). Bias in settings
with multiple correlated variables subject to LODs, which
are measured with correlated error, has yet to be explored.
The effects of varying levels of correlation between co-

variates, interaction, and circumstances subject to LODs are
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unknown. Therefore, we assessed bias in main effects and
interactions between biomarkers under data-driven scenari-
os. Our example was motivated by the BioCycle Study (11)
and is specific to cadmium and lead exposures measured in
blood in relation to anovulation (12). This example is
broadly applicable to settings with binary outcomes, and
we provide the closed-form solution for linear outcomes.

MATERIALS AND METHODS

Motivation

Evidence suggests that exposure to cadmium (13, 14)
and lead (15, 16) may affect ovulation. Among 259 healthy
premenopausal women in the BioCycle Study (2005–
2007), we observed (nonsignificant) associations between
elevated blood levels of cadmium and lead and anovulation
(OR = 1.29 (95% confidence interval: 0.20, 8.47) and
OR = 1.20 (95% confidence interval: 0.62, 2.34), respec-
tively) (12). Could measurement error have biased these
results? We sought to describe the effect of correlated mea-
surement error and LODs, with and without effect modifi-
cation, on the association between cadmium and lead
exposures and anovulation via simulation. Cadmium and
lead levels were simulated using the measured mean and
variance from the BioCycle Study. Cadmium and lead
levels measured in the BioCycle Study were approximately
lognormally distributed, had arithmetic means of 0.34 µg/L
and 1.02 µg/dL and variances of 0.05 and 0.40, and were
positively correlated (Pearson’s ρ = 0.12; P = 0.04). The ob-
served correlation is a function of the underlying true expo-
sure correlation as well as measurement error correlation.
Our simulations explored a variety of correlation scenarios.
The prevalence of anovulation was 8%.

Directed acyclic graph

The causal relation between 2 continuous biomarkers X1

and X2, such as cadmium and lead; measured levels of
those biomarkers, X�

1 and X�
2 ; and a binary outcome Y, such

as anovulation, is expressed in the directed acyclic graph
(DAG) shown in Web Figure 1 (available at http://aje.
oxfordjournals.org/). DAGs are useful tools for describing
the structure of measurement error (17). True cadmium and
lead exposure levels are associated via an antecedent, un-
measured confounding factor (U1), inducing correlation, ρx,
between X1 and X2. Results pertaining to ρx will be applica-
ble to bias in situations with unmeasured confounding.
While the exposures to environmental toxicants may cause
the outcome, we make inference using measured exposures.
The measurement process induces error, and we obtain X�

1
and X�

2 , not X1 and X2. Because cadmium and lead are mea-
sured from the same specimen collection using the same
preparation methods and the same equipment, the measure-
ment process may introduce additional correlation. U2 repre-
sents the measurement error process, creating measurement
error correlation, ρε, between X�

1 and X�
2 .

Measurement error

True biomarker values X are often measured with some
error, ε, such that the measured biomarker values can be
expressed as X�

j ¼ Xj þ 1j, where j indicates the biomarker.
Classical, normally distributed, mean-zero measurement
error was assumed for εj.

We characterized the relative magnitude of measurement
error by means of the reliability coefficient, R, in terms of
biomarker and error variances, such that

R ¼ varðXjÞ
varðXjÞ þ varð1jÞ ¼

varðXjÞ
varðX�

j Þ
:

An R of 1 indicates a biomarker with no measurement
error, while an R close to 0 is almost entirely error. Plausible
values for R between 0.5 and 1.0 were based upon laborato-
ry estimates and literature review (18, 19). Measurement
error variances for cadmium and lead were a function of
their respective variances and R,

varð1jÞ ¼ varðXjÞ 1
R
� 1

� �
:

Limit of detection

Biomarker measurements may be censored by LODs,
leading to missing values. Lead and cadmium in the Bio-
Cycle Study were subject to LODs. The laboratory-reported
LODs were 0.20 μg/L for cadmium (25% < LOD) and
0.25 μg/dL for lead (0% < LOD). Because nearly all lead
values were above the LOD in simulations, we simulated a
case where the lead LOD was 0.50 μg/dL, resulting in ap-
proximately 25% of values being less than the LOD.
LOD=

ffiffiffi
2

p
was used for values below the LOD, to reflect

common practice (9).

