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Abstract

The field of view (FOV) of a cone-beam computed tomography (CBCT) unit in single-photon
emission computed tomography (SPECT)/CBCT system can be increased by offsetting CBCT
detector. Analytic-based algorithms have been developed for image reconstruction from data
collected at a large number of densely sampled views in offset-detector CBCT. However, the
radiation dose involved in a large number of projections can be of a health concern to the imaged
subject. CBCT-imaging dose can be reduced by lowering the number of projections. As analytic-
based algorithms are unlikely to reconstruct accurate images from sparse-view data, we investigate
and characterize in the work optimization-based algorithms, including an adaptive steepest
descent-weighted projection onto convex sets (ASD-WPOCS) algorithm, for image reconstruction
from sparse-view data collected in offset-detector CBCT. Using simulated data, and real data
collected from a physical pelvis phantom and patient, we verify and characterize properties of the
algorithms under study. Results of our study suggest that optimization-based algorithms such as
ASD-WPOCS may be developed for yielding images of potential utility from a number of
projections substantially smaller than those used currently in clinical SPECT/CBCT imaging, thus
leading to a dose reduction in CBCT imaging.

[. Introduction

In recent years, combined single-photon emission computed tomography (SPECT) and
cone-beam computed tomography (CBCT) systems have been developed and become
available commercially [1]-[6] for yielding functional and anatomic information about an
imaged subject. CBCT images can also be used to compensate for attenuation artifacts in
SPECT images. The CBCT unit in a SPECT/CBCT system developed recently uses a flat-
panel detector of a limited size due to cost and hardware considerations [6], [7]. In an
attempt to increase the field of view (FOV) of CBCT, one can offset the flat-panel detector
to form an asymmetric coverage of the imaged object at each view [8]. Analytic-based
algorithms have been developed for image reconstruction from data collected with an offset-
detector configuration [9]. However, the algorithms generally require data collected at a
large number of densely distributed views.

CBCT scans promise added-on value to SPECT imaging through offering information about
patient anatomy and for attenuation correction in SPECT; however, radiation dose involved
in CBCT scans constitutes a potential health concern to the imaged subject. For a given X-
ray flux level, CBCT-imaging dose can be reduced by decreasing the number of views at
which projections are acquired. Analytic-based algorithms are unlikely to reconstruct
accurate images from sparse-view data as they are designed to work only for densely
sampled data. On the other hand, it has been demonstrated that optimization-based
algorithms may reconstruct images of potential utility from projections much fewer than
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those required by analytic-based algorithms [10]-[13]. There exists a significant interest in
image reconstruction from sparse-view projections in both industry and academia [14]-[20].

In this work, we investigate and characterize image reconstruction from data, and
particularly from sparse-view data, collected in offset-detector CBCT. We also clarify issues
concerning data redundancy and imaging-model linearity involved in analytic- and
optimization-based algorithms. Using simulated data, and real data collected from a physical
pelvis phantom [21] and patient, we verify and characterize the algorithms under study.

We organize the paper as follows: Sec. Il describes imaging configuration and data
acquisition in offset-detector CBCT; Secs. 111-V summarize, and contrast, the development
of imaging models, reconstruction programs, and weighting schemes for analytic- and
optimization-based algorithms, followed by inverse-crime studies [22]-[24] in Secs. VI and
VII for validating the algorithms; Sec. VIII reports studies involving real data of a physical
pelvis phantom and patient for characterizing algorithm properties; and finally, Secs. IX and
X narrate discussions and conclusions of the study.

Il. Parameters for Offset-detector CBCT Imaging

Clinical SPECT/CBCT uses a circular scanning trajectory for data collection. We refer to
the plane containing the circular trajectory as the middle plane, and to other planes parallel
to the middle plane as non-middle planes. As shown in Fig. 1, CBCT imaging configuration
within the middle plane constitutes a fan-beam geometry. We define central lines at each
view as the lines connecting the source and rotation axis, and assume that the central line
within the middle plane is perpendicular to the detector plane, thus forming an FOV shown
in Fig. 1a. It is well-known [8], [9] that a CBCT FOV can be expanded effectively by
offsetting the detector within the detector plane along a direction perpendicular to the
rotation axis. Let ¢, and v, denote halves of the detector sizes perpendicular to, and along,
the rotation axis. For offset length L, we define u;y = uy,—L and upp = Uyt L, where L <
Um, and display the extended FOV in Fig. 1b. For a fan-beam offset-detector geometry
shown in Fig. 1b, projections between —u,, and vy, are measured twice, while projections
between u,, and uy,p are collected only once, as the source/detector rotates over 2.
Therefore, data acquired with a fan-beam offset-detector geometry is partially redundant,
and are sufficient for accurate reconstruction within the middle plane.

We use the offset-detector CBCT unit of a SPECT/CT system (BrightView XCT, Philips) to
collect data in the study. The X-ray source and flat-panel detector, along with the SPECT
unit, are mounted on a gantry, and form a circular trajectory when the gantry rotates. The
distances of the X-ray source to the detector plane and to the center of rotation are 133.2 cm
and 88.1 cm. The detector panel with a size of 40 x 30 cm? consists of 2048x1536 elements
each of which has a size of 0.194x0.194 mmZ. In clinical applications, the detector is used
under a 2x4-binning mode, thus resulting in 1024x384 rectangle-shaped, effective elements
of 0.388x0.776 mm? size. Let ¢/, = 20 cm and v,;, = 15 cm denote half sizes of the detector.
An offset L = 17.7 cm is considered for expanding the FOV to a size of about 48 cm (axial)
x15 cm (transaxial) shown in Fig. 1b. In clinical SPECT/CT, data at 720 views uniformly
distributed over 27 are acquired with a circular trajectory, followed by correction for
background, uniformity, detector-gain mode, and defective pixels, as well as physical factors
such as scatter and beam hardening. In the work, data were collected at 720 views uniformly
distributed over 2w from a physical pelvis phantom and patient. Throughout the work, we
refer to 720-view data as full data.

In real-data studies below, considering the rectangular shape of an effective detector
element, we reconstructed images on 600 x 840 x 175 and 600 x 840 x 164 arrays of prism-
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shaped voxels (instead of cube-shaped voxels) for the physical pelvis phantom and patient.
The transverse and longitudinal sizes of each prism were 0.05 cm and 0.1 cm.

lll. Analytic-based image reconstruction

The focus of the study is on optimization-based image reconstruction from sparse-view data
collected with offset-detector CBCT. However, the FDK algorithm [25], an analytic-based
algorithm used widely in practical applications, serves as a reference for characterization of
optimization-based reconstructions. In an attempt to contrast the key components involved
in optimization-based reconstructions, we describe briefly below the counterparts involved
in analytic-based image reconstruction, even though many of them are generally well-
known.

