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Abstract

The high-throughput annotation of open reading frames (ORFs) required by modern genome sequencing projects
necessitates computational protocols that sometimes annotate orthologous ORFs inconsistently. Such inconsistencies
hinder comparative analyses by non-uniformly extending or truncating 59 and/or 39 sequence ends, causing ORFs that are in
fact identical to artificially diverge. Whereas strategies exist to correct such inconsistencies during whole-genome
annotation, equivalent software designed to correct subsets of these data without genome reannotation is lacking. We
therefore developed ORFcor, which corrects annotation inconsistencies using consensus start and stop positions derived
from sets of closely related orthologs. ORFcor corrects inconsistent ORF annotations in diverse test datasets with
specificities and sensitivities approaching 100% when sufficiently related orthologs (e.g., from the same taxonomic family)
are available for comparison. The ORFcor package is implemented in Perl, multithreaded to handle large datasets, includes
related scripts to facilitate high-throughput phylogenomic analyses, and is freely available at www.currielab.wisc.edu/
downloads.html.
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Introduction

Recent technical advances have promoted the proliferation of

genome sequencing projects, leading to the accumulation of

extensive genome-scale sequence data in public databases. This

has in turn facilitated routine, large scale comparative analyses of

functional and taxonomic diversity, i.e., "phylogenomics" [1,2].

Most phylogenomic approaches require comparisons between

genes or proteins, e.g., to determine homology, identify ortholo-

gous, paralogous and xenologous relationships, and conduct

phylogenetic analysis. Such analyses assume that their input data

are directly comparable, i.e., a sequence that is truly 100%

identical in two genomes will exist in exactly identical copies in

each genome. However, the computational methods typically used

to annotate open reading frames (ORFs) in these data are never

100% accurate [3,4,5], differ between groups and over time, and

are typically not validated experimentally due to limited resources.

Whereas orthologous ORFs may truly differ in structure (e.g., due

to multiple unique start or stop sites, programmed frameshifts, or

pseudogenization [6]), differentiating such genuine variation from

sequencing or annotation errors is difficult without experimental

validation. It may also be desirable from a phylogenomic

perspective to ignore such differences, e.g., due to the reversibility

of programmed frameshifts or the exclusion of the longer of two

genuine start sites. Incomplete ORFs may also result from genome

fragmentation in draft-quality and metagenomic data, which both

omits the missing sequence region and increases the difficulty of

accurate gene prediction [7,8,9]. Low-quality genomes may also

contain chimeras resulting from the erroneous merging of

disparate sequences into a single contig, a relatively common

occurrence even when using state-of-the-art genome assembly

methods [10,11]. Chimeric ORFs may also result from the

inappropriate merging of two different read frames, either

erroneously due to sequencing errors or genuinely because of a

frame shift mutation. Such chimeric ORFs will therefore be

erroneously truncated and concatenated to some unrelated

sequence. The result of any of these inconsistencies is that two

truly identical sequences will artificially differ due to ORF

truncation, extension, and/or the incorrect incorporation of

sequence not belonging to that ORF, thereby potentially

confounding further analysis.

Inconsistent computational ORF prediction is the best studied

of the above biases. Algorithms differ considerably in the ORF sets

that they predict [3,4,5] and in their ability to differentiate

between coding and non-coding sequences [12,13]. For example,

Hyatt et al. [3] reported errors in 3.3–13.1% of computationally

predicted ORFs compared to experimentally derived values,

depending on the ORF prediction algorithm used and taxon

examined. The start sites predicted using different algorithms are

especially known to vary [14]. Organisms having high %G+C

content are particularly susceptible to ORF prediction errors

[12,15], especially due to increased incidence of the alternative

start codon GTG in such genomes. Indeed, underannotation of

the ATG start codon in favor of GTG has been noted as a
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pervasive problem [16,17]. These inconsistencies occur frequently

in publicly available databases such as Refseq [16,17,18], and are

often not conserved between genomes. Highlighting the latter,

Dunbar et al. [18] identified inconsistencies in 53% of ortholog

sets constructed from the GenBank annotations of five Burkholderia

genomes. ORF prediction inconsistencies therefore have the

potential to significantly affect comparative genomics.

Several groups have improved ORF prediction consistency

during genome annotation (i.e., genomewide ORF prediction) by

combining multiple gene prediction algorithms and leveraging the

structure of publicly-available ORF predictions [19,20,21,22], and

excluding unlikely structures such as extensive ORF overlaps [23],

frameshifts resulting from sequencing errors [6], and ORFs with

otherwise aberrant sequence signatures [13]. However, to our

knowledge, software does not exist to correct inconsistencies

outside of a genome annotation context, e.g., for phylogenetic

analysis of selected ortholog families. We therefore developed

ORFcor to detect and correct three ORF prediction inconsistency

types (ORF overextension, truncation and chimerism) without

genome reannotation by leveraging the structures of closely related

orthologs. ORFcor uses the consensus approach of Wall et al. [22]

to detect and correct inconsistent ORF predictions in public data.

