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Abstract

There has been an increasing interest in the geographic aspects of economic development, exemplified by P. Krugman’s
logical analysis. We show in this paper that the geographic aspects of economic development can be modeled using multi-
agent systems that incorporate multiple underlying factors. The extent of information sharing is assumed to be a driving
force that leads to economic geographic heterogeneity across locations without geographic advantages or disadvantages.
We propose an agent-based market model that considers a spectrum of different information-sharing mechanisms: no
information sharing, information sharing among friends and pheromone-like information sharing. Finally, we build a unified
model that accommodates all three of these information-sharing mechanisms based on the number of friends who can
share information. We find that the no information-sharing model does not yield large economic zones, and more
information sharing can give rise to a power-law distribution of market size that corresponds to the stylized fact of city size
and firm size distributions. The simulations show that this model is robust. This paper provides an alternative approach to
studying economic geographic development, and this model could be used as a test bed to validate the detailed
assumptions that regulate real economic agglomeration.
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Introduction

Researchers have become increasingly interested in the

geographic aspects of economic development. P. Krugman [1]

studied the role of geography in economic development and

argued that the role of geography should have become a

mainstream concern within economics long ago. Centripetal

forces (such as forward and backward linkages in production and

increasing returns in transportation) and centrifugal forces (such as

factor immobility and land rents) can result in a process of self-

organization in which otherwise similar locations end up playing

notably different economic roles. Economic analysis has shown

that centers may emerge as a result of attempts by producers to

minimize the costs of production and delivery or because larger

cities can support a wider range of activities [1].

There are studies emphasizing that physical geography is highly

differentiated and that these differences have a large effect on

economic development. In addition, some studies have concluded

that economies benefit from specific geographic advantages such

as coastlines and areas connected to the coast by navigable rivers,

and these areas are more densely populated than the hinterlands

[2]. The new economic geography, however, shows how

increasing returns to scale, agglomeration economies, transport

costs, and product differentiation can lead to a highly differenti-

ated spatial organization of economic activity (including cities,

hubs and spokes, international division of labor between industry

and agriculture, and so on), even when the underlying physical

geography is undifferentiated [1]. P. Krugman noted that small

random historical events might have large consequences for

economic geography [1]; for a review of the new economic

geography, see references [3,4]. The two approaches, which

attempt to explain why the economic destinies of locations might

diverge both with and without inherent advantages or disadvan-

tages, are complementary, rather than contradictory [1].

The present study follows the new economic geography and

considers only locations without geographic advantages or

disadvantages that can influence economic development. As

reviewed by B. Arthur in reference [5], due to historical path

dependence and positive feedback, companies may start out equal

but end with asymmetrical outcomes.

The primary question in economic geography could be

expressed as follows. Many economic activities are concentrated

geographically. Most people live in large, densely populated

metropolitan areas. Many industries–including service industries

such as banking–are also concentrated geographically, and such

clusters are an important source of international specialization and

trade. What causes this spatial clustering?

To address this question, P. Krugman provided a two-region

analysis of the centripetal and centrifugal forces [1], and J. Thisse

used a spatial integration of the resulting benefit of a firm obtained

from another firm [3]. In contrast, we use agent-based compu-
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tational experiments in which agents have a certain probability of

meeting; when the interaction occurs, there may be a transaction

between the corresponding agents [6]. This is, as far as we know,

the first agent-based model in the economic geography field. This

type of model has been viewed as potentially useful for studying

the emergence of market towns where people meet to trade goods

or exchange information [3].

We hypothesize that a key factor may be the information-

sharing mechanism. The information ‘‘function’’ has been studied

in several different areas. In many markets, the asymmetry in the

available information between sellers and buyers tends to result in

a reduction in the average quality of goods and also in the size of

the market (the lemon principle) [7]. Reference [8] analyzed a

binary game in which the players use a finite set of ad hoc strategies

to make their decisions based on the historic record, and

interesting patterns of cooperation and competition arise. The

exchange of knowledge has been shown to increase the efficiency

of the market [9]. The term ‘‘information sharing’’ in the present

paper corresponds to the terms ‘‘market statistic’’ in reference [7],

‘‘past record’’ in reference [8] and ‘‘knowledge exchange’’ in

reference [9]. K. Anand and H. Mendelson considered the

information structure of a firm to consist of two components:

knowledge that cannot be transferred between market areas and data

that can be transferred [10]. It was shown that both too little and

too much information sharing is sub-optimal for some systems

[11,12].

Regarding spatial structures, a famous pioneering work by R.

Axtell et al. closely reproduces important spatial and demographic

features of the Anasazi in the Long House Valley from about A.D.