A. Continuous-to-continuous imaging model

Analytic-based algorithms are developed based upon a linear, continuous-to-continuous (C-
C) imaging model in which a CBCT measurement is interpreted as a line integral of an
object function:

go(u, v, )= f dt firo(A)+10(u, v, 1)), (1)
0

where go(4, v, A) denotes continuous model data at a point (¢, v) on the detector plane from
view A; fr) is the object function at a point specified by r in the image space; ro(\) is the
source location outside the object support at view A; and 6(«, v, A) is a unit vector
originating from ry(A) and pointing to (¢, v) on the detector plane. In a C-C imaging model,
variables ¢, v, and A and r can vary continuously in the data and image spaces.

B. Analytic-based reconstruction programs

For certain conditions, reconstruction programs (or, equivalently, inversion formulas) can be
derived [26]-[30] in which the object function can be expressed explicitly in terms of the
data function. The programs can be used for determining data conditions sufficient for
yielding mathematically exact solutions to the C-C imaging model in Eq. (1). For example, a
reconstruction program derived by Tuy [26] has been used widely for determining data
sufficiency conditions. Although some of the programs involve data or data transformations
that are practically impossible to achieve, thus preventing them from being used directly as
reconstruction algorithms, they can be used as the basis for the derivation of analytic-based
algorithms that can be practically implementable. For example, for certain imaging
configurations, based upon the Tuy’s reconstruction program, a filtered-backprojection
(FBP) algorithm [27] can be derived, whereas based on the reconstruction program in Eq.
(9) of Ref. [28], a backprojection-filtration (BPF) algorithm [30] can be derived.

C. Analytic-based reconstruction algorithms

Analytic-based algorithms can be derived for solving exactly the C-C imaging model in Eq.
(1) for helical and other scanning configurations that satisfy Tuy’s data-sufficiency
condition [27]-[30]. For a circular configuration, which is often used for data acquisition in
practical CBCT, the algorithms can offer an exact reconstruction only for the middle plane,
and approximate reconstructions for non-middle planes, because only the middle plane
satisfies Tuy’s data-sufficiency condition whereas non-middle planes do not. The FDK
algorithm considered in the work is an FBP-type algorithm that offers exact and
approximate reconstructions, respectively, to the middle and non-middle planes.
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1) Discrete approximation—Analytic-based algorithms for solving exactly, or
approximately, Eq. (1), are for object and data functions in continuous forms. Because only
discrete data can be collected in practical CBCT imaging, discrete forms of analytic-based
algorithms have to be devised for accommodating discrete data. An analytic-based algorithm
in a discrete form generally provides only an approximate inversion to the C-C imaging
model, even if the algorithm in its continuous form exactly solves Eq. (1). An analytic-based
algorithm in different discrete forms thus yields numerically different reconstructions [31],
[32]. For the middle plane, the FDK algorithm in a discrete form provides an approximate
solution due to algorithm discretization, whereas, for non-middle planes, the FDK algorithm
in a discrete form offers an approximate solution due to both data insufficiency and
algorithm discretization.

2) Data redundancy—We show in Fig. 2a a flat-panel detector offset by L viewing from
the source. A sinogram can also be formed with a detector row from all of the views over
2m, as illustrated in Fig. 2b. Data collected over 2 with a detector row specified by v =0
(i.e., from the middle plane) contain partially redundant information because there are pairs
of X-rays collected that coincide with each other. Such partial data redundancy has to be
normalized with a weighting function [33] so that analytic-based algorithms can be applied.
Mathematically, circular CBCT data collected with a detector row specified by v # 0 contain
no redundant information, because none of the collected X-rays coincide with each other.
However, for two X-rays within a plane that contains a pair of coinciding X-rays in the
middle plane and that is perpendicular to the middle plane, they are considered
approximately redundant if the two X-rays have identical cone angles. A weighting function
selected for the detector row specified by v = 0 is used also as the weighting functions for
detector rows specified by v # 0.

IV. Optimization-based Image Reconstructions

Optimization-based reconstruction also entails key components similar to those in analytic-
based reconstruction: imaging model, reconstruction program, and reconstruction algorithm,
which we discuss below.

A. Discrete-to-discrete imaging model

In optimization-based reconstruction, a linear discrete-to-discrete (D-D), instead of a linear
C-C, model is used for summarizing the CBCT imaging process

go=7f, (2)

where # is an M x Nsystem matrix modeling the cone-beam X-ray transform; vectors gg
and f of sizes Mand N denote discrete model data and discrete image to be reconstructed.
Each entry of gy or f denotes a model-data value within an effective detector element or an
image value within a voxel. In practice, measured data g of size M differ than model data gg
and consists of entries denoting measured data values.

Reconstruction of image f is equivalent to inverting the linear system in Eq. (2) from
knowledge of measured, discrete data. Although a D-D imaging model can be devised based
upon a C-C imaging model, an analytic-based algorithm solving exactly the C-C imaging
model cannot invert exactly the D-D imaging model even if the algorithm is in a discrete
form. In realistic CBCT applications, the D-D imaging model in Eq. (2) involves a huge-size
matrix that prevents its direct inversion. Instead, optimization-based algorithms are used for
solving the D-D imaging model.
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B. Optimization-based reconstruction programs

Based upon Eq. (2), an optimization program has been developed [10]-[13] for CBCT-
image reconstruction in which the image total-variation (TV) (i.e., the §-norm of the
gradient magnitude image) is minimized, subject to constraints on data fidelity and image
positivity. Using this optimization program, we devise reconstruction program 1 for image
reconstruction specifically from data collected in offset-detector CBCT. For a performance
comparison to reconstruction program 1 and its corresponding algorithm, we also consider
reconstruction program 2 based on Kullback-Leibler (KL) divergence [34] and the
corresponding expectation-maximization (EM) algorithm [34]-[36] for offset-detector
CBCT. We describe the two optimization-based reconstruction programs below.