Because such inconsistencies are typically distributed widely in

bacterial genomes without specific localization to particularly

problematic genomic regions [18], inconsistent ORFs will

comprise a minority of most ortholog sets. In addition to working

outside of a genome annotation context, ORFcor differs from

previous approaches by using reference sequence sets having high

similarity to query sequences (e.g., vs. using BLASTx vs. nr as in

GenePRIMP [21]) and using protein sequences to more robustly

compare divergent orthologs (e.g., vs. using nucleotide sequences

as in GMV [22]). Provided that truncated ORFs do not comprise

the majority of the ortholog set, ORFs from draft-quality genomes,

metagenomics and PCR amplicon sequencing can also be

corrected using this method. Finally, we further integrated the

ORFcor algorithm within a modular pipeline for high-throughput

phylogenomic analysis to facilitate its routine application and

customization using other methods for ortholog detection and

correction.

Materials and Methods

ORFcor Algorithm Overview
ORFcor requires sets of orthologous protein or nucleotide

sequences as input. Any method to generate such ortholog sets is

compatible with ORFcor, so long as each set exists as a separate

fasta formatted file. Nucleotide sequences are translated to protein

sequences, analyzed normally by ORFcor, and the resulting

corrections back-translated to nucleotide sequences by replacing

"X"s with equivalent strings of "N"s. Nucleotide sequences must

be free of indels to ensure their proper translation. Translating

nucleotides to their corresponding protein sequences maintains

proper reading frames and increases the similarity between

sequences by effectively only considering non-synonymous se-

quence differences, an important criterion for maximizing the

accuracy of ORFcor (see below). Nucleotide sequences are not

compatible with the other steps of the ORFcor pipeline.

Within these ortholog sets, each sequence (‘‘query’’) is aligned to

all others in its ‘‘reference’’ ortholog set using BLASTp in the

BLAST+ package [24] using default parameters except "-

comp_based_stats F" and "-evalue" and "-max_target_seqs" as

defined by ORFcor parameters "-e" and "-j", respectively (1e-5

and 5 by default, respectively). By default, $5 reference orthologs

exceeding an identity threshold value d (the fraction of identities

shared between both sequences in the aligned region; by default

0.9) are required to attempt correction, yielding a theoretical false

detection rate ,2% [22]. The extent to which each query and

reference are misaligned at both 59 and 39 sequence ends is

recorded until the number of comparisons exceeds a threshold or

the number of stored BLAST hits (k and l, respectively, both by

default 1000). All references 100% identical to the query are

considered (# l) to avoid bias towards overextended references,

which will have higher BLAST scores versus the query compared

to shorter, but otherwise identical reference sequences. Consensus

start and stop sequences are determined as the number of

unaligned query and reference amino acids (AA) at their 59 and 39

sequence ends calculated for all query-reference comparisons.

Potential consensus start and stop positions are considered if they

agree in $33% of the query–reference comparisons for each query

sequence, defaulting to the longest consensus if more than one are

found. If the consensus number of unaligned AA at the 59 or 39

ends of both the query and reference exceed a threshold (5’: f, by

default 10 AA; 3’: g, by default 30 AA) the query is considered

chimeric, truncated to the consensus query alignment start or end

position and (consensus reference alignment start or end

position)21 ‘‘X’’ characters are added. Alternatively, if the

consensus number of unaligned query AA exceeds a threshold

(5’: a, by default 5 AA; 3’: b, by default 20 AA), the query is

considered truncated and (consensus reference alignment start or

end position)21 ‘‘X’’ characters are added to that query sequence

end to denote missing data. Finally, if the consensus number of

unaligned reference AA $ a or b, the query is considered

inappropriately extended and truncated to the consensus reference

alignment start or end position. An example of each error type is

illustrated in Figure 1. Because alignments are calculated

sequentially for each query sequence, datasets comprising two

equally common start or stop sites may trigger both trimming and

overextension of opposing halves of the same dataset. This

difficulty is overcome by only allowing extensions for ortholog sets

where $40% of the sequence ends are proposed for trimming and

a second $40% are proposed for overextension, calculated using

only query sequences that can be corrected according to the

ORFcor input parameters.

Test Datasets and Validation
To examine the performance of ORFcor, we obtained the

predicted proteomes for 1519 complete genomes available in the

NCBI FTP folder ‘‘genomes/Bacteria/" as of January 4, 2012.