Simulations

We conducted a simulation study to evaluate bias to in-
ference under several data-driven scenarios of varying
sample sizes, R’s, odds ratios, ρx, and ρε. For each realiza-
tion of the data, vectors of true cadmium (Cd) and
lead (Pb) blood levels, ~X ¼ ðCd; PbÞ, were simulated, as-
suming lognormal distributions via component-wise expo-
nentiating vectors generated from a multivariate normal
distribution,

~U~N

 
~mU ¼ mlogCd

mlogPb

 !
;

X
U
¼ s2

logCd rxslogCdslogPb

rxslogCdslogPb s2
logPb

" # !
:

Parameter values were chosen on the basis of observed
levels in the BioCycle Study, with consideration given to

Correlated Measurement in Environmental Epidemiology 85

Am J Epidemiol. 2013;177(1):84–92

http://amjepid.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kws209/-/DC1
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/
http://aje.oxfordjournals.org/


varying levels of measurement error,

mlogCd ¼ logð0:34Þ � 0:5� s2
logCd;

s2
logCd ¼ log R� 0:05

0:342
þ 1

� �
and

mlogPb ¼ logð1:02Þ � 0:5� s2
logPb;

s2
logPb ¼ log R� 0:40

1:022
þ 1

� �

(see Web Appendix for details). We constructed cadmium
and lead exposures measured with multivariate normally
distributed error, such that ~X� ¼ ~X þ~1, where

~1~N ~m1 ¼ 0
0

� �
;
X

1
¼ s2

1Cd r1s1Cds1Pb

r1s1Cds1Pb s2
1Pb

� �� �
;

s2
1Cd ¼ ð1� RÞ � 0:05, and s2

1Pb ¼ ð1� RÞ � 0:40. We
applied LODs to the simulated measured exposure levels.
Application of LODs to our previously simulated values re-
sulted in

X�� ¼ X � if X� � LOD
missing if X� , LOD:

�

Levels of the correlations ρX and ρε varied between −0.6
and 0.6 by increments of 0.1, independently, for a total of
169 different combinations (132 = 169). Sample sizes
ranged from 100 to 1,000. For parsimony, results for
n = 200 are presented. Results reflect a mean of 5,000 itera-
tions for each combination of parameters. Findings for lead
and cadmium apply to other lognormally distributed bio-
marker measurements. Cadmium had a smaller mean and
wider variance, with approximately 25% of values below
the LOD, while lead had a larger mean and smaller vari-
ance and was not affected by values below the LOD.

Models for anovulation

A range of effect sizes for the relation of the two expo-
sure biomarkers, cadmium and lead, with anovulation was
simulated using true odds ratios of 0.75, 1.00, 1.25, and
1.75. We used 3 models to estimate the odds of anovulation
for main effects only and where an interaction term was 1.5
times the log odds of the main effects. We added measure-
ment error as logitðYjÞ ¼ aþ b1X

�
1 þ b2X

�
2 for main ef-

fects and logitðYjÞ ¼ aþ g1X
�
1 þ g2X

�
2 þ g3X

�
1 � X�

2 with
an interaction. LODs and measurement error were added as
logitðYjÞ ¼ aþ b1X

��
1 þ b2X

��
2 for main effects and

logitðYjÞ ¼ aþ g1X
��
1 þ g2X

��
2 þ g3X

��
1 � X��

2 with an
interaction.

Simulation results

We quantified bias as ð �̂b � bÞ and relative percent bias

as ½ð �̂b � bÞ=b� 100� to describe how estimates deviated

from the truth. Mean squared error (MSE), calculated as
varðb̂ Þ þ biasðb̂ Þ2, described variability in our results. Rel-
ative percent bias and MSE were determined for each of 3
models with and without an interaction: 1) no measurement
error, 2) measurement error, and 3) LOD with measurement
error. Simulations were performed with R statistical soft-
ware (R Foundation for Statistical Computing, Vienna,
Austria, 2010).