800 to 1300 using a multi-agent computational model [13]. The

rich paleoenvironmental record permits the computer to create a

dynamic resource landscape that accurately replicates actual

conditions in the valley, and quite accurate results were obtained.

R. Axtell et al.’s work used actual measures of environmental

variability to create a dynamic landscape of annual potential maize

production that resulted in the spatial pattern, while the present

study follows the idea that the spatial pattern may emerge from the

homogeneous initial state that is mentioned in the second

paragraph. Spatial integration and segregation are of interest to

researchers thanks to T.C. Schelling’s analysis of the segregation in

social environments [14]. He showed that even if people only have

a very mild preference for living with neighbors of their own type,

as they move to satisfy these preferences, complete segregation

would occur. An agent-based modeling of global pattern formation

and ethnic/cultural violence published in Science magazine

showed that the characteristic size of the spatial clustering of

different ethnic groups is the underlying cause for ethic violence

[15]. A study by M.W. Macy and Y. Sato indicated that with

moderate mobility, agents learn to read telltale signs of character,

which enables them to take advantage of better opportunities

outside of the neighborhood. Without an effective signaling

system, a global market cannot emerge [16].

There are very few works that study the effects of different types

of information-sharing mechanisms on the spatial structure of

agent-based systems. It is thus necessary to systematically analyze

the impact of a gradual change in information sharing on the

spatial structure of the market. According to reference [17],

information-sharing mechanisms can be separated into direct

experience, witness information and sociological information. In

this study, we examine three levels of information sharing: 1) no

information sharing (in which agents utilize only personal

information); 2) information sharing among agents within a

community, as emulated by information sharing within a group

of friends; and 3) information sharing among agents through

environmental signals, which are analogous to pheromones in the

biological world. The spectrum in the present study spans from no

information sharing to a point just shy of global information

sharing. This spectrum enables us to assess the extent to which the

information-sharing mechanism alone contributes to the agglom-

eration of economic activities.

The agent-based model used in this paper has similarities and

differences when compared to self-organizing maps (SOMs). T.

Kohonen defined a self-organizing map as a sheet-like artificial

neural network where neighboring cells compete in their activities

by means of mutual lateral interactions and develop adaptively

into specific detectors of different signal patterns [18]. Learning in

this type of neural network is competitive, unsupervised and self-

organizing. Both agent-based models and SOMs are discrete in

time and space. The individual cell or agent can act independently

during the simulation, and its learning is unsupervised, self-

organized and stochastic. Cells and agents all adapt through

interactions with others.

The critical difference between an agent-based model and an

SOM is that an agent-based model introduces adaptive agents that

move independently on the lattices. The locus on the lattice is not

moving and can have its own attributes such as the cells in an

SOM. Agents can have cognition features and hence are more

representative when modeling social-economic systems [19].

Model

In this model, we abstract the definition of the actual market to

be a process in which information can influence the moving

behavior of individual traders. Here, several details of real

economic activities (markets) were simplified. Disregarding many

practical factors, such as moving cost, trade demand diversity,

market structure, information dissemination efficiency and the

economic environment, we modeled the spatial evolution of the

market as a result of changes in the trading positions of agents with

different information-sharing mechanisms.

The extent of information sharing serves as an ‘‘order

parameter’’, a measure of the degree of order of collective

behavior, to which the other aspects of behavior are coupled. The

order parameter is a typical research paradigm in complexity

research. For example, the local ethnic patch size contributes to

the prediction of local violence in reference [20], and mobility

contributes to the explanation of market structure in the US and

Japan [16].

Table 1. The symbols used in the unified model.

Symbols Description

W The set of loci in the two-dimensional L6L lattice

A The set of all agents (both buyers and sellers)

B The set of buyers

S The set of sellers

ei The Moore neighborhood of agent i, iMA, eiMW

Fi The set of friends of agent i, iMA

Mip The memory of agent i about locus p, iMA, pMW

M0 The unit memory strength of an agent about the trading locus

doi:10.1371/journal.pone.0058270.t001
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1 Agents and the Environment
We represent economic activity as the trade between two

different types of economic agents.

In our model, there are N agents consisting of N/2 buyers and

N/2 sellers. Initially, these agents are distributed randomly on a

two-dimensional L6L lattice with periodic boundary conditions.