The COG seed sequences for each of 31 ortholog families

conserved in nearly all bacteria with minimal horizontal gene

transfer (and thereby most suitable for phylogenomic analysis) [25]

were downloaded from the Conserved Domain Database [26],

aligned using MUSCLE v3.70 according to default parameters

[27], and used as input for HMMER v3.0 [28] to create hidden

Markov models (HMMs) for each family. Each proteome was

queried using these HMMs with expectation cutoffs manually set

for each HMM, typically 1e220 lower than the expectation value

at which the correct orthologs were recovered from endosymbiont

genomes for which small population sizes have caused extensive

sequence divergence [29]. Using such stringent parameters will

avoid most paralogous sequences but will also omit some genuine

orthologs poorly matching the HMMs, especially if these orthologs

are truncated, e.g., due to draft-quality genome sequencing. We

provide these HMMs and multithreaded scripts to query multiple

genomes using HMMER as part of the ORFcor package, although

any other method for generating sets of orthologs can also be used;

for recent reviews of such methods see [30,31].

Sequence Correction Using ORFcor
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Unfortunately, no set of closely-related genomes exists having

ORFs annotated with 100% consistency and therefore suitable to

parameterize the ORFcor algorithm. To approximate such a

dataset, we selected c-proteobacterial genomes from the dataset

described above belonging to genera containing .5 strains

(excluding Buchnera; see below), identified 31 ortholog sets as

described above, aligned each using MUSCLE, visually identified

ORF annotation inconsistencies, and corrected them according to

their closest homologs in this dataset. This reference dataset

contained 5438 protein sequences representing 176 strains in 13

genera (range: 6–30 strains per genus). To simulate data

containing annotation inconsistencies, these corrected sequences

were artificially extended, truncated, or had their sequence ends

replaced by divergent sequences to create chimeras (see ORFcor

package for datasets and scripts to replicate these experiments).

For each parameter setting, only sequences having $5 unmodified

orthologs within the chosen parameter settings were altered. The

length of the added or deleted sequences were Poisson distributed

above a set threshold, and added sequences were derived from

COG families unrelated to the analyzed orthologs. Multiple test

datasets were created using various combinations of error

frequencies and lengths, with representative results shown in

Table 1 and the complete dataset in File S1. The simulated error

frequencies were substantially higher than those observed during

preliminary experiments, and using lower frequencies only

increased the performance of the algorithm. Fifty replicate test

datasets were created for each parameter combination.

ORFcor was run on each set of replicate test datasets using a

range of parameters. For each test set, the number of true and false

positive corrections (TP and FP hereafter) and the number of true

and false sequences left uncorrected (i.e., negative corrections; TN

and FN hereafter) were recorded for each corrected dataset as

compared to the inconsistencies added during test dataset

construction. The sensitivity, specificity, precision and F-score

for each inconsistency type were calculated for the union of all TP,

FP, TN and FN values across all 50 replicate test datasets for each

parameter value as: sensitivity (Sn) = TP/(TP+FN) * 100%;

specificity (Sp) = TN/(FP+TN) * 100%; precision = TP/(TP+FP)

* 100; and F-score = 2 * (precision * Sn)/(precision+Sn) * 100. The

degree to which the positions of the introduced modifications

corresponded to those of the actual inconsistencies introduced into

the test datasets was also recorded.

Pipeline Overview
In addition to the ORFcor algorithm itself, we provide a fully

integrated pipeline for high -throughput phylogenomic analysis. All

steps of this pipeline except the last are multithreaded to accommo-

date the often computationally taxing size of modern datasets, and

constructed modularly to facilitate customization. Although princi-

pally directed towards microbial protein sequences, it can easily be

adapted to other taxa and data types (although because it does not

consider indel sequences, it is not suitable for use with raw eukaryotic

DNA sequences). The steps of the ORFcor pipeline are:

1. HMMER_model_maker.pl: A multithreaded wrapper script to

construct a set of HMMs using HMMER3 [28].

2. Mult_hmmscan.pl: A multithreaded wrapper script to query

target genomes using the HMMs generated in step 1 (or via

other equivalent methods).

3. ORF_cor.pl: A multithreaded implementation of the ORFcor

algorithm, which corrects ortholog sets generated using steps 1

and 2 (or via other equivalent methods).

4. Mult_MUSCLE.pl: A multithreaded wrapper script to make

multiple sequence alignments of each corrected ortholog set

using MUSCLE [27].

5. Aligned_multiple_faa_concatenator.pl: Combines multiple se-

quence alignments generated in step 4, incorporating strings of

"X" characters for ORFs not detected in particular taxa.

Contains an option to exclude sequence columns containing

data present only below some threshold value.

Implementation
ORFcor is implemented in Perl (v5.10.1), multithreaded using the

Perl ‘‘Parallel::ForkManager’’ module, and tested using Ubuntu Linux

v10.04. The BLAST+ package [24] is a required dependency, and

MUSCLE [27] and HMMER3 [28] are required for other pipeline

steps. TRANSEQ in the EMBOSS [32] package is required to analyze

nucleotide sequences. Using the ORFcor pipeline to construct and

correct 31 ortholog sets from the 123 Enterobacteriaceae proteomes

described above in ‘‘Test datasets and validation’’, all according to

default parameters using 16 AMD Opteron 618 processors

(2.00 GHz), took a wall time of 6 min 21 sec, of which 1 min 41 sec

comprised the ORFcor step, with a peak RAM usage of 832 MB. The

version of ORFcor used in this manuscript is attached as File S2; see

www.currielab.wisc.edu/downloads.html for the most recent version.