RESULTS

We present results with minimal, moderate, and severe
measurement error, corresponding to R values of 0.95,
0.80, and 0.50, and for odds ratios of 0.75 and 1.75,
because minimal bias was observed for OR = 1.00 and bias
for OR = 1.25 was comparable to that for OR = 0.75,
though in the opposite direction. Notably with regard to in-
terpretation, negative relative percent bias indicates bias
toward OR = 1.00 (β = 0) for both OR = 0.75 (true
β = −0.29) and OR = 1.75 (true β = 0.56), whereas the cor-
responding absolute bias would be upward and downward,
respectively.

Main-effects models

Minimal bias was observed at low levels of measurement
error (R = 0.95) (Table 1). Bias and MSE increased as the
magnitude of measurement error increased (R = 0.80)
(Web Table 1). Bias and MSE were highest under severe
measurement error (R = 0.50), with most cases having neg-
ative relative percent bias (Table 2). Figure 1 demonstrates
that the bias in effect estimates observed in our simulations
(in both magnitude and direction) is a function of both ρx
and ρɛ, as well as the marginal exposure distributions.
Figure 1 and the tables demonstrate that the magnitude of
bias varied by levels of ρx and ρɛ, with the greatest levels
of bias occurring with the greatest levels of measurement
error (R = 0.50), and that the direction of the bias could be
affected for cadmium but not for lead. Under those condi-
tions, strongly positively correlated biomarkers (ρx = 0.6)
with OR = 1.75 were biased downward for ρɛ > 0 and
upward for ρɛ < 0 for cadmium, while for lead, bias from
OR = 1.75 was consistently downward. For ρx =−0.6
(upper left panel in Figure 1), bias from OR = 1.75 was
downward, with minimal bias for ρɛ =−0.6, increasing in
magnitude as ρɛ increased to 0.6. The lower middle panel
of Figure 1 shows that uncorrelated errors (ρε = 0) led to
downward bias for OR = 1.75, with bias increasing in mag-
nitude as ρx increased for cadmium but not for lead. The
biases for OR = 0.75 and OR = 1.25 displayed the same pat-
terns for lead and cadmium with regard to ρɛ but were of a
lesser magnitude and in the opposite directions for
OR = 0.75. When ρε = 0 and ρx = −0.6, the downward bias
was decreased, with estimates of the bias of lead remaining
relatively unchanged. The effect of bias from uncorrelated
measurement error (ρε = 0) on uncorrelated biomarkers
(ρx = 0) is shown in Tables 1 and 2. The percent bias in-
creased with increasing measurement error and was gener-
ally lower than bias for correlated biomarkers and errors.

86 Pollack et al.

Am J Epidemiol. 2013;177(1):84–92

http://amjepid.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kws209/-/DC1
http://amjepid.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kws209/-/DC1


The direction and degree of bias depended upon levels
of error correlation (Figure 1). Strongly positively correlat-
ed errors (ρε = 0.6) resulted in bias toward the null, which
could cause a statistically significant finding to become
nonsignificant, as shown in the lower right panel of
Figure 1. For cadmium, downward bias was observed for
OR < 1.00 and upward bias for OR > 1.00, with positively
correlated or uncorrelated biomarkers (ρx = 0.6 or ρx = 0.0)
and negatively correlated measurement error (ρɛ < 0).

These results show that bias in effect estimates for a di-
chotomous outcome is a function of the level of measure-
ment error, R, and that the degree to which error
correlations might play a role depends on the marginal dis-
tribution of the biomarkers. Evidence of the latter is that
varying ρε had little to no effect on the bias of lead esti-
mates but considerable effect on the bias of cadmium esti-
mates. Lack of a closed-form solution for the bias here
hinders us from making general statements regarding these

Table 1. Relative Percent Bias (and Mean Squared Error) in the Associations Between Cadmium and Lead Levels and Anovulation Under

Low Levels of Measurement Error (R = 0.95) for OR = 0.75 and OR = 1.75 in Main-Effects Models (n = 200), With Varying Levels of Correlation