Figure 1. The spatial structure of the market for different numbers of agents and different sight ranges. This figure illustrates the
spatial distribution of the agents for k/N = 0.99 on the two-dimensional L6L lattice when the simulation terminates at 100,000 time-steps, with the
sight range r varying from 2 to 10 (top to bottom rows) and the number of agents varying from 25 to 400 (left to right columns). The sight range and
the agent number values are marked on each plot. For r = 2, the agglomeration of the agents is much more remarkable than for the other cases. As
explained in the text, a larger sight range increases the random movements of agents throughout the lattice, which decreases the likelihood that
agents will aggregate and form clusters. Even in the cases when r = 2 and r = 4, where the agglomeration is relatively better than for the larger sight
range cases, we can see that an increase in the number of agents (N$200) is associated with a much more diffuse distribution of agents on the
lattice. Therefore, setting a large number of agents does not ensure agglomeration. An increase in the number of agents also requires additional
computational time. N = 100 is therefore set to ensure agglomeration while reducing excessive computation.
doi:10.1371/journal.pone.0058270.g001
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Each agent can move independently, and the movement of the

agents is influenced by the available information. When an agent

moves out of the lattice on one side, it enters from the other side.

Each locus in the lattice can be occupied by only one agent. Two

agents can trade when the distance between them is within their

sight range, which is defined below. The overall spatial structure of

the market will evolve with different information-sharing mech-

anisms.

2 Agent Behavior
Each agent in the lattice exhibits three types of behavior:

trading, processing information and moving. In each time-step, no

agent can move more than once or trade more than once. Seller

agents are chosen in a random order in each time-step, and for

each seller, an available buyer (one that has not yet traded within

this time-step) within sight range is selected. If more than one

buyer is available within sight range, one of these is randomly

selected. If no buyers are available within sight range, the seller

waits until the next time-step. If a trade takes place, each trader

(buyer and seller) either remembers the current trade position or

leaves a ‘‘pheromone’’ on the current position depending on the

information-sharing mechanism, which will be addressed later.

Figure 2. The effects of the random walk probability on the degree of clustering and the market number. This figure shows that the
larger the value of P, the smaller the degree of clustering Ct and the lower the market number. In this model, we set P = 0.10 because P = 0.10 leads
the model to produce interesting results, i.e., clustering. The fact that agglomeration does not happen for other values is also a valid and meaningful
result.
doi:10.1371/journal.pone.0058270.g002

Figure 3. The friend number’s effects on the average successful
trading ratio, market clustering degree and simple social
entropy. With an increase in the number of friends per agent k/N,
this model shifts from no information sharing to more information
sharing. This figure shows that as k/N increases from 0 to 0.99, the
averages of the successful trading ratio Dt and the degree of clustering
Ct increase, and the average simple social entropy Et decreases. The
error bars are also shown. All of the averages are calculated after the
first 10,000 time-steps.
doi:10.1371/journal.pone.0058270.g003

Table 2. The parameters of the model.

Description Parameter Value

Side length of the lattice L 100

Total number of agents N 100

Random walk probability P 0.10

Sight range r 2

Cluster radius Rc 5

Amount of information available after a trade M0 100

Information evaporation rate a 0.01

Number of friends in each information-sharing
mechanism

k 0,99

doi:10.1371/journal.pone.0058270.t002
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Afterwards, an agent, whether it has successfully selected a

trading partner or not, will always try to move. We assume that

each agent moves with probability 1-P to a new position selected

according to each of the three information-sharing mechanisms.

Agents may also move to another site on the lattice with

probability P due to exploration needs. This type of probabilistic

path selection is frequently used in Ant Colony Optimization

(ACO) [21]. The exploration probability also reflects bounded

rationality when many factors (that we do not take into account in

this paper) may influence the agent to take a less optimal site. If the

chosen destination is occupied, the agent must randomly select

another empty locus within its sight range. If there is no vacant

locus, the agent waits until the next time-step.

We measure the time-dependent variables across time or the

size of the market when the system reaches a dynamic equilibrium

after the transient process.

3 Information-sharing Mechanisms
In this paper, we consider three information-sharing mecha-

nisms: the use of personal information alone with no information

sharing among agents, information sharing via pheromone-like

signals and information sharing in communities maintained by

each agent. The details are as follows.

3.1 Pheromone information sharing. The sharing of

information through pheromones generally describes a mode of

communication in biological systems. Several representative

Figure 4. Market spatial structures resulting from the degree of information sharing. Each plot is a spatial distribution of the agents on
the two-dimensional L6L lattice. Panel (A) with k/N = 0 represents no information sharing, panel (B) has k/N = 0.10 and panel (C) has k/N = 0.99. The
agents scatter on the lattice without agglomeration in Panel (A). The distribution of the agents in Panel (B) appears to be less scattered than that in
Panel (A), and several small clusters were observed. Only in Panel (C) can we observe the agglomeration of the agents into obvious clusters. This
finding shows that the more information sharing there is, the more likely it is that economic centers will form.
doi:10.1371/journal.pone.0058270.g004