Figure 1. Illustrative examples of the ORFcor approach. A sequence alignment is given where one sequence is overextended (red box), one is
chimeric (green box) and one is truncated (blue box). For each altered sequence, the consensus unaligned sequence positions for both the query and
reference are indicated, compared with the relevant (non-default) parameters, and the resulting alterations to the sequences indicated.
doi:10.1371/journal.pone.0058387.g001

Sequence Correction Using ORFcor
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Results

Performance of ORFcor on Simulated Data
The performance of the ORFcor algorithm was examined using

simulated data whereby ORF extensions, deletions, and chimeras

were artificially introduced into otherwise high-quality sequences

(see "Materials and Methods"). A wide range of algorithm

parameters were examined on data having different ORF

annotation inconsistency frequencies and sizes, and representative

results are shown in Table 1 (see File S1 for complete results). Both

sensitivity and specificity for correction of under- and overexten-

sions approached 100%, with performance improving as the

length of the simulated under- and overextensions increased.

Chimera detection was similarly specific but less sensitive, likely

Table 1. Performance of ORFcor run on simulated inconsistency-containing data in comparison to known values using the
parameters: a = 5; b = 10; d = 0.75 or 0.90; f = 10; g = 30; l = k = 1000.

d = 0.75 d = 0.90

Test Dataset #1 Test Dataset #2 Test Dataset #1 Test Dataset #2

59 Chimeras Length$10 AA Length$20 AA Length$10 AA Length$20 AA

Sp 100.00% 99.99% 100.00% 100.00%

Sn 67.33% 92.00% 64.00% 88.33%

Mean 100% accurate correctionsa 83.6661.85% 55.4361.19% 86.9861.56% 62.2661.53%

Mean deviation from perfect correctionb 1.1860.46 AA 3.7662.92 AA 1.0460.20 AA 3.2962.79 AA

39 Chimeras Length$30 AA Length$40 AA Length$30 AA Length$40 AA

Sp 100.00% 100.00% 100.00% 100.00%

Sn 65.00% 87.33% 62.67% 85.33%

Mean 100% accurate corrections 82.0561.56% 53.8261.52% 85.1161.78% 63.2861.53%

Mean deviation from perfect correction 1.3460.68 AA 3.0662.24 AA 1.1460.36 AA 3.2962.64 AA

59 Overextensions Length$5 AA Length$10 AA Length$5 AA Length$10 AA

Sp 99.72% 99.72% 99.64% 99.66%

Sn 99.82% 99.82% 98.58% 98.52%

Mean 100% accurate corrections 98.6561.91% 98.7562.13% 99.5263.23% 99.4963.23%

Mean deviation from perfect correction 9.37622.49 AA 9.14620.97 AA 10.56617.26 AA 9.51616.79 AA

39 Overextensions Length$20 AA Length$25 AA Length$20 AA Length$25 AA

Sp 100.00% 100.00% 100.00% 100.00%

Sn 98.15% 100.00% 97.78% 98.80%

Mean 100% accurate corrections 95.5962.09% 94.8061.75% 96.9962.04% 96.6161.86%

Mean deviation from perfect correction 2.1062.60 AA 2.0162.44 AA 1.0060.00 AA 1.2161.00 AA

59 Truncations Length$5 AA Length$10 AA Length$5 AA Length$10 AA

Sp 99.80% 99.81% 99.99% 99.99%

Sn 98.97% 99.41% 98.07% 97.99%

Mean 100% accurate corrections 93.1465.10% 90.6564.58% 95.9165.05% 94.3864.95%

Mean deviation from perfect correction 2.61612.08 AA 1.6461.52 AA 2.4063.27 AA 1.8061.33 AA

39 Truncations Length$20 AA Length$25 AA Length$20 AA Length$25 AA

Sp 100.00% 100.00% 100.00% 100.00%

Sn 97.45% 99.49% 97.56% 97.78%

Mean 100% accurate corrections 88.8062.53% 86.7762.64% 94.5162.42% 92.5162.57%

Mean deviation from perfect correction 1.6761.50 AA 2.1262.15 AA 1.2161.59 AA 0.9761.34 AA

The lengths of the simulated errors are indicated for each error type; test dataset #1 represents the shortest possible errors detectable using the tested ORFcor
parameters. Errors were introduced into test sequences at rates: 59 overextensions and truncations - 5%; 39 overextensions and truncations - 1%; 59 and 39 chimeras -
0.1%. See File S1 for the complete simulation results.
aMean 100% accurate correction values and their standard deviations were derived from all true-positive values, averaged over the 50 replicates run for each parameter
set.
bMean deviation from perfect correction is derived from true-positive values that are not 100% accurate.
doi:10.1371/journal.pone.0058387.t001
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due to BLAST inaccurately extending alignments into the

chimeric region despite abundant mismatches, with sensitivity

towards chimera detection improving substantially as simulated

chimera lengths were increased. Increasing the minimum identity

required for sequences to be used as references for correction

(parameter d) resulted in a trade-off between correction accuracy

and sensitivity, evident from the relatively constant F-scores shown

in Figure 2, except for chimera correction below,d = 0.7 where

false-positive corrections where common. Corrections made by

ORFcor were also typically highly accurate (considering true-

positive corrections), inserting or deleting the correct number of

amino acids in the overwhelming majority of cases (Table 1).