Between Biomarkers and Error Correlation, BioCycle Study, 2005–2007

ρɛ =−0.6 ρɛ = 0.0 ρɛ = 0.6

Cadmium Lead Cadmium Lead Cadmium Lead

OR= 0.75

ρx =−0.6 2.82 (0.55)a −1.12 (0.08) −10.04 (0.56) −3.97 (0.07) −22.44 (0.55) −5.12 (0.07)

ρx =−0.2 10.39 (0.46) −5.53 (0.06) −1.84 (0.47) −3.62 (0.06) −18.97 (0.44) −3.69 (0.06)

ρx = 0.0 14.53 (0.46) 3.53 (0.07) −2.14 (0.47) 1.19 (0.06) −12.05 (0.46) −3.37 (0.06)

ρx = 0.2 14.72 (0.47) 1.13 (0.06) 7.11 (0.46) −0.28 (0.06) −13.30 (0.46) −2.01 (0.07)

ρx = 0.6 31.86 (0.70) −6.58 (0.08) 7.17 (0.65) −5.82 (0.09) 7.36 (0.69) −3.46 (0.09)

OR = 1.75

ρx =−0.6 1.60 (0.58) −2.62 (0.09) −5.72 (0.59) −3.43 (0.08) −24.05 (0.58) −7.65 (0.08)

ρx =−0.2 3.99 (0.48) −0.34 (0.07) −7.93 (0.48) −4.18 (0.07) −11.89 (0.73) −2.74 (0.07)

ρx = 0.0 6.49 (0.47) −0.87 (0.07) −3.38 (0.50) −2.89 (0.07) −5.55 (0.49) −2.93 (0.07)

ρx = 0.2 4.34 (0.51) −1.42 (0.07) −1.98 (0.52) −3.02 (0.07) −7.38 (0.50) −3.27 (0.07)

ρx = 0.6 12.38 (0.70) −5.40 (0.10) 8.97 (0.73) −2.51 (0.11) 0.65 (0.75) −4.06 (0.10)

Abbreviation: OR, odds ratio.
a Numbers in parentheses, mean squared error.

Table 2. Relative Percent Bias (and Mean Squared Error) in the Associations Between Cadmium and Lead Levels and Anovulation Under

High Levels of Measurement Error (R = 0.50) for OR = 0.75 and OR = 1.75 in Main-Effects Models (n = 200), With Varying Levels of Correlation

Between Biomarkers and Error Correlation, BioCycle Study, 2005–2007

ρɛ =−0.6 ρɛ = 0.0 ρɛ = 0.6

Cadmium Lead Cadmium Lead Cadmium Lead

OR= 0.75

ρx =−0.6 −51.74 (0.68)a −47.39 (0.12) −105.71 (0.66) −58.64 (0.12) −129.57 (0.73) −54.97 (0.11)

ρx =−0.2 −8.47 (0.54) −36.50 (0.09) −56.85 (0.50) −51.24 (0.10) −97.04 (0.64) −50.49 (0.10)

ρx = 0.0 3.66 (0.49) −37.63 (0.08) −55.53 (0.47) −46.75 (0.09) −83.74 (0.60) −50.55 (0.10)

ρx = 0.2 11.39 (0.49) −36.41 (0.08) −28.49 (0.47) −44.78 (0.09) −75.08 (0.59) −49.19 (0.11)

ρx = 0.6 34.54 (0.47) 36.71 (0.08) −3.53 (0.50) −44.73 (0.10) −42.04 (0.72) −51.26 (0.08)

OR = 1.75

ρx =−0.6 −37.85 (0.75) −47.27 (0.22) −93.44 (1.02) −59.90 (0.29) −126.10 (1.43) −58.47 (0.27)

ρx =−0.2 −5.70 (0.51) −39.12 (0.16) −63.15 (0.70) −52.97 (0.23) −98.69 (1.07) −53.22 (0.24)

ρx = 0.0 4.61 (0.50) −40.78 (0.17) −44.53 (0.57) −50.08 (0.22) −88.62 (0.97) −49.48 (0.22)

ρx = 0.2 12.26 (0.47) −37.89 (0.15) −36.27 (0.51) −47.99 (0.20) −79.82 (0.93) −48.01 (0.21)