Figure 5. Evolution in the degree of clustering associated with
the degree of information sharing. This figure shows the 200-
iteration moving average of the degree of clustering. From bottom to
top, light gray (k/N = 0), gray (k/N = 0.10) and black (k/N = 0.99)
correspond to typical cases from no information sharing to the most
information sharing, respectively. The average degrees of clustering
Ct_avg for the three cases are 3.29, 6.35 and 12.52, respectively. The
agents in the pheromone-like mechanism show a much tighter
integration than in the other two. All of the averages are calculated
after the first 10,000 time-steps.
doi:10.1371/journal.pone.0058270.g005

Figure 6. Evolution in simple social entropy associated with the
degree of information sharing. This figure shows the 200-iteration
moving average of social entropy. From top to bottom, light gray (k/
N = 0), gray (k/N = 0.10) and black (k/N = 0.99) correspond to the typical
cases from no information sharing to the most information sharing,
respectively. The average simple social entropy values Et_avg for the
three cases are 2.96, 2.24 and 1.57, respectively. This figure shows that
in this model, no information sharing results in the least ordered system
with the highest entropy, whereas the pheromone-like information
sharing results in the most ordered system with the lowest entropy. All
of the averages are calculated after the first 10,000 time-steps.
doi:10.1371/journal.pone.0058270.g006
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studies [22] include thresholds in their models of pheromone-like

communication, and this mechanism has been found to perform

well in task allocation [23,24]. Economic activity may result in the

development of infrastructures and facilities [1], and similar to ant

colony chemotactic features, these infrastructures and facilities can

attract agglomerations of latecomers.

In our model, after a trade takes place, the buyer agent and the

seller agent each leaves a pheromone in the amount of H0 at the

site of the trade. During each time-step, each agent identifies the

site within its sight range where the amount of pheromone is the

largest and jumps to that site with probability 1-P. If another agent

occupies that site, the agent randomly selects another site within its

sight range. If no vacancy is available, the agent waits until the

next step.

The pheromone evaporation rate is a commonly used concept

in ACO. The amount of a pheromone, H, will become H(12a)n

after n time-steps with a representing the evaporation rate. In this

case, the agents neither communicate with each other nor use their

trading memory. The only available information is provided by

the pheromones. This situation represents localized global

information sharing. The information is global because all agents

are allowed to obtain access to the information and localized

because only those agents that come close to a site can access that

information.

3.2 No information sharing. When agents utilize only

personal information, they conduct economic activities based on

local information alone without using any information that may be

transferred from other agents. This situation corresponds to the

fourth coordination structure, no information, in reference [10]. In

this mechanism, each individual cannot access any information

other than its own previous experience.

When a trade takes place, each trader (buyer and seller)

memorizes the location of this trade with a memory strength of S0.

An evaporation rate b is introduced such that the intensity of

memory S becomes S(1-b)n after n time-steps. During each time-

step, the agent examines its own memory record to identify the

locus within its sight range with the largest S value and jumps to

that site with probability 1-P. If that site is occupied, the agent

moves randomly to another locus within its sight range. If there is

no vacant locus, the agent waits until the next time-step.

3.3 Friend information sharing. Agents in the real world

might not isolate themselves, thus using only their own knowledge;

however, they also might not have the ability to travel widely to

obtain (localized) global information, which would waste signifi-

cant time and energy. Real-world agents usually communicate and

share information within a group of friends. Therefore, between

the above-mentioned two extremes, we model a typical mid-level

information-sharing mechanism in which the agents can share

information in a community. This mechanism corresponds to the

second (decentralized) coordination structure in reference [10], in

which decisions are made separately in each market using local

knowledge and data. In the present study, however, an agent

shares information with a group of agents and the information is

only a trade history memory.

Initially, each agent randomly chooses k friends of the same

type. When the agent tries to move, it asks for suggestions from all

of these friends. Each friend then suggests the best positions in its

memory that are within the sight range of the asking agent.

Considering both its friends’ suggestions and its own memory, the

asking agent chooses the best site and jumps to that site with

probability 1-P. If the chosen site is occupied, the agent walks

randomly. In this information-sharing mechanism, the agents

retain their own memory but do not memorize their friends’

suggestions. If there is no vacant locus, the agent waits until the

next time-step.

4 A Unified Model
We next attempt to identify a unified model that describes all

three of the information-sharing mechanisms described above

based on changes to the value of a specific parameter. The friend

information-sharing mechanism is equivalent to the no informa-

tion-sharing mechanism when the number of friends k = 0;

however, the friend information-sharing mechanism cannot be

made equivalent to the pheromone information-sharing mecha-

nism strictly by changing the value of k. In the friend information-

sharing mechanism, each agent chooses the potential trading

position that is most strongly represented in the memories of all of

its friends that are within its sight range. This memory

representation is different from the pheromone signal, which is

composed of the sum of all personal memories. Thus, even when k

is very large, we still need to sum up the suggestions within the

sight range of the asking agent to be equivalent to the pheromone

model.