1) Reconstruction program 1—The first reconstruction program [37] is written as:

Dy () <&, lifll,, <t0, fj 20, and co(f) <7y, (3)

where Dy (f) denotes a weighted Euclidean data divergence between the measured data and
model data:

D}, (O)=(HF - )" W (AL - g)IM*, (4)

where #is an M x M diagonal matrix in which each diagonal element represents a positive
weighting factor for a particular X-ray measured; lIfl+y the image TV; 7;image value at
voxel j, /=1, 2, ..., M. ¢, (f) (defined in Eq. (21) of Ref. [11]) can be calculated for each f,
and ¢, (f) — —1 provides a necessary condition on algorithm convergence [11], [12].
Parameter e > 0 determines a level of allowable average inconsistency between the
measured data and model data per effective detector element; parameter £ > 0 provides a
lower bound for the image TV; and parameter -y should be larger than, but close to, —1. The
reconstruction program therefore designs a solution set.

2) Reconstruction program 2—O0One can rewrite Eq. (2) as

g="f, (5)

where g;,zyﬂgo and #’ = . Defining g’ = % g and using Eq. (5), we devise reconstruction
program 2 as

D) <&, (6)

where Dy (f) denotes the KL divergence between g” and # f [34]; and parameter ex; >0
specifies a lower bound for the KL divergence. Again, the reconstruction program
determines another solution set, which can differ from that specified by reconstruction
program 1.

3) Program parameters—Reconstruction programs 1 and 2 are specified not only by
explicit parameters, including e, &, -y, ez, and % but also by implicit attributes such as
basis sets spanning the image and data spaces and a specific method for calculating the
system matrix % . Different selections of these parameters and attributes, which are referred
to as program parameters in this work, necessarily result in different sets of designed
solutions (or, equivalently, designed reconstructions). In this work, prism-shaped voxels and
rectangle-shaped pixels were used for spanning the image and data spaces, whereas
intersection length of an X-ray with an image voxel is selected as an element of system
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matrix # [11]-[13]. We also discuss in numerical studies in Sec. V below the selection of
program parameters such as the weighting matrices for reconstruction tasks considered.

C. Optimization-based reconstruction algorithms
We describe below algorithms that numerically solve reconstruction programs 1 and 2.

1) ASD-WPOCS algorithm for reconstruction program 1—The existing ASD-
POCS algorithm [10], [11] can be used for image reconstruction through solving program 1.
However, as numerical studies demonstrated (see Fig. 8 below), the POCS method [38]-[40]
that lowers Dy (f) can result in image artifacts in the presence of data inconsistencies.
Therefore, we consider a weighted POCS (WPOCS) algorithm:

—H, - fni-D

fOLD) _g(ni=1) | WiiHigi L@
B H H, O]

where f(.) denotes reconstruction at the /+th iteration after the updates from the /th
equation; H jthe /th row vector of the system matrix #; 0 < B < 2 is a relaxation factor; g;
the /-th entry in the measured data g; 7 ;;the /~th diagonal element of # which is chosen to
be0<#i<linthiswork;and /=1, 2, ..., M.

We refer to this algorithm as the ASD-WPOCS algorithm, in which we use the steepest
descent (SD) and WPOCS methods to lower adaptively lIfll 7, and Dy (f) until they reach the
preselected values [10]-[13]. The pseudocode implementing the ASD-WPOCS is identical
to that for the ASD-POCS described in Refs. [10], [11], except for that the POCS step is
replaced by the WPOCS step and data divergence is replaced by Dy (f). For a given set of
parameters e, &, v, and # when Dy (f) < e is achieved, we then use a gradient descent
method, instead of the WPOCS method, for further lowering Dy (f) until Iifl - < £ and
Co(f) < vy are satisfied [10]-[13]. In this work, an initial image f = 0 is used in the ASD-
WPOCS reconstruction.

2) EM algorithm for reconstruction program 2—The EM algorithm [34]-[36] can be
used for minimizing the KL divergence in Eg. (6). In the presence of ¥/ it can readily be
shown that KL-divergence Dy (f) can be minimized by use of the EM algorithm:

ff") M g
f§n+ D_ j—z Wu% i

J M z v N n’ (8
Zi:lnf/ﬁ% =1 Zj:ljﬁjfj

where f](»") denotes the jth voxel value at iteration /7, and # j;is the element of system matrix
# at the /th row and j#th column, #/;;> 0, 7=1,2, ..., M,and j=1, 2, ..., N. An initial
image f = 1 was used in EM reconstruction.

V. Selection of weighting functions and matrices

A. Weighting functions for the C-C imaging model

For demonstrating the effect of weighting functions on analytic-based reconstructions, we
carried out a reconstruction directly from data without weighting (or, equivalently, with an
identity weighting). For convenience, we write the identity weighting function as

Wo(u, v, D=1 for — w1 <u < upp, (9)

and Wo(u, v, A) =0 for —up < U< —Upy, Where [v| < vy,

Phys Med Biol. Author manuscript; available in PMC 2014 January 21.
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One can also devise a weighting function to normalize data redundancy. As shown in Fig.
2b, continuous data gy(, 0, 1), collected with a detector row indexed by v = 0, in regions |
and Il are redundant, and can be normalized by a weighting function satisfying W{v, 0, ) +
M-u,0,A)=1,for0O< u< tpy, WMy, 0, A) =0for —upp < U< —Upy, and M, 0, A) =1
for U, < U< uyp. The same weighting function is used also for normalizing the
approximate data redundancy for non-middle planes. i.e., W{u, v, X) = WAy, 0, A), where ||
< vy

We consider two weighting functions satisfying the normalization condition:

Wi(u, v, ﬂ):coszg (% — 1) for — w1 <u<uy, (10)
m

and

Wa(u, v, )=1/2 for —up < u < upyy, (12)

u Umi . .
where |[v| € v, T=atang, Ty =atan——, and Sis the source-to-detector distance, and mi(u,
v, A) = Wh(u, v, \) =0 for —up < U< —Upy and 1 for Uy < U< Upp.

It can be observed that W/ is a smooth function of ¢, but W and W% are not. The weighting
functions have to be discretized when they are applied to measured, discrete data, thus
becoming approximate weighting functions with respect to data redundancy in the C-C
imaging model. The weighting functions in their discrete forms can impact on reconstruction
quality.

of weighting matrices for the D-D imaging model

Model data gg, as well as measured data g, generally contain no redundant information,
because no rows in the system matrix # are identical. Therefore, the multiplication of an
appropriately selected weighting matrix to both sides of a linear D-D imaging model cannot
be interpreted as data-redundancy normalization. Instead, it is a consequence of the linearity
property of a D-D imaging model. Different weighting matrices result in different Dy (f)
and thus different reconstruction programs, resulting in different reconstructions when data
are inconsistent with the D-D imaging model. This property can be exploited for potentially
improving image reconstructions by devising appropriate weighting matrices.