Interestingly, improved ORFcor sensitivity often led to decreased

correction accuracy, suggesting the existence of sequences for

which perfect correction is inherently difficult by this algorithm.

Large miscorrections were occasionally observed during this

simulation when an error was randomly incorporated into a

reference sequence that was falsely corrected even without error

incorporation; imperfect corrections otherwise differed from true

lengths by only a few AA (Table 1).

Performance of ORFcor on Complete and
Enterobacteriaceae Proteomes

In reality, the test dataset used for the above simulations is

optimistic because the sequences most likely to be falsely corrected

(i.e., those without multiple closely related reference sequences in

the same genus) were excluded during dataset construction, a

necessity given the lack of an appropriate gold standard. Whereas

the test dataset well-represents sets of closely related taxa,

comparisons using more distantly related taxa and/or less

conserved orthologs are likely to be less sensitive and specific.

To explore this further, we obtained 5,575 proteins from the

proteomes of 123 Enterobacteriaceae belonging to 31 ortholog

families using the HMMs described in "Materials and Methods".

Given that these 31 ortholog families were chosen based on their

high conservation throughout all bacteria [25] and are therefore

assumed to be present in each genome, this represents a 98.27%

detection rate (5,575 proteins out of a possible 5,673). Interest-

ingly, the proteins that were missed with the highest frequency

(e.g., COG0099: 81.96% detection rate) were those having the

shortest sequence lengths, thereby requiring the lowest e-value

thresholds for the HMMs we used (1610210). Because e-values

depend on sequence length, decreasing short sequence lengths

lowers e-values more than proportionally identical decreases for

longer sequences. This result highlights that sequence truncation

(due to either start site prediction errors or low sequence quality)

makes orthologs more difficult to detect using methods that yield e-

values as results (e.g., BLAST or HMMs).

The results of ORFcor correction of the Enterobacteriaceae dataset

are shown in Table 2. Using a minimum identity threshold

d = 0.75 resulted in 146 true corrections (2.62% of the input

dataset) compared with 35 false corrections (0.63% of the input

dataset). Of these 35 false corrections, 30 were sequences

belonging to COG0525 from Yersinia and its close relatives, which

were longer than COG0525 sequences from other Enterobacteria-

ceae, but corrected because of a high confidence consensus start

position inferred from the many other Enterobacteriaceae included

using this relatively generous identity threshold. The other 5 false

corrections were for highly diverged sequences belonging to

endosymbiont taxa. The majority of true corrections occurred at

59 sequence ends, and comprised 81 overextensions, 51 trunca-

tions, and 1 chimera (1.45%, 0.91% and, 0.02% of the total

dataset, respectively). Interestingly, most of these corrections were

restricted to a few ortholog sets (e.g., COG0048, COG0495 and

COG0525) in which the conserved ATG start site was apparently

replaced by an alternative start codon (GTG or TTG) that was not

accommodated in their automated gene predictions. The existence

of these errors was therefore conserved in related taxa but their

start site locations were not, likely due to weaker selection on these

upstream non-coding regions. True corrections at 39 sequence

ends were rare, comprising 4 overextensions, 8 truncations and 1

chimera (0.07%, 0.14%, and 0.02% of the total dataset,

respectively). False corrections were made exclusively for 59

overextensions except for one 59 truncation. Overall, 4.17 X

more true corrections were made compared to false corrections,

indicating a modest improvement in data quality using a minimum

identity threshold d = 0.75.

We also ran ORFcor on the same test dataset using an elevated

minimum identity threshold d = 0.9 (Table 2). Using this more

stringent threshold, we expected a decreased false-positive rate

because: (i) most endosymbiont sequences would be excluded from

correction due to their diverging from nearly all sequences to a

degree beyond this threshold; and (ii) Yersinia and related genomes

would only be compared with each other and not the rest of the

Enterobacteriaceae from which an incorrect consensus was derived

and therefore not falsely corrected. Indeed, these more stringent

parameters eliminated all false corrections. As expected from the

experiments using simulated data (Table 1 and Figure 2),

sensitivity was slightly reduced using d = 0.9 with 140 ORFs truly

corrected (2.51% of the test dataset) compared to 146 truly

corrected ORFs (2.62% of the test dataset) using d = 0.75. This

Figure 2. Effect of varying d (the minimum identity required
between two protein sequences to be used for correction) on
ORFcor performance measured using the F-score. Simulations
using test datasets #1 and #2 are shown in panels A and B,
respectively.
doi:10.1371/journal.pone.0058387.g002
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equates to 95.89% of the corrections made using d = 0.75 being

maintained using d = 0.9.