ρx = 0.6 36.71 (0.54) −39.66 (0.16) −8.95 (0.48) −48.39 (0.21) −49.88 (0.82) −50.54 (0.25)

Abbreviation: OR, odds ratio.
a Numbers in parentheses, mean squared error.
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relations. However, a similar scenario with a continuous
outcome can further illustrate the relations between correla-
tions and bias in effect estimates. Assume that Y in Web
Figure 1 is a continuous outcome variable, while the re-
mainder of the DAG is unchanged. Standard linear regres-
sion could be employed here rather than the logistic
regression considered previously. The closed forms for
effect estimates in standard linear regression will lead to a
bias from the use of a measured exposure, X*, instead of
the true exposure, X, that can be expressed as: Bias (β) =
β− βt = [(cov(X) + cov(ε))−1− (cov(X))−1]cov(X,Y) (details
are provided in the Web Appendix). Using the same levels
of exposure and effect size from the dichotomous cases
above, this closed form for linear regression provides a rea-
sonable approximation of the expected bias in a logistic
framework from confounded effect estimates subject to cor-
related measurement error. Our simulation results are nearly
identical to this closed-form solution (Web Figure 2). Re-
searchers could quantify potential bias from correlated mea-
surement error using this formula. This sensitivity analysis
could be performed for a known or estimated amount of

correlated measurement error through cov(ε) or for a range
of potential levels and correlations of errors. Where it was
previously possible to conduct sensitivity analyses to quan-
tify effects of uncorrelated measurement error, this solution
enables straightforward evaluation of similar cases with
correlated exposure measures and errors.

Interaction models

Interaction models were substantially more biased than
main effects. Minimal bias was observed with minimal
error (R = 0.95) (Table 3). At moderate levels of measure-
ment error (R = 0.80), bias and MSE were typically lowest
for the main effects of lead, higher for cadmium, and
highest for the interaction (Web Table 2). Under severe
measurement error (R = 0.50), γ3 was almost exclusively
strongly biased toward the null, possibly because of less
compensation between the main effects and interaction
(Table 4). MSE increased with increasing levels of error
and correlation, with the highest MSEs observed for strong
positively correlated errors.

Figure 1. Bias in the associations between cadmium and lead levels and anovulation under high levels of measurement error (R = 0.50) in
main-effects models, with varying levels of true correlation between biomarkers (ρx) and error correlation (ρɛ), BioCycle Study, 2005–2007. The
upper 3 panels show fixed levels of ρx and ρɛ values varying from −0.6 to 0.6, while the lower 3 panels show fixed levels of ρɛ and varying ρx
values. (OR, odds ratio).
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Table 3. Relative Percent Bias (and Mean Squared Error) in the Associations Between Cadmium and Lead Levels and Anovulation Under Low Levels of Measurement Error (R = 0.95) for

OR = 0.75 and OR = 1.75 in Interaction Models (n = 200), With Varying Levels of Correlation Between Biomarkers and Error Correlation, BioCycle Study, 2005–2007

ρɛ =−0.6 ρɛ = 0.0 ρɛ = 0.6

Cadmium Lead Cadmium × Lead Cadmium Lead Cadmium × Lead Cadmium Lead Cadmium × Lead

OR= 0.75

ρx =−0.6 43.49 (1.53)a 11.52 (0.19) −41.07 (2.29) 37.30 (1.61) 13.31 (0.20) −60.46 (2.48) 39.61 (1.70) 12.48 (0.21) −73.34 (2.61)

ρx =−0.2 18.53 (2.04) 5.00 (0.24) −4.57 (2.11) 18.60 (2.11) 4.35 (0.27) 16.70 (2.34) −1.97 (2.16) −1.64 (0.25) −10.50 (2.11)

ρx = 0.0 5.48 (2.21) −0.23 (0.26) 6.93 (1.94) −22.97 (2.25) −8.11 (0.27) 17.31 (1.94) −10.01 (2.22) −2.91 (0.27) 5.28 (1.94)

ρx = 0.2 −24.71 (2.50) −11.75 (0.29) 33.49 (1.95) −50.07 (2.42) −19.20 (0.28) 41.51 (1.90) −57.74 (2.41) −18.42 (0.28) 36.46 (1.89)