In the work, we considered three diagonal weighting matrices that are formed, respectively,
from the three weighting functions of Egs. (9)-(11) in their discrete forms. Specifically,
each of the three discrete weighting functions is written in a concatenated form to compose
diagonal elements of a weighting matrix for the D-D imaging model. We refer to weighting
matrices formed with discrete weighting functions Wg, W4, and W, as weighting matrices
Wo, W1, and # o, respectively. The weighting matrices will be used for computing Dy (f) in
Eq. (4) and in the WPOCS and EM algorithms of Egs. (7) and (8).

VI. Studies based on the C-C imaging model

Using inverse-crime studies [22]-[24] in which data are consistent with the imaging model,
we can verify if the reconstruction algorithms solve the corresponding reconstruction
program. Using numerical studies in which data are inconsistent with the imaging model, we
can also characterize the numerical properties of the reconstruction algorithms. The FDK
algorithm considered in the work has been verified and characterized previously. We
summarize briefly the inverse-crime and numerical studies of the FDK algorithm even
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though they are already well-known for the purpose of contrasting the studies in Secs. VII
and VIII for the verification and characterization of optimization-based algorithms.

A. Inverse-crime studies

For an offset-detector scanning over a circular trajectory, we can plug in the FDK algorithm
with normalization weighting functions W or W into the C-C model specified by Eq. (1).
It can be readily shown that the FDK algorithm yields a mathematically exact, explicit
solution to the C-C imaging model for the middle plane. This constitutes an inverse-crime
study for verification of the FDK algorithm. For the non-middle planes, the FDK algorithm
only yields an approximate solution to the C-C model.

B. Real-data studies

The property of the FDK algorithm can also be characterized by use of real, discrete data
that are inconsistent with the C-C imaging model. Existing studies demonstrate that smooth
weighting functions such as W4 can yield images with minimized artifacts [9], [33].
Therefore, we used W as the weighting function in the study. We first normalized 720-view
data of a pelvis phantom or patient, as described in Sec. VIII, by using discrete-form W4,
and then we reconstructed images on arrays of prism-shaped voxels by using the FDK
algorithm. In column 1 of Fig. 3, we display reconstructions of the pelvis phantom and
patient within the middle plane. For being consistent with clinical protocols, a Hann filter
was used in the reconstructions.

Because there is no truth image available in real-data studies, and because FDK is the most
widely used in clinics, we refer to the images as the FDK-reference images for the pelvis-
phantom and patient studies.

VII. Inverse-crime studies based on the D-D imaging model

Unlike analytic-based algorithms that offer explicit solutions to the C-C imaging model,
optimization-based algorithms, in general, yield only implicit solutions to the D-D imaging
model, an inverse-crime study can only be carried out numerically. We performed an
inverse-crime study in which model data were generated by applying # to a discrete image,
and the same matrix # was used also in the optimization-based algorithms for image
reconstructions on the same image array from the generated model data. The value of an
inverse-crime study here lies in the fact that it can provide a verification as to whether the
algorithms can numerically achieve the designed solution set specified by a reconstruction
program.

A. Generation of discrete model data

B. Selection

From 720-view data of the pelvis phantom normalized by weighting function W4, we
reconstructed by using the FDK algorithm an image on an array of 100x140 pixels of a 0.3-
cm size within the middle plane, as shown in Fig. 4. In the inverse-crime study, the
reconstruction was used subsequently as the discrete “truth” image from which we generated
model data by using # at 720 views uniformly distributed over 2m for a scanning
configuration identical to that in real-data studies below. The detector row used consisted of
256 detector bins each of which had a size of 0.1552 cm. The same matrix % was then used
in the ASD-WPOCS and EM algorithms in the inverse-crime study.

of program parameters

We selected # = 239.48, which is the TV of the discrete truth image in Fig. 4, and y =
-0.99, which is sufficiently close to —1. In the inverse-crime study, because the measured
data are identical to the model data, the parameter e should theoretically be set to 0.

Phys Med Biol. Author manuscript; available in PMC 2014 January 21.
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However, because of limited computer precision, and because of the finite number of
iterations used, e = 0 cannot be reached practically. Moreover, the convergence metric ¢, (f)
becomes undefined when e = 0 because the data-divergence gradient vector becomes a zero
vector [11], and it cannot be employed for monitoring the algorithm convergence at e = 0.
Therefore, for each weighting matrix considered in the study, we selected two descending e
values of e1 = 1.1 x 1079 and e, = 2.2 x 1079, which are close to zero. The trend of the
results from the two values may reveal reconstruction properties near e = 0. With the data
and imaging model described and the parameters selected, the reconstruction program
specified by Eq. (3) is completely determined. Images are then reconstructed through
solving the program by use of the ASD-WPOCS algorithm.

C. Results of inverse-crime studies

1) Convergence to designed solutions—We first used the weighting matrix #1 in a
reconstruction study in which Dy, (f) and ¢, (f) were calculated at each iteration. In Fig. 5,
we plotted Dy, (f) versus ¢, (f) for e (solid curve) and e; (dashed curve). (We did not use
the usual plots of Dy, (f) and ¢, (f) versus iterations because in this way, we can more
directly show the algorithm convergence with only one plot.) In the Dy, (f)-c,(f) space, the
shaded regions indicate two designed solution sets specified by (e, y) = (1.1 x 1079, -0.99)
and (2.2 x 1079, -0.99). It can be observed that the ASD-WPOCS algorithm can achieve the
designed solution sets numerically. For showing differences between reconstructions and the
discrete truth image, we plotted in Fig. 6 their root-mean-square-errors (RMSES) for &1
(solid curve) and e; (dashed curve). The results also suggest that the ASD-WPOCS
algorithm can yield images close to the discrete-truth image in an inverse-crime scenario. As
expected, a tighter constraint specified by Dy, (f) < ey results in a smaller RMSE than does
a constraint specified by Dy, (f) < e».