We introduce a memory overlapping mechanism to unify the

three information-sharing mechanisms; this mechanism is de-

signed as follows:

(1) The symbols

(2) The symbols used in the unified model are listed in Table 1.

(3) The trading rules

Agent iMS located at locus p0MW follows three trading rules at

each time-step:

a. Agent i trades with agent j when j has not traded with any

other agent in the current time-step, where jMB and pjMei.

Otherwise, i waits until the next time-step.

b. The memory of agent i about locus p is updated as follows:

Mi?p~Mi?pzM0, where Mi?p evaporates at rate a.

Figure 7. Evolution in the successful trade ratio associated with
the degree of information sharing. This figure shows the 200-
iteration moving average of the successful trade ratio. From bottom to
top, light gray (k/N = 0), gray (k/N = 0.10) and black (k/N = 0.99)
correspond to typical cases from no information sharing to the greatest
degree of information sharing, respectively. The average successful
trade ratios Dt_avg associated with the three cases are 0.45, 0.52 and
0.61, respectively. In this model, more information promotes more
successful trades. All of the averages are calculated after the first 10,000
time-steps.
doi:10.1371/journal.pone.0058270.g007
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c. I f there i s an unoccup ied pos i t i on pM e i tha t

satisfies,Mi?pz
P
i0[Fi

Mi0?p~ maxfMi?pz
P
i0[Fi

Mi0?p,p[eig,

i jumps to that site with probability 1-P. Otherwise, i commits
a random walk to another pMei with probability P.

In this unified model, each agent attempts to find a trader

within its sight range. If a trader is available to the selecting agent,

a trade takes place and M0 is added to the memory of this agent for

the trading locus. If no trader is available, the agent waits until the

next time-step. After trading, each agent adds its friends’ memories

and its own memory together to calculate the memory about each

locus within its sight range. The locus with the largest resulting

memory value is chosen by the agent as the next potential trading

position. If this chosen locus is occupied, the agent jumps

randomly within its sight range.

Measurements

We analyze three statistics: the degree of clustering, simple

social entropy and the successful trading ratio. The degree of

Figure 8. Market size distributions when the extent of information sharing varies from less to more. The three curves in the top left
panel represent typical cases for information sharing, k/N = 0, 0.10, 0.99. To keep the curves clearly visible, we do not show all of the cases with k/N
ranging from 0 to 0.99 in this panel. The rest of the panels in Figure 8 contain log-log plots of the cumulative distribution and a linear fit for all the
cases k/N = 0, 0.10, 0.20, …, 0.90, 0.99. The market size frequency is calculated for 100,000 time-steps after the first 10,000 time steps. For k/N = 0, 0.10,
the linear fits have an Adjusted R-Square less than 0.90, which means that there is not strong evidence of a power-law distribution. For k/N$0.20,
however, all of the linear fits have an Adjusted R-Square greater than 0.90, which means that there is strong evidence of a power-law distribution.
doi:10.1371/journal.pone.0058270.g008

Information-Sharing on Spatial Market Formation
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Figure 9. The Adjusted R-Square versus k/N and slope versus k/N for the linear fits in Figure 8.
doi:10.1371/journal.pone.0058270.g009

Figure 10. The linear fit in the log-linear scale for k/N = 0, 0.10. This figure shows the log-linear plot of market size distribution and linear fit for
k/N = 0, 0.10. The linear fits have an Adjusted R-Square greater than 0.90, which means that the market size distributions for these two k/N ratios are
exponential.
doi:10.1371/journal.pone.0058270.g010
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clustering and simple social entropy measure the market spatial

structure. The successful trading ratio measures the market

efficiency.

In this study, we use the DBSCAN (density-based spatial

clustering of applications with noise) algorithm, which was

proposed by M. Ester [25], to distinguish clusters. DBSCAN is a

widely adopted method to discover clusters of arbitrary shapes in

spatial data. DBSCAN does not need to specify the number of

clusters in the data a priori, as opposed to k-means; instead,

DBSCAN can find arbitrarily shaped clusters, even a cluster

surrounded by (but not connected to) a different cluster. A similar

algorithm is proposed in reference [26]. The basic idea of

DBSCAN is that for each point in a cluster, the neighborhood of a

given radius e must contain at least MinPts points, where e and

MinPts are input parameters. If the neighborhood of point p

contains at least MinPts points, a cluster with p as the core point is

created. All of the points that are density-reachable from the core

point are subsequently retrieved and placed into the cluster. The

algorithm terminates when no new point can be placed into any

cluster.