Evaluating the Stability of ORFcor Corrections in
Increasingly Diverse Ortholog Sets

We further characterized the stability of ORFcor corrections

towards increasing diversity of the input ortholog sets using non-

simulated data. All complete bacterial genomes were obtained

from NCBI and subdivided according to their NCBI taxonomies

at the level of genus, family, order, class/subphylum (class is

otherwise undefined for Proteobacteria), and phylum. Each

subdivision having $6 genomes (therefore meeting ORFcor

default parameters) was then analyzed using ORFcor with

d = 0.75 and d = 0.9, and the extent to which corrections at each

taxonomic level differed from those made for data subdivided at

the genus and family levels was determined (Figures 3A and 3B,

respectively), considering only taxa classified at both taxonomic

levels. The rationale for this experiment was that corrections made

at lower taxonomic levels would be free from false correction due

to the presence of more numerous, divergent taxa (e.g., as for

Yersinia and relatives corrected using d = 0.75 in the analysis of

Enterobacteriaceae described above). As expected, more sequences

were corrected using d = 0.75 (610 when subdivided by genus, i.e.,

2.56% of the entire dataset; 900 when subdivided by family, i.e.,

2.84% of the entire dataset) than using d = 0.9 (345 when

subdivided by genus, i.e., 1.45% of the entire dataset; 420 when

subdivided by family, i.e., 1.33% of the entire dataset). Corrections

made using d = 0.9 changed very little between taxonomic subsets,

confirming the high specificity of this threshold suggested by the

previous analyses (Tables 1 and 2). In contrast, the number of

corrections made using d = 0.75 increased dramatically when using

broader taxonomic levels, likely due to the lack of homologous

start and stop sites at these taxonomic levels and sequence

similarities. Based on these results, we conservatively recommend

the routine use of d = 0.9 and have set this as the ORFcor default.

However, we also suggest that using lower d values combined with

subdivision of the dataset (e.g., based on taxonomy at the genus

level) may be an effective method of increasing the sensitivity of

ORFcor without unduly sacrificing specificity. Which method is

most effective should be evaluated on a case-by-case basis by

examination of the ORFcor summary output files or alignments

and the corrected sequences.

Discussion

In this work, we present ORFcor as a method to correct

inconsistencies in pre-existing sequence data resulting from

inconsistent annotations of ORF start and stop sites and ORF

chimerism. All of these inconsistency types were observed at both

59 and 39 sequence ends in our manual evaluation of 31 conserved

proteins extracted from 123 complete Enterobacteriaceae genomes

(Table 2) at a frequency of ,2.62% per protein, a rate consistent

with those obtained during our further analysis of all complete

bacterial genomes using various ORFcor parameters. This rate of

ORF annotation inconsistencies is likely an underestimate given

the slow evolutionary rate of many of the proteins used in our

dataset, and would be higher still if draft-quality genomes were

also included. Genuine start and stop site prediction errors can

result from the imprecision of the automated computational

methods used, sequencing errors introducing premature stop

codons or masking start site signatures, and draft quality genome

Table 2. Performance of ORFcor on 123 complete genome sequences belonging to the Enterobacteriaceae using default settings,
except as indicated.

Minimum identity threshold d = 0.75 Minimum identity threshold d = 0.90

59 Chimeras

True corrections (% total ORFs) 1 (0.02) 1 (0.02)

False corrections (% total ORFs) 0 (0.00) 0 (0.00)

39 Chimeras

True corrections (% total ORFs) 1 (0.02) 1 (0.02)

False corrections (% total ORFs) 0 (0.00) 0 (0.00)

59 Overextensions

True corrections (% total ORFs) 81 (1.45) 78 (1.40)

False corrections (% total ORFs) 34 (0.61) 0 (0.00)

39 Overextensions

True corrections (% total ORFs) 4 (0.07) 4 (0.07)

False corrections (% total ORFs) 0 (0.00) 0 (0.00)

59 Truncations

True corrections (% total ORFs) 51 (0.91) 50 (0.90)

False corrections (% total ORFs) 1 (0.02) 0 (0.00)

39 Truncations

True corrections (% total ORFs) 8 (0.14) 6 (0.11)

False corrections (% total ORFs) 0 (0.00) 0 (0.00)

All error types

True corrections (% total ORFs) 146 (2.62) 140 (2.51)

False corrections (% total ORFs) 35 (0.63) 0 (0.00)

doi:10.1371/journal.pone.0058387.t002

Sequence Correction Using ORFcor

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e58387



sequencing truncating ORFs that run over contig edges. Although

some ORF annotation differences are undoubtedly genuine,

differentiating these from sequencing errors is essentially impos-

sible without experimental validation and its incorporation into

genome annotations (e.g., using Gene Ontology-style evidence

codes [33]). Furthermore, we argue that the preservation of such

diversity is not always desirable from a phylogenomic perspective,

e.g., for reversible programmed frameshifts or where only the

shorter of multiple genuine start sites is specified.