2) Weighting matrices and reconstructions—We have also reconstructed images
from the same data set by using the ASD-WPOCS algorithm with weighting matrices 7
and #',. When identical program parameters were used, results numerically close to those
obtained with weighting matrix %, were obtained. In row 1 of Fig. 7, we show
reconstructions within a region of interest (ROI) in the middle plane with 1 and weighting
matrices %o, #'1, and # o, respectively, which are visually identical. For a further
comparison, we display the truth ROl image in column 1 of Fig. 7, and the differences
between reconstructions and the discrete truth image in row 2 of Fig. 7. The results reveal
that an appropriate selection of weighting matrices has, as expected, little impact on image
reconstructions in an inverse-crime scenario. However, as will be shown in Sec. VIII below
in real-data studies, different weighting matrices can lead to different reconstructions when
the data are inconsistent with the D-D imaging model.

We have also carried out an inverse-crime study of reconstruction program 2 and the EM
algorithm. Observations can be made similar to those for the inverse-crime study of
reconstruction program 1 and the ASD-WPOCS algorithm.

VIIl. Real-data studies based on the D-D imaging model

In addition to the inverse-crime verification studies above, we also characterized
optimization-based reconstructions by using real data, which are inconsistent with the D-D
imaging model. We first performed studies with data acquired from a physical pelvis
phantom, followed by studies with data acquired from a patient data were performed.

Phys Med Biol. Author manuscript; available in PMC 2014 January 21.
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A. Selection of study parameters

Full-data sets were collected at 720 views uniformly distributed over 2 from the pelvis
phantom and patient. From a full-data set, we then extracted sparse-view data sets consisting
of projections at 72, 120, 180, and 360 views uniformly distributed over 2, respectively.
From full and sparse-view data, image reconstructions for the pelvis phantom and patient
were carried out on arrays of 600x840x175 and 600x840x164, respectively, of prism-
shaped voxels defined in Sec. II.

1) Selection of program parameters—For each of the real-data sets and a weighting
matrix ¥ we determined adaptively parameters specifying the reconstruction programs in
Egs. (3) and (6). For reconstruction program 1, we applied the WPOCS algorithm to the data
set to obtain a residual data divergence when successive iterations resulted in little change in
Dy (), and select e around the residual data divergence. Using the selected e, we ran the
ASD-WPOCS algorithm over the data set, calculated reconstruction TV, and selected £
around the calculated TVs that were flatting out as a function of the iterations. Finally, we
chose y = -0.99. The selected parameters, along with other factors such as image array and
voxels, specify reconstruction program 1 and a set of designed solutions. Using the same
strategy for reconstruction program 1, we also selected parameters to specify reconstruction
program 2.

2) Selection of weighting matrices—The inverse-crime study above suggests that
appropriately selected weighting matrices yield numerically virtually identical results.
However, in a real-data study, because measured data are inconsistent with the D-D imaging
model, different weighting matrices are likely to generate different reconstructions. We
conducted a real-data study for determining a weighting matrix to be used in the studies of
Secs. VIII-B and VIII-C below.

In the study, images were reconstructed by use of the ASD-WPOCS and EM algorithms
with weighting matrices %, #'1, and ¥ 5, respectively, from 360-view real data of the
pelvis phantom, and we display ASD-WPOCS reconstructions within an ROI in the middle
plane in row 1 of Fig. 8. For comparison, we also show their differences relative to the
FDK-reference ROI image. It can be observed that the reconstruction with weighting matrix
#1 (column 3) contains minimum artifacts. Artifacts in columns 2 and 4 occurred largely
between the region covered by the data of the shaded regions and unshaded region in Fig. 2
b. Similar results were obtained for the EM algorithm [41]. As the weighting matrix #'1 is
formed by use of a smooth weighting function W/ in its discrete form, the result is
consistent with the observation made for analytic-based reconstructions. Therefore, we used
W1 as the weighting matrix for the real-data studies described below.

B. Results of the pelvis-phantom study

From the full and sparse-view data of the pelvis phantom, we reconstructed images by using
the ASD-WPOCS and EM algorithms with weighting matrix #;. For characterization
purposes, FDK images were also reconstructed from the same data sets normalized by
weighting function V4.

1) Algorithm-convergence study—~For each of the data sets considered, we have
selected program parameters as described in Sec. VIII-Al. We used reconstructions within
the middle planes from 72- and 120-view data sets to demonstrate in detail algorithm
convergence. Similar results from other data sets can be obtained. For 72- and 120-view data
sets we have determined e’ =2.0 x 1074 and ¢” = 1.6 x 10~ and selected y = —0.99 to
specify reconstruction program 1. For each data set, the convergence properties of the ASD-
WPOCS algorithm can be evaluated numerically by determining whether it achieves the
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solution set specified by Dy, (f) < e and ¢, (f) < y. The designed solution sets for 72- and
120-view data sets are shown as the shaded regions in a plot of Dy, (f) versus ¢, (f) in Fig.
9. From an ASD-WPOCS reconstruction at each iteration, we calculated Dy (f) and ¢, (f)
and plotted them in Fig. 9 for 72-view (solid) and 120-view (dashed) data sets. The dark
circles depicted at the upper-right corners of the shaded regions in the zoomed-in insert
indicate the ASD-WPOCS convergence to the respective designed solution sets.

In Fig. 10, we show RMSEs of the reconstructions relative to the FDK-reference
reconstruction as a function of ¢, (f). It can be observed that RMSEs flattened out around
points U; and U for the 72- and 120-view cases before approaching the designed solutions
at points V4 and V% constrained by ¢, (f) < -0.99. For the 72- and 120-view cases, the
respective numbers of iterations are about 90 at points {4 and , and 300 at convergent
points V4 and V5. Images appear to be of little visual difference at iterations between U and
V; for the 72-view case and between (5 and V, for the 120-view case. The results shown
below were obtained with iterations around V4 and V5 for 72- and 120-view cases.

2) Reconstruction visualization—In Fig. 11, we show 3D images within transverse,
sagittal, and coronal slices using a wide display window, images reconstructed by use of the
FDK, EM, and ASD-WPOCS algorithms from the 72-view (rows 1-3) and 120-view (rows
4-6) data sets. The corresponding FDK-reference images are displayed also in column 1 of
Fig. 11 for visual comparison. The images are redisplayed with a narrow display window in
Fig. 12. As expected, streak artifacts can be observed in FDK reconstructions from 72- and
120-view data sets. When the images are showed with a narrow display window in Fig. 12,
some streak artifacts are revealed also in EM reconstructions. On the other hand, the ASD-
WPOCS reconstructions appear to be relatively free of visual artifacts, while preserving
low-contrast details observed in the FDK-reference images.