1 Degree of Clustering
The formation of a spatially heterogeneous market is a process

of agent congregation. It is therefore necessary to introduce a

measurement of the degree of clustering, which is defined as

follows:

Ct~
XN

i~1

(ni=N),

where ni is the number of agents within the sight range r of agent i.

Ct calculates the average number of agents in all neighborhoods at

time-step t.

2 Simple Social Entropy
R. Gorelick and S. Bertram studied various indices that measure

diversity in a system [27]. They categorized the measurements into

four families: Shannon’s index/entropy, Simpson’s index, geo-

metric mean, and standard/absolute deviation. Shannon pre-

scribed three properties for a measure of information uncertainty:

continuous, monotonic and recursive. T. Balch noted that Meyer’s

metric Et~1{
Pc

i~1

pi
2 (Simpon’s index in reference [27]) is

continuous and monotonic; however, it is not recursive [28].

Shannon’s information entropy (called simple social entropy in

[28]), however, meets all three criteria. With this benefit and for

simplicity, the current study uses simple social entropy to measure

social diversity, which can describe the order of spatial agglom-

eration in multi-agent systems. If all agents can be categorized

(using DBSCAN) into c clusters, we set Pi = Ni/N, where Ni is the

number of agents in cluster i, N is the total number of agents in the

system, and i = 1, 2, 3, …, c. Simple social entropy is defined as

Shannon entropy.

Et~{
Xc

i~1

pi log pi,

where Et is the simple social entropy at time-step t.

3 Successful Trading Ratio
Market efficiency is typically measured by the total surplus of

both suppliers and consumers. In our model, the trade process is

simplified: price curves are not considered, and we set a unit

benefit to a pair of traders for a successful trade. Thus, the market

efficiency can be measured by the frequency of successful trades,

which is defined as.

Figure 11. Sensitivity analysis of the Adjusted R-Square versus Rc for some typical k/N values. There are only two dots (k/N = 0.10, Rc = 4),
(k/N = 0.20, Rc = 2) that are below 0.90, which means that the results obtained from the distribution are quite robust to the variation of Rc values,
especially when there is no information sharing (k/N = 0) or the extent of information sharing is high (k/N = 0.60, 0.90).
doi:10.1371/journal.pone.0058270.g011
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Dt~
Nd

N=2
,

where D t, Nd and N/2 are the successful trading ratio, the number

of successful trades and the maximum number of trades at time-

step t. The larger the successful trading ratio is, the higher the

market efficiency.

4 The Parameters of the Model
The amount of information produced by each trade transaction

is set as a constant. The value of this constant does not affect the

simulation results. A low pheromone evaporation rate means slow

adaptation and a high evaporation rate means rapid adaptation.

Studies have shown that with the evaporation rate ranging from

0.01 to 0.50, the expected quality of the optimization decreases

rapidly (for a review, see reference [29]). Hence, we set the

evaporation rate to a = 0.01. Following is a sensitivity analysis of

several parameters of the model.

4.1 Population density and sight range. The population

density, calculated as the number of agents N over the size of the

lattice, has a considerable effect on the evolutionary results of most

of the agent-based models. Obviously, the larger the value of L, the

more representative the model is of the real market, and at the

same time, the higher the computational complexity of the model.

The sight range of the agents determines the level of information

sharing between them. Taking both external validity and

simplicity of computation into consideration, we set L = 100 and

compare the degree of agent agglomeration at different sight range

values and at different densities by adjusting the value of N.

Figure 1 simulates the evolution of the spatial distribution for

the pheromone information-sharing mechanism (the number of

friends over the total number of agents ratio k/N = 0.99, will be

addressed later), with r varying from 2 to 10 (top to bottom rows)

and the number of agents varying from 25 to 400 (left to right

columns). Each plot is a spatial distribution of the agents on the

two-dimensional L6L lattice when the simulation terminates at

100,000 time-steps.

For r = 2, the agglomeration of the agents is much more

remarkable than for the other cases. Because the Moore

neighborhood of each agent contains (2r+1)221 grid cells, these

neighborhoods are larger than 100 grid cells for r.5. In this case,

a larger sight range means that the locus with the largest amount

of pheromone can be identified by many more agents. In our

model, each locus can be occupied by only one agent, and the

other agents who find this locus must jump somewhere else

randomly. A larger sight range increases the random movements

of agents throughout the lattice, which decreases the likelihood

that the agents aggregate and form clusters. Finally, we set r = 2.

Even in the cases when r = 2 and r = 4 where the agglomeration

is relatively better than it is in the larger sight range cases, we can

see that an increase in the number of agents (N$200) is associated

with a much more diffuse distribution of agents on the lattice.

Therefore, setting a large number of agents does not ensure

agglomeration. An increase in the number of agents also requires

additional computational time. Balancing between the effective-

ness and the efficiency of the model, we set N = 100.