In our data, inconsistencies in 39 sequence ends were much

rarer than those at 59 ends, likely due to the relative simplicity of

finding the first stop codon along an ORF, compared to the

greater difficulty in discriminating between multiple potential start

codons at the 59 sequence end. Unusually short 39 sequence

lengths may correspond to sequencing errors that introduce a

premature stop codon, or programmed frameshifts within these

ORFs. We also observed that 39 sequence ends were often more

heterogeneous than 59 ends, necessitating more stringent thresh-

olds for making these corrections. In contrast, our analyses suggest

that inconsistencies at 59 sequence ends are relatively common,

especially where alternative start codons like GTG and TTG

occur. Whereas these inconsistencies may reflect bona fide

alternative start sites, the lack of ATG codons at conserved

positions preceding these alternative potential start codons argues

for their artificiality. The existence of non-conserved ATG codons

following conserved start sites similarly argues for the artificiality of

these apparent ORF truncations. The decreased detection of short

orthologs using our HMM-based pipeline also highlights the

increased difficulty in recognizing short error-containing ORFs for

further analysis, although this was not a focus of this study.

There is clearly a tradeoff between the sensitivity and specificity

of ORFcor, especially governed by the minimum identity

threshold d which defines the similarity of sequences used to

define consensus start and stop sites. Whereas using a high identity

threshold can restrict the number of sequences required for

comparison such that the minimum number of reference

sequences used for correction is not met, using a lower identity

threshold may allow inclusion of reference sequences having start

and/or stop positions that are not homologous to the true start

and/or stop positions of the query sequence and can result in

excessively aggressive corrections due to biased oversampling of

divergent reference sequences (e.g., as described for Yersinia

COG0525 in the Enterobacteriaceae correction experiment). Whereas

we have set a high identity threshold d = 0.9 as a conservative

default (Figure 3), using a lower threshold may sometimes be more

appropriate, e.g., when ortholog sets are taxonomically restricted

or less well-conserved than the sequences in our test dataset.

Parameters aside, it is important to ensure that the input data

used as input for ORFcor do not violate the central assumption of

the method, namely, that each set of input sequences has

conserved start and stop sites and are sufficiently closely related

such that deviant sequences can be reliably recognized and

corrected. A related assumption is that all sequences evolve

approximately equally across their entire sequence length, because

whereas the features of interest to ORFcor (i.e., the start and stop

sites) are located at the sequence ends, calculation of homology

(e.g., by BLAST and HMMs) is conducted across the entire

sequence length. Both of these assumptions appear to be violated

by sequences from obligate endosymbiont genomes in the

Enterobacteriaceae dataset. Many sequences from these taxa lacked

homologous sister sequences with conserved stop and start sites

due to their accelerated rate of evolution [29], making their

correction by ORFcor error-prone and insensitive. Exclusion of

such evolutionarily-anomalous sequences prior to analysis is

therefore advisable to meet the assumptions of the ORFcor

algorithm. The need to specifically account for such biases during

phylogenetic analysis has also been noted elsewhere (e.g., [34,35]).

In summary, we highlight that ORF structural inconsistencies

are commonplace among publicly available genomic data. Given

its excellent performance on test and real data, approaching 100%

accuracy after accounting for sequences with evolutionary histories

incompatible with the assumptions of the algorithm, we suggest

that ORFcor effectively improves such data and thereby represents

a useful method to improve analyses in which genes are compared

to each other, especially at the whole-genome scale using the

phylogenomic approach [1,2]. Our method is highly modular and

can be easily combined with other analyses as desired (e.g., to

correct frameshifts, which ORFcor does not attempt due to

working at the protein level and its inability to differentiate

between programmed frameshifts and those introduced by

sequencing error). Whereas some authors have argued in a

phylogenetic context that imperfect data should be omitted due to

their confounding influence [36], such deficiencies are often less

than the value added by such imperfect sequences through

increased taxon sampling [37] and are further ameliorated in the

phylogenomic approach by the ample phylogenetic signal

provided by many genes [38]. The effect of similar biases on

comparative methods that are not explicitly phylogenetic have, to

our knowledge, not been explicitly studied, but might be expected

to be detrimental in cases where truncation reduces the length of

Figure 3. Stability of ORFcor corrections with increasing
taxonomic divergence of the dataset. Values shown indicate
ORFcor corrections that differ between test datasets subdivided at the
lowest (genus in A; family in B) and higher taxonomic subdivisions.
Genomes not classified at particular taxonomic levels were excluded
from analysis.
doi:10.1371/journal.pone.0058387.g003
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an ORF such that homology cannot be accurately determined due