3) Reconstruction characterization—We characterized the properties of the FDK, EM,
and ASD-WPOCS reconstructions from sparse-view data by calculating their respective
RMSEs relative to the FDK-reference reconstruction, and plotted them as functions of view
numbers in Fig. 13. The ASD-WPOCS reconstructions appear to yield RMSEs lower than
those of the other reconstructions, except that it is comparable to the FDK RMSE for the
360-view case. As explained in Sec. I1X below, this is because the FDK-reference image
used is in favor of the FDK RMSE calculation for large view numbers. It can also be
observed that the differences among the algorithms decrease as the view number increases.

From the reconstructions, we also calculated additional numeric metrics such as the
universal quality index (UQI) [42] and mutual information (MI) [43] with respect to the
FDK-reference image and observed that these metrics yielded information about
reconstructions similar to the RMSE results above.

4) Computation of attenuation factors—An application of CT images in SPECT/CT
imaging is to estimating attenuation factors for use in correction for attenuation artifacts in
SPECT. We calculated attenuation factors from reconstructed CT images and compared
them to that obtained from the FDK-reference image.

The attenuation factor in a continuous form is defined as
A(r, B)=exp {— f dt f(r+t9)}, (12)
0

where f{r) denotes the attenuation map at a spatial point r, which is an image reconstructed
from CBCT data, and the unit vector © denotes the direction of a gamma ray in SPECT
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imaging. Without loss of generality, we consider a parallel-beam collimation in SPECT
imaging. Therefore, the integration in Eq. (12) can be carried out within a transverse plane.
We considered the calculation of an attenuation factor for the middle plane, while realizing
that such a calculation can readily be carried out for non-middle planes. The attenuation
factor within the middle plane is then discretized on a 300x420%720 array in which the first
two dimensions are for r, with a pixel size of 0.1 cm, and the third dimension is for the angle
with an interval of 0.5°.

For characterization of CT-image reconstructions in terms of attenuation-factor estimation,
we performed reconstructions by using the FDK, EM, and ASD-WPQOCS algorithms from
data sets containing view numbers ranging from 20 to 40 in addition to the reconstructions
from the data sets previous extracted. Using these reconstructions, we estimated the
attenuation factors, and then calculated their RMSEs relative to that obtained from the FDK-
reference image, and display them in Fig. 14 as functions of a view number. The result
suggests that, if the task is to estimate an attenuation factor, the EM and ASD-WPOCS
algorithms can yield numerically comparable attenuation factors and that the attenuation
factor is a slowly varying function of the view number used for reconstruction of the
attenuation map. When an integration of the attenuation factor is carried out over the angle,
one obtains the so-called Chang’s factor [44], which has been used for obtaining an
approximate attenuation correction for FBP reconstruction of SPECT images. We also
computed the Chang’s factors for data sets considered and compared them with that
obtained with the FDK-reference image. Again, results and observations similar to those for
the attenuation-factor estimation were obtained.

C. Results of the patient study

From the 720-view data set acquired from a patient, we extracted sparse-view data
containing 72, 120, 180, and 360 views uniformly distributed over 27, from which we
reconstructed images by using the ASD-WPOCS and EM algorithms with weighting matrix
W 1. Again, for the purpose of characterization, FDK images were also reconstructed from
the data sets normalized by weighting function 4.

1) Algorithm-convergence study—For each of the data sets, we selected program
parameters as described in Sec. VIII-Al. Without loss of generality, we used reconstructions
within the middle planes only from 120- and 180-view data sets to demonstrate algorithm
convergence. For 120- and 180-view data sets, we first determined ¢’ =7.4 x 10 and e” =
6.2 x 1072 and selected v = —0.99 to specify reconstruction program 1. For each data set, the
convergence property of the ASD-WPOCS algorithm can be evaluated numerically as to
whether it achieves the solution set specified by Dy, (f) < e and ¢, (f) < y. The designed
solution sets for 120- and 180-view data sets are shown as shaded regions in a plot of

Dy (f) versus ¢, (f), as displayed in Fig. 15. From an ASD-WPOCS reconstruction at each
iteration, we then calculated Dy, (f) and ¢, (f) and plotted them in Fig. 15 for 120-view
(solid) and 180-view (dashed) data sets. Again, the dark circles depicted at the upper-right
corners of the shaded regions in the zoomed-in insert suggest the ASD-WPOCS
convergence to the respective designed solution sets.

In Fig. 16, we also show RMSEs of the reconstructions relative to the FDK-reference
reconstruction as a function of ¢, (f). It can again be observed that RMSEs flattened out
around points {4 and U, for the 120- and 180-view cases before approaching the designed
solutions at points V4 and V5 constrained by ¢, (f) < -0.99. For the two cases, the respective
numbers of iterations are about 60 at points U4 and (5 and 300 at convergent points V4 and
V5. Images appear to be of little visual difference at iterations between U, and V4 for the
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120-view case and between U, and V5, for the 180-view case. The results shown below were
obtained with iterations around V4 and V5 for 120- and 180-view cases.

2) Reconstruction visualization—In Fig. 17, we show 3D images within transverse,
sagittal, and coronal slices with a wide display window, reconstructed by use of the FDK,
EM, and ASD-WPOCS algorithms from the 120-view (rows 1-3) and 180-view (rows 4-6)
data sets. The corresponding FDK-reference images are displayed also in column 1 of Fig.
17 for visual comparison. The images are re-displayed with a narrow window in Fig. 18 for
revealing additional details. Again, some streak artifacts can be observed in FDK
reconstructions from 120- and 180-view data sets. When shown with a narrow display
window, mild streak artifacts also appear in the EM reconstructions. In contrast, the ASD-
WPOCS reconstructions are relatively free of visual artifacts and reveal the low-contrast
details observed in FDK-reference images.

3) Reconstruction characterization—We also characterized the properties of the FDK,
EM, and ASD-WPOCS reconstructions from sparse-view data by calculating their
respective RMSEs relative to the FDK-reference reconstruction, and we plotted them as
functions of view numbers in Fig. 19. Results and observations similar to those acquired in
the phantom study above can be obtained for the patient study. From the reconstructions, we
also calculated other numeric metrics such as the UQI and MI with respect to the FDK-
reference image and observed that these metrics yield information about reconstructions
similar to the RMSE results.