ρx = 0.6 −104.01(3.16) −43.05 (0.37) 83.17 (2.08) −107.17(3.03) −37.03 (0.34) 76.57 (1.89) −122.24 (3.08) −45.46 (0.36) 81.20 (1.94)

OR = 1.75

ρx =−0.6 37.68 (1.74) 10.68 (0.23) −40.89 (2.83) 37.86 (1.84) 12.19 (0.24) −62.82 (3.17) 37.06 (1.92) 13.50 (0.25) −82.50 (3.64)

ρx =−0.2 31.21 (2.34) 8.10 (0.29) 17.24 (2.59) 25.99 (2.92) 5.99 (0.28) −26.63 (2.58) 16.53 (2.28) 6.77 (0.28) −33.14 (2.63)

ρx = 0.0 8.16 (2.74) 0.12 (0.34) 2.43 (2.73) −1.12 (2.62) −2.37 (0.32) −1.34 (2.60) 7.11 (2.60) −1.17 (0.33) −8.58 (2.65)

ρx = 0.2 −2.28 (2.97) −5.16 (0.36) 14.21 (2.73) −22.55 (3.05) −9.73 (0.36) 15.51 (2.73) −37.22 (2.96) −14.02 (0.36) 17.84 (2.63)

ρx = 0.6 −38.03 (3.94) −26.39 (0.49) 46.98 (3.32) −70.83 (4.11) −34.56 (0.51) 59.48 (3.44) −94.69 (4.45) −33.87 (0.52) 58.84 (3.46)

Abbreviation: OR, odds ratio.
a Numbers in parentheses, mean squared error.

Table 4. Relative Percent Bias (and Mean Squared Error) in the Associations Between Cadmium and Lead Levels and Anovulation Under High Levels of Measurement Error (R = 0.50)

for OR = 0.75 and OR = 1.75 in Interaction Models (n = 200), With Varying Levels of Correlation Between Biomarkers and Error Correlation, BioCycle Study, 2005–2007

ρɛ =−0.6 ρɛ = 0.0 ρɛ = 0.6

Cadmium Lead Cadmium × Lead Cadmium Lead Cadmium × Lead Cadmium Lead Cadmium × Lead

OR= 0.75

ρx =−0.6 40.82 (1.65)a −18.87 (0.20) −108.39 (1.81) −13.58 (1.68) −32.17 (0.22) −131.23 (2.08) −26.00 (1.76) −25.76 (0.22) −147.37 (2.23)

ρx =−0.2 65.51 (1.81) −12.37 (0.21) −82.49 (1.64) −3.28 (1.84) −33.27 (0.23) −95.22 (1.78) −48.02 (1.99) −32.78 (0.24) −103.06 (1.81)

ρx = 0.0 59.88 (1.94) −18.50 (0.23) −62.26 (1.56) −18.60 (1.91) −40.99 (0.25) −65.01 (1.58) −58.81 (2.04) −39.18 (0.26) −83.52 (1.66)

ρx = 0.2 57.45 (2.03) −22.64 (0.24) −44.70 (1.48) −20.32 (1.94) −43.87 (0.26) −50.02 (1.46) −80.11 (2.12) −49.69 (0.27) −51.80 (1.39)

ρx = 0.6 49.87 (2.13) −30.30 (0.26) −19.74 (1.37) −66.29 (2.13) −64.91 (0.31) 1.89 (1.34) −112.22 (2.31) −70.78 (0.32) −8.58 (1.15)

OR = 1.75

ρx =−0.6 25.37 (1.60) −25.30 (0.24) −102.76 (2.84) −14.82 (1.73) −34.17 (0.28) −128.39 (3.73) −32.12 (1.92) −28.49 (0.28) −145.25 (4.56)

ρx =−0.2 48.86 (1.99) −21.33 (0.25) −78.22 (2.36) −7.23 (1.82) −34.09 (0.30) −96.92 (2.80) −36.72 (2.07) −34.53 (0.31) −110.28 (3.18)