to insufficient statistical signal. Accommodating such biases (e.g.,

using ORF fragment linkage [8]) remains an important topic for

future research.
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File S1 Complete results for ORFcor run under various
parameter settings. Sensitivity and specificity are calculated

for each inconsistency type as the union of the entire 50 replicate

datasets and also as the mean and standard deviation for each set

of replicates. The mean and standard deviation for the number of

corrections and the mean length of deviation from the true

corrected length for both corrected (mismatches) and all sequences

(accuracy) are given for each error type.
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File S2 The complete ORFcor software package as used
in this research. For the most recent version, see: currielab.-

wisc.edu/downloads.html.

(GZ)

Author Contributions

Designed the software used in analysis: JLK. Conceived and designed the

experiments: JLK CRC. Performed the experiments: JLK. Analyzed the

data: JLK CRC. Contributed reagents/materials/analysis tools: JLK.

Wrote the paper: JLK CRC.

References

1. Eisen JA (1998) Phylogenomics: improving functional predictions for unchar-

acterized genes by evolutionary analysis. Genome Res 8: 163–167.
2. Philippe H, Delsuc F, Brinkmann H, Lartillot N (2005) Phylogenomics. Annu

Rev Ecol Evol Syst 36: 541–562.
3. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, et al. (2010) Prodigal:

prokaryotic gene recognition and translation initiation site identification. BMC
Bioinformatics 11: 119.

4. Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and

error-prone reads. Nucleic Acids Res 38: e191.
5. Bakke P, Carney N, DeLoache W, Gearing M, Ingvorsen K, et al. (2009)

Evaluation of three automated genome annotations for Halorhabdus utahensis.
PLoS One 4: e6291.

6. Kislyuk A, Lomsadze A, Lapidus AL, Borodovsky M (2009) Frameshift detection

in prokaryotic genomic sequences. Int J Bioinformatics Res Appl 5: 458–477.
7. Hoff KJ (2009) The effect of sequencing errors on metagenomic gene prediction.

BMC Genomics 10: 520.
8. Klassen JL, Currie CR (2012) Gene fragmentation in bacterial draft genomes:

extent, consequences and mitigation. BMC Genomics 13: 14.
9. Hu GQ, Guo JT, Liu YC, Zhu H (2009) MetaTISA: metagenomic translation

initiation site annotator for improving gene start prediction. Bioinformatics 25:

1843–1845.
10. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, et al. (2012) GAGE: a

critical evaluation of genome assemblies and assembly algorithms. Genome Res
22: 557–567.

11. Earl D, Bradnam K, St. John J, Darling A, Lin D, et al. (2011) Assemblathon 1:

a competitive assessment of de novo short read assembly methods. Genome Res
21: 2224–2241.

12. Skovgaard M, Jensen LJ, Brunak S, Ussery D, Krogh A (2001) On the total
number of genes and their length distribution in complete microbial genomes.

Trends Genet 17: 425–428.
13. Yu JF, Xiao K, Jiang DK, Guo J, Wang JH, et al. (2011) An integrative method

for identifying the over-annotated protein-coding genes in microbial genomes.

DNA Res 18: 435–449.
14. Hu GQ, Zheng X, Zhu HQ, She ZS (2009) Prediction of translation initiation

site for microbial genomes with TriTISA. Bioinformatics 25: 123–125.
15. Nielsen P, Krogh A (2005) Large-scale prokaryotic gene prediction and

comparison to genome annotation. Bioinformatics 21: 4322–4329.

16. Hu GQ, Zheng X, Ju LN, Zhu H, She ZS (2008) Computational evaluation of
TIS annotation for prokaryotic genomes. BMC Bioinformatics 9: 160.

17. Starmer J, Stomp A, Vouk M, Bitzer D (2006) Predicting Shine-Dalgarno
sequence locations exposes genome annotation errors. PLoS Comput Biol 2:

e57.

18. Dunbar J, Cohn JD, Wall ME (2011) Consistency of gene starts among
Burkholderia genomes. BMC Genomics 12: 125.

19. Vallenet D, Engelen S, Mornico D, Cruveiller S, Fleury L, et al. (2009)
MicroScope: a platform for microbial genome annotation and comparative

genomics. Database: bap021.

20. Kislyuk AO, Katz LS, Agrawal S, Hagen MS, Conley AB, et al. (2010) A

computational genomics pipeline for prokaryotic sequencing projects. Bioinfor-

matics 26: 1819–1826.

21. Pati A, Ivanova N, Mikhailova N, Ovchinnikova G, Hooper SD, et al. (2010)

GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes.

Nat Meth 7: 455–457.

22. Wall ME, Raghavan S, Cohn JD, Dunbar J (2011) Genome majority vote

improves gene predictions. PLoS Comput Biol 7: e1002284.
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