IX. Discussion

The work investigates analytic- and optimization-based image reconstructions from data,
and particularly from sparse-view data, acquired in offset-detector CBCT. We discussed
analytic- and optimization-based algorithms in parallel for the purpose of clarifying
relationships between C-C and D-D imaging models and between analytic- and
optimization-based algorithms [45]. Although there can be conceptual cross over between
the C-C and D-D imaging models, they possess distinctly different properties that demand
different approaches to analyzing and inverting them. An analytic-based algorithm in its
discrete form in general is not the solution to the D-D imaging model. A contrast was made
carefully on the implications of data redundancy in a C-C imaging model and linearity in a
D-D imaging model. Although the C-C and D-D image models are distinctly different,
observations of the redundancy property of the C-C imaging model can provide insights
into, e.g., the design of a weighting matrix in a D-D imaging model for facilitating
reconstructions with minimized artifacts in the presence of data inconsistencies. It should be
pointed out that weighting matrices exploiting the linearity of a D-D model may also be
designed for yielding reconstructions with desired properties in CBCT.

We have also conducted inverse-crime studies in the work for verifying that the algorithms
discussed can indeed achieve the designed solution sets. Additional studies were carried out
for characterizing algorithm properties in studies using real data that are inconsistent with
the imaging model upon which algorithm development is based. In terms of metrics used in
the studies, even though the ASD-WPOCS algorithm seems to perform better than other
algorithms considered, the studies are not intended to promote the ASD-WPOCS
algorithm’s clinical utility, which remains to be evaluated in specific clinical applications.
However, we believe that, if an algorithm performs worse than other algorithms in the study,
it is unlikely that the algorithm can perform better than other algorithms in practical, clinical
studies.

Phys Med Biol. Author manuscript; available in PMC 2014 January 21.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bian et al.

Page 14

The results above show that the WPOCS algorithm can lower the weighted Euclidean data
divergence Dy (f), whereas it is unclear whether the WPOCS algorithm can minimize

Dy (f) in the presence of data inconsistency. We point out that an appropriately selected
weighting matrix may potentially enhance the effectiveness of the WPOCS in reducing
Dy (f), which is demonstrated by the following study: Using weighting matrices % and
1, we can obtain the POCS algorithm and a WPOCS algorithm from Eq. (7), and also form
data divergences Dy (f) and Dy (f). Applying the POCS and WPOCS algorithms to the
pelvis-phantom data, we reconstructed images from which we then computed Dy () and
Dy ,(f) and show them in Fig. 20. The result suggests that the WPOCS with 71 lowers
Dy (f) and Dy, (f) faster than does the POCS. Therefore, it may be worthy of
investigating the design of the weighting matrices for enhancing the WPOCS efficiency.

In the work, the WPOCS algorithm was used for lowering the weighted Euclidean data
divergence. When further calculation of the divergence becomes necessary for reducing
¢.(f), we used algorithms such as gradient descent to replace the WPOCS. Other algorithms
such as simultaneous algebraic reconstruction technique (SART) algorithm [46]-[48] can
readily be modified to accommodate an offset-detector configuration. The computation time
of the ASD-WPOCS algorithm is related with several factors, including iteration number,
algorithm implementation, and computation hardware. The computation speed of the
algorithms considered can be enhanced substantially through streamlining/parallelizing its
implementation and/or by exploiting the available, or rapidly available, high performance
computational hardware.

The algorithm properties depend upon a number of parameters, including data amount and
characterization methods/metrics. For example, significant artifacts can be observed in
images reconstructed from data sets containing 2040 projections of the pelvis phantom and
patient. However, as Fig. 14 shows, for the task of estimating attenuation factors, the EM
and ASD-WPOCS results from data sets of 20-40 projections are comparable to that
obtained from data sets containing 60 or more views, in terms of a RMSE-metric
assessment. Therefore, if the estimation of attenuation factors is of concern, data sets of 20—
40 views could be sufficient, even though visible artifacts can be observed in CT-image
reconstructions.

The RMSE results above were obtained with FDK-reference images. Clearly, it may change
quantitatively when different reference images are used. In column 2 of Fig. 3, we display
images reconstructed by use of the ASD-WPOCS algorithm from the respective full-data
sets of the pelvis phantom and patient. These images, which we refer to as the ASD-
WPOCS-reference images, can also be used for replacing the FDK-reference images in
RMSE calculations, thus yielding RMSE results different from those obtained with the
FDK-reference image. In Fig. 21, we show the RMSE results obtained with an ASD-
WPOCS-reference image obtained with %1 for the pelvis phantom. Its comparison with the
corresponding results in Fig. 13 obtained with the FDK-reference image indicates clear
differences in RMSE results, and it can be observed that the ASD-WPOCS performs
considerably better than FDK and EM even at large number (e.g., 360) of views in this case.
Similar results were obtained for reconstructions from patient data.

In this work, we considered FDK, EM, and ASD-WPOCS algorithms for a reconstruction
problem in offset-detector CBCT. Although additional algorithms may be developed for
solving this problem, they are beyond the scope of the current work. The inclusion of the
FDK and EM reconstructions from sparse-view data was for benchmarking the
corresponding ASD-WPOCS reconstructions in the characterization studies. They are not
intended to justify the practical utility of the ASD-WPOCS algorithm, which still remains to
be evaluated in real clinical applications. Also, we have studied in the work image
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reconstructions from data containing different numbers of projections, with comparable
signal-to-noise ratios (SNRs, i.e. radiation dose levels). However, it is of high practical
interest to investigate how a trade-off between view numbers and data SNR would impact
the reconstruction properties [49]-[51].

X. Conclusion

In the work, we investigated and demonstrated image reconstructions by using the FDK,
EM, and ASD-WPOQOCS algorithms in offset-detector CBCT. Quantitative studies were
carried out for verifying and characterizing the reconstruction properties of the algorithms.
From the study results, it appears that the ASD-WPOCS algorithm performs better than the
FDK and EM algorithms for conditions of practical interest in terms of the metrics
considered. The results of the sparse-view study can have a potentially significant
implication for dose reduction in CBCT imaging in SPECT/CBCT applications.
Furthermore, it can readily be extended to reducing the radiation dose of CBCT imaging in
image-guided surgery and radiation therapy, and in other emerging CBCT applications in
which an offset-detector configuration is used.
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Figure 1.

Fields of view (FOVs) formed by a non-offset detector of size 2, (a) and by an offset
detector (b) within the middle plane. The rotation axis, perpendicular to the middle plane is
indicated as black dots at the centers of the circular FOVs. L denotes the offset length, u;; =
Up—L,and Upp = Uy + L.
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Figure2.