ρx = 0.0 57.00 (2.09) −21.71 (0.26) −64.93 (2.10) −12.11 (1.97) −38.55 (0.33) −76.80 (2.36) −46.92 (2.19) −41.30 (0.29) −89.67 (2.59)

ρx = 0.2 60.30 (2.22) −22.35 (0.27) −55.99 (1.96) −21.78 (1.95) −45.54 (0.37) −57.01 (1.92) −55.98 (2.30) −45.59 (0.38) −72.33 (2.17)

ρx = 0.6 39.96 (2.38) −36.83 (0.36) −20.99 (1.73) −40.85 (2.34) −61.25 (0.49) −21.35 (1.59) −102.16 (2.91) −68.73 (0.55) −21.53 (1.41)

Abbreviation: OR, odds ratio.
a Numbers in parentheses, mean squared error.
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Limit of detection

Results for biomarkers subject to LODs and measure-
ment error were similar (data not shown). Models subject
to LODs had modestly decreased bias for cadmium and
were very similar for lead. MSE was improved for values
below the LOD, as expected because substitution of a cor-
rectly specified constant did not induce bias and artificially
reduced the variance estimator (8). We additionally simulat-
ed a higher LOD for lead of 0.5 (corresponding to approxi-
mately 25% of values below the LOD) and observed
diminished bias in comparison with models for measure-
ment error alone. Incorrect specification of the substitution
value would probably be prone to greater bias (20).

Example: anovulation in the BioCycle Study

Our results suggest that studies finding no association
between continuous exposure biomarkers and dichotomous
outcomes may be subject to bias and may miss harmful as-
sociations. Previously, we found no statistically significant
association between cadmium, lead, and anovulation (12).
Based on simulation results, under reasonable levels of
exposure measurement error and positive correlation, the
observed odds ratios, 1.29 and 1.20, probably reflect a
stronger association which was biased toward the null. Pre-
suming a true odds ratio of 1.75, moderate levels (R = 0.80)
of measurement error resulted in observed odds ratios
between 1.43 and 1.93 under conditions where the correla-
tion between cadmium and lead was low (ρx = 0.2). Under
severe measurement error (R = 0.50), the observed odds
ratio was severely biased towards the null (OR = 1.12) with
strong positively correlated errors (ρɛ = 0.6). Our simula-
tions show that under reasonable levels of measurement
error and correlation, this observed odds ratio could reflect
a stronger association affected by downward bias or a
weaker association biased upward under negatively corre-
lated errors.

DISCUSSION

We evaluated the effects on inference of several factors
not previously considered jointly: varying levels of mea-
surement error (generally leading to attenuation of effects),
correlation between exposures (confounding bias due to a
common cause of the exposures and outcome), correlated
measurement error (collider bias), LODs (measurement
error as a function of exposure level), and statistical interac-
tion. Our simulations, using cadmium and lead biomarker
values in the BioCycle Study and a range of plausible
values of correlation and measurement error, showed that
results are biased toward the null in most settings with
moderate levels of measurement error (R = 0.50) and asso-
ciation, which could produce underestimation of risks to
public health. Bias was negligible across all levels of corre-
lation when the true odds ratio was 1.00 (and where the
odds ratio for cadmium equaled that for lead), indicating
that correlated measurement error would not be responsible
for type 1 error; type 2 error is more likely. The interaction
parameter was consistently more biased toward the null

than the main effects, which could complicate detection of
interactions. The interaction parameter was often biased in
the direction opposite that of the main effects. Murad and
Freedman (21) demonstrated in the linear regression setting
that the errors in interaction parameters do not follow a
normal distribution, as they are the product of 2 normal dis-
tributions. Moreover, the error of the interaction parameter
is also a function of X1 and X2, which is not the case for
the main effects, where the error is independent of X.
Because of the dependence on the values of X1 and X2, the
interaction parameter error can bias the results in either di-
rection. Our findings underscore the difficulty of detecting
both main effects and interaction effects and highlight the
importance of caution in interpretation of findings, as bias
toward the null is likely. Investigators should learn about
the measurement process to understand the levels and direc-
tions of correlation between exposures and error.
Biomarker measurement error can bias results and com-