4.2 Cluster radius. The cluster radius Rc reflects the scale of

clustering on the lattice. On the one hand, too large a cluster

radius, such as Rc.5, makes it hard to distinguish between the

aggregating state and the evenly random distribution because the

distance between the core agent and the marginal agents is larger

than L/2 = 50. Under this condition, all of the agents on the lattice

can be placed in a single large cluster. On the other hand, too

small of a cluster radius, such as Rc,5, decreases the robustness of

a cluster against random interruption. We set Rc = 5. We will

demonstrate in the Results section that the results obtained in this

paper are robust to varying Rc values.

4.3 Random walk probability. The random walk proba-

bility exhibits characteristics similar to those of temperature in a

physical system. A large random walk probability increases the

chance that an agent will choose another locus even when the best

locus is not occupied. As a result, the agents in a cluster more

readily jump out, which contributes to the collapse of the cluster.

As Figure 2 shows, the larger the value of P, the smaller the degree

of clustering and the lower the market number. In this model, we

set P = 0.10, as P = 0.10 drives the model to produce interesting

results, i.e., clustering. The fact that agglomeration does not occur

for other values is also a valid and meaningful result.

4.4 Number of friends. The number of friends, k, and hence

the ratio k/N, is a key parameter in the unified model. Each agent

shares more information with an increase in the number of friends

per agent. Figure 3 shows that as k increases from 0 to 99, k/N

increases from 0 to 0.99, the successful trading ratio and the

degree of clustering increase, and the simple social entropy

decreases. Having more friends provides agents with access to

more information and enables more successful trades. In this case,

clusters readily form, and the entire system becomes better

organized with low simple social entropy.

In the unified model, we set k/N = 0, k/N = 0.10 and k/N = 0.99

as three typical cases for the degree of information sharing,

ranging from no information sharing to almost complete

information sharing within the sight range. At k/N = 0, each

agent has no information exchange with others. As the values of k/

N range between 0.10 and 0.99, each agent has access to the

superposition of the memories of all of its k friends plus its own

memory about each locus. Specifically, at k/N = 0.99, each agent

has access to the superposition of the memories of all of agents

including its own.

The parameters of the model are listed in Table 2.

Results

The simulation results for the various information-sharing

degrees in the unified model are presented in this section. The

termination criterion is set at 100,000 time-steps because the

system becomes almost stationary at this time. All of the statistics

are calculated after the first 10,000 time-steps.

1 Market Spatial Structure
The extent of information sharing has a profound impact on

economic agglomeration. Each plot in Figure 4 is a spatial

distribution of the agents on the two-dimensional L6L lattice.

Panel (A) of Figure 4 shows the spatial structure of the market that

results from no information sharing (k/N = 0). The agents scatter

on the lattice without any hint of agglomeration. Panel (B) shows

the spatial structure of the market that results from k/N = 0.10.

The distribution of the agents appears less scattered than that in

Panel (A), and several small clusters emerge. The highest level of

information sharing k/N = 0.99, as Panel (C) shows, results in the

agglomeration of the agents into obvious clusters. This finding

shows that greater information sharing is likely to lead to the

formation of economic centers.

2 Degree of Clustering
The degree of clustering reflects the degree of agglomeration in

an economy. From the degree of clustering, we can see the average

number of agents per neighborhood in a system. As the number of
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friends per agent increases, the degree of clustering clearly

increases. In Figure 5, the top (black) curve denotes the change

over time in the degree of clustering associated with the

information-sharing amount k/N = 0.99, the middle (gray) curve

denotes that associated with k/N = 0.10, and the bottom (light

gray) curve denotes that associated with the no information-

sharing mechanism. The results support the intuitive conclusion

that information helps to promote clustering.

3 Simple Social Entropy
Entropy is popularly described as the degree of disorder in a

system. Figure 6 shows that the simple social entropy associated

with the information-sharing amount k/N = 0.99 clearly decreases

over time. A similar but smaller decrease occurs with k/N = 0.10.

For the no information-sharing mechanism, the simple social

entropy remains almost constant (the light gray curve at the top of

Figure 6). Figure 6 shows that the lowest degree of information

sharing results in the least ordered system with the highest entropy,

whereas the highest degree of information-sharing results in the

most ordered system with the lowest entropy.

4 Successful Trading Ratio
Figure 7 shows that the successful trading ratio of the system

changes over time. The three curves in Figure 7 represent the

three cases for the degree of information sharing. Localized global

information sharing generates the largest number of successful

trades because more information is available with this mechanism,

and each trader can find the best partner in a shorter time. We can

conclude that the more information each agent can access, the

larger the successful trading ratio.