(a) An offset detector plane in which the horizontal, and vertical, dashed lines denote the
projections of the rotation axis onto, and the intersection of the middle plane with, the
detector. (b) Sinogram space formed by a detector row specified by v over 2. For the
detector row specified by v = 0, continuous model data in regions | and Il are redundant;
whereas for detector row specified by v # 0, model data in regions | and 11 are only
approximately redundant.
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Figure 3.
FDK- and ASD-WPOCS-reference images of the physical pelvis phantom (row 1) and

patient (row 2). Display window: [0.1, 0.25] cm™1.
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Figure4.

(a) Truth discrete image used for generating model data in an inverse-crime study. (b) Image
within the ROI enclosed by the white lines in (a), displayed in a zoomed-in view. Display
window: [0.1, 0.25] cm™L.
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Figureb5.

Data divergences Dy, as functions of ¢, (f) calculated for ASD-WPOCS reconstructions
with eq (solid curve) and e, (dashed curve) in inverse-crime studies. Regions A (=) and B
(222) in the inserted panel show the designed solution sets, specified by e; and eo and by y =
-0.99 in a zoomed-in view. The arrow indicates the ascending direction for iteration
numbers. The respective numbers of iterations are about 110 at points ¢ and Us and 130 at
points V4 and V.
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Figure®6.

RMSEs of ASD-WPOCS reconstructions as functions of ¢, (f) for 1 (solid curve) and e,
(dashed curve) in inverse-crime studies. The arrow indicates the ascending direction for
iteration numbers. The respective numbers of iterations are about 110 at points ¢ and Us
and 130 at points V4 and V5.
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Truth

Figure7.
Row 1: Truth ROI image and ROI images reconstructed by use of ASD-WPOCS algorithm
with weighting matrices ¥, #1, and % in inverse-crime studies. Display window: [0.1,

0.25] cm~L. Row 2: Differences between ROI images in row 1 and the truth ROI image.
Display window: [-0.00001, 0.00001] cm™1.
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Figure8.

Row 1: FDK-reference ROI image and ROl images reconstructed by use of ASD-WPOCS
algorithm with weighting matrices %o, #'1, and %, from real data of the physical pelvis
phantom. Display window: [0.1, 0.25] cm™L. Row 2: Differences between ROl images in
row 1 and the FDK-reference ROI image. Display window: [-0.05, 0.05] cm™1,
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Data divergences Dy, as functions of ¢, (f) calculated for ASD-WPOCS reconstructions
from 72-view (solid curve) and 120-view (dashed curve) pelvis-phantom data. Regions A
(=) and B (£22) in the inserted panel show the designed solution sets determined for 72-
and 120-view studies in a zoomed-in view. The arrow indicates the ascending direction for
iteration numbers. The respective numbers of iterations are about 90 at points {4 and U, and
300 at points V; and V5.
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RMSEs as functions of ¢, (f) calculated from ASD-WPOCS reconstructions relative to the
FDK-reference image for 72-view (solid curve) and 120-view (dashed curve) data sets of the
pelvis phantom. The arrow indicates the ascending direction for iteration numbers. The
respective numbers of iterations are about 90 at points ¢; and U, and 300 at points 4 and
V).
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Figure 11.

Images reconstructed from 72-view (rows 1-3) and 120-view (rows 4-6) pelvis-phantom-
data sets by use of the FDK, EM, and ASD-WPOCS algorithms, within a transverse slice at
z=0cm (rows 1 and 4), coronal slice at x= 1.0 cm (rows 2 and 5), and sagittal slice at y=
-1.0 cm (rows 3 and 6). Display window: [0, 0.35] cm™1.
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Figure 12.
Images identical to those in Fig. 11 but displayed with a narrow window of [0.1, 0.25] cm™1.
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RMSEs of FDK (+), EM (°), and ASD-WPOCS (0O) reconstructions relative to the FDK-
reference image as functions of the view number for pelvis-phantom data.
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RMSEs of attenuation factors computed from FDK (+), EM (+), and ASD-WPOCS (0O)
reconstructions, respectively, relative to the attenuation factor computed from the FDK-
reference image, as functions of the view number.
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Figure 15.

Data divergences Dy, as functions of ¢, (f) calculated for ASD-WPOCS reconstructions
from 120-view (solid curve) and 180-view (dashed curve) patient data. Regions A (£33) and
B (222) in the inserted panel show the designed solution sets determined for 120- and 180-
view studies in a zoomed-in view. The arrow indicates the ascending direction for iteration
numbers. The respective numbers of iterations are about 60 at points {4 and U, and 300 at
points V4 and V.
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RMSEs as functions of ¢, (f) calculated from ASD-WPOCS reconstructions relative to the
FDK-reference image for 120-view (solid curve) and 180-view (dashed curve) data sets of
the patient. The arrow indicates the ascending direction for iteration numbers. The
respective numbers of iterations are about 60 at points ¢/ and U, and 300 at points 4 and
V).

Phys Med Biol. Author manuscript; available in PMC 2014 January 21.

0.2



duasnuely Joyiny vVd-HIN 1duosnuey JoyIny vd-HIN

duasnuely Joyiny vd-HIN

Bian et al. Page 34

FDK-reference ASD-WPOCS

Figure 17.

Images reconstructed from 120-view (rows 1-3) and 180-view (rows 4—6) patient-data sets
by use of the FDK, EM, and ASD-WPOCS algorithms, within a transverse slice at z=0cm
(rows 1 and 4), coronal slice at x= 1.0 cm (rows 2 and 5), and sagittal slice at yy=-1.0 cm
(rows 3 and 6). Display window: [0, 0.35] cm™1,
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Figure18.
Images identical to those in Fig. 17 but displayed with a narrow window of [0.1, 0.25] cm™1.
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RMSEs of FDK (+), EM (°), and ASD-WPOCS (0O) reconstructions relative to the FDK-
reference image as functions of the view number for patient data.
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Figure 20.
(@) Dy and (b) Dy, as functions of iteration numbers obtained by use of WPOCS with
weighting matrices % (solid curve) and 1 (dashed curve) from pelvis-phantom data.
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RMSEs of FDK (+), EM (¢), and ASD-WPOCS (O) reconstructions relative to the ASD-
WPOCS-reference image as functions of the view number for pelvis-phantom data.
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