plicate risk assessment. Confounding and selection bias are
more frequently discussed in the epidemiologic literature,
despite the fact that adjustment for confounding may mini-
mally affect inference (22). There is a robust body of liter-
ature focusing on correction techniques in nutritional
epidemiology (3, 23–25). However, laboratory processes
remain a black box, despite increasing reliance on biomark-
ers. For inductively coupled plasma mass spectroscopy,
specimen processing with mass calibration, nebulizer gas
flow, external calibrator preparation, or deviations during
the quality control process represent potential sources of
error (18, 26). Errors introduced in this process would prob-
ably cause positive correlation, which might produce un-
derestimation of risk. Our findings translate to biologic
variability or other sources of error, provided that such
errors are random and approximately normal.
Our findings of strong bias from correlated measurement

error are in line with previous findings that nondifferential
measurement error may bias findings toward the null (27,
28). We observed bias in simulated lead levels to point con-
sistently downward for OR > 1.00 and upward for
OR < 1.00. However, bias for simulated cadmium levels
was seen in both directions for a given odds ratio, depend-
ing on the correlations. This was due to differences in their
distributions, specifically relative differences in their vari-
ances. As the findings here demonstrate, this bias can be
magnified if those errors are correlated. The closed-form
approximation in the Web Appendix shows the amount of
bias likely to be present based on specific data on the distri-
butions of the biomarkers and anticipated measurement
errors for the given assay. Web Figure 2 displays a linear
approximation for the bias based on our simulations. A
comparison shows that the linear case (Web Figure 2) can
provide insight into the anticipated biases for correlated
measurement errors in logistic regression (Figure 1). There
is a robust body of literature on calibration methods for
known quantities of measurement error in relation to a gold
standard (29–32) but less on assessment of the effects of
correlated error (25, 33). Such corrections assume indepen-
dent error and underestimate the bias. Correlated errors
with weak confounding factors can reverse the direction
and positively or negatively bias the true association,
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whereas correlated errors and strong risk factors do not lead
to appreciable bias with independent measurement error
(5). We extended these findings to the case of 2 correlated
variables associated with the outcome, subject to correlated
error, interactions, and LODs, and observed upward and
downward bias.

Our results confirmed that power to detect an interaction
was diminished in the presence of measurement error (34, 35).
Interactions between biomarkers of exposure assessed as
nonlinear responses are often explored. If the primary goal
of a study is to assess the interaction between biomarkers of
exposure, it is likely that reduced power from measurement
error could obscure an interaction. Nondifferential correlat-
ed measurement error can induce bias in interaction esti-
mates, causing severe underestimation of interaction effects.

Measurements subject to LODs were less biased and had
smaller MSEs than comparable scenarios not subject to
LODs, because we selected statistically valid substitution
values. This approach may not always be feasible, since the
true distribution of the data may be unknown. Previous
work demonstrated that the direction and magnitude of bias
depends upon the distribution of the exposure and the sub-
stitution method, and that the level of bias tends to be
lower than that in settings not subject to a LOD (7). Our
findings agreed with prior findings of more modest bias in
settings with LODs and extended those findings to settings
with correlated exposures and correlated error. Simulations
with alternate substitutions are an important next step.

Our work was novel in that we simultaneously consid-
ered unmeasured confounding, interactions between expo-
sures, LODs, and correlated measurement error. Heretofore,
studies involving biomarker measurement have not con-
sidered the role of measurement error, as biomarker values
are considered gold standards in many settings (36). Not
only are the levels of error we simulated plausible, they are
commonly encountered. As biomarker measures become
ubiquitous, understanding correlations, the measurement
process, and the extent of errors will be critical in order to
appropriately interpret results.

In conclusion, it is critical to consider measurement error
as it relates to biomarkers with LODs and interactions. This
includes involvement during the data collection and mea-
surement process and recognition that bias from measure-
ment error may obscure important health effects from
chemical exposures. Obtaining replicates or quality control
information from the laboratory can aid in understanding
the direction and magnitude of bias. Epidemiologists’ in-
volvement in the measurement process will be a crucial
step toward understanding the extent to which measurement
error may affect our findings.
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