5 Market Size Distribution
To further study the spatial structure of the market, we assess

the market size when the system becomes stationary. Figure 8

shows the market size distributions after 100,000 time-steps. The

three curves in the top left panel represent typical cases for the

degree of information sharing, k/N = 0, 0.10, 0.99 (to keep the

curves clearly visible, we do not show all of the cases with k/N

ranging from 0 to 0.99 in this panel). The rest of the panels in

Figure 8 contain log-log plots of the cumulative distribution and a

linear fit for all the cases k/N = 0, 0.10, 0.20, …, 0.90, 0.99.

If the frequency count Q versus the market size Z is a power-law

distribution Q(Z)~Z{c, the cumulative distribution representing

Q(ƒZ)~Z{cz1is also a power-law and vice versa. For k/N = 0,

0.10, the linear fits have an Adjusted R-Square of less than 0.90,

which means that there is not strong evidence for a power-law

distribution. For k/N$0.20, however, all of the linear fits have an

Adjusted R-Square greater than 0.90, which means strong

evidence for a power-law distribution. Figure 9 is the Adjusted

R-Square versus k/N and slope versus k/N for the linear fits in

Figure 8. These two figures mean that with some information

sharing, the power-law distribution of market size is a robust

conclusion.

Figure 10 shows the log-linear plot of the market size

distribution and the linear fit for k/N = 0, 0.10. The linear fits

have an Adjusted R-Square greater than 0.90, which means that

the market size distributions for these two k/N ratios are

exponential.

Figure 11 shows the sensitivity analysis of the Adjusted R-

Square versus Rc ranging from 2 to 5 for some of the typical k/N

values. Analysis for Rc = 1 is omitted because it is unreasonable

when sigh range r = 2. There are only two dots, (k/N = 0.10, Rc = 4)

and (k/N = 0.20, Rc = 2), that are below 0.90, which means that the

results obtained for the distribution are quite robust to the

variation of Rc values, especially when there is no information

sharing (k/N = 0) or when the extent of information sharing is high

(k/N = 0.60, 0.90).

Power-law distributions have been observed in a diverse range

of fields, including biology, economics, sociology, engineering and

physics. Several well-known examples of phenomena that exhibit

‘‘scaling’’ behavior are city sizes [30], firm sizes [31], word

frequencies [32], the frequencies of family names [33] and the

sizes of earthquakes [34]. Certain mechanisms that involve growth

and preferential attachment give rise to power-law distributions

[35]. In this current study, when the agents can share more

information, they tend to move to locations that are associated

with more information. This process is similar to preferential

attachment. Our results indicate that the larger size markets are

more likely to form with pheromone-like information sharing.

Conclusions
In this paper, we propose an agent-based market model that

considers a spectrum of different information-sharing mechanisms.

We also develop a unified model that accommodates all three of

these information-sharing mechanisms based on a specific

parameter–the number of friends per agent over the number of

all agents, k/N.

The results of this study indicate that information plays a

significant role in the agglomeration of economic activities

(represented in this study as the spatial structure of a market).

The amount of information shared gives rise to different market

spatial structures. While no information sharing (k/N = 0) and little

information sharing (k/N = 0.10) lead to exponential distributions,

more information sharing (k/N$0.20) results in a power-law

distribution of market size; this result means that with some

information sharing, the power-law distribution of market size is

robust. The power-law distribution of market size corresponds to

the stylized fact of city size and firm size distributions.

The breaking of symmetry [36] from an evenly distributed

homogeneous initial state to a heterogeneous geographic structure

is due to the tendency to select the previously traded sites based on

the various information-sharing mechanisms (centrifugal forces)

and the random walk (centripetal forces). This symmetry breaking

process is a vivid example of B. Arthur’s viewpoint about the

complexity research on what economists call path dependence,

positive feedback and asymmetry [5]. Although the loci with

higher levels of pheromone attract more traders, the cluster size

does not increase without limit. Instead, the agents tend to form

decentralized clusters.

This paper provides an alternative approach, agent-based

experiments, which are the first that we know of in the economic

geography field, to study the geographic aspects of economic

development based on Krugman’s model. As far as we know, this

is the first work that studies the contribution of only information

sharing to the spatial structure of an economic system.

This model could be used as a test bed to validate assumptions

such as the one made in this paper about which information-

sharing mechanism is likely to regulate the real economic

agglomeration. Furthermore, this study may elucidate the value

of studying the functionality of information rather than counting

information in bits and bytes.

In the Model section, we simplified the real-world economy to

obtain a plausible model. We believe that this work can be

extended by introducing the factors listed in the Model section.

We predict that if this extension is performed, the information-

sharing mechanism will be found to have a more complex effect on

the spatial structure of the market at the global level.
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