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Abstract

We recently reported that peritumoral CpG-ODN treatment, activating TLR-9 expressing cells in tumor microenvironment,
induces modulation of genes involved in DNA repair and sensitizes cancer cells to DNA-damaging cisplatin treatment. Here,
we investigated whether this treatment induces modulation of miRNAs in tumor cells and their relevance to chemotherapy
response. Array analysis identified 20 differentially expressed miRNAs in human IGROV-1 ovarian tumor cells from CpG-ODN-
treated mice versus controls (16 down- and 4 up-regulated). Evaluation of the role of the 3 most differentially expressed
miRNAs on sensitivity to cisplatin of IGROV-1 cells revealed significantly increased cisplatin cytotoxicity upon ectopic
expression of hsa-miR-302b (up-modulated in our array), but no increased effect upon reduced expression of hsa-miR-424
or hsa-miR-340 (down-modulated in our array). Accordingly, hsa-miR-302b expression was significantly associated with time
to relapse or overall survival in two data sets of platinum-treated ovarian cancer patients. Use of bio-informatics tools
identified 19 mRNAs potentially targeted by hsa-miR-302b, including HDAC4 gene, which has been reported to mediate
cisplatin sensitivity in ovarian cancer. Both HDAC4 mRNA and protein levels were significantly reduced in IGROV-1 cells
overexpressing hsa-miR-302b. Altogether, these findings indicate that hsa-miR-302b acts as a ‘‘chemosensitizer’’ in human
ovarian carcinoma cells and may represent a biomarker able to predict response to cisplatin treatment. Moreover, the
identification of miRNAs that improve sensitivity to chemotherapy provides the experimental underpinning for their
possible future clinical use.
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Introduction

Oligodeoxynucleotides (ODN) containing dinucleotides with

unmethylated CpG motifs (CpG-ODN) are potent activators of

both the innate and adaptive immune systems [1;2]. Recognition

of CpG-ODN is mediated by Toll-like receptor 9 (TLR9), an

endosomal member of the TLR family, which is critically

important in detecting microbial pathogens. In a xenograft model

of human IGROV-1 ovarian cancer, we recently showed that

treatment with CpG-ODN induced down-modulation of DNA

repair genes in tumor cells and that peritumoral injection of CpG-

ODN in the peritoneal cavity was for inducing this down-

modulation [3] and for the antitumor activity of CpG-ODN [4].

Considering the CpG-ODN species specificity and to the lack of

TLR9 expression on IGROV1 cells, the effect cannot be mediated

by a direct interaction between the oligonucleotide and tumor

cells, instead it is likely that peritumoral TLR9-expressing cells,

such as innate immune cells and/or endothelial cells, fibroblasts

and epithelial cells, directly respond to CpG-ODN and down-

regulate DNA repair in tumor cells through a direct cell-cell

interaction and/or by secreting soluble factors.

MicroRNAs (miRNAs) are short (,22 nucleotide), non-coding

RNAs known to alter gene expression at the post-transcriptional

level [5;6]. More than 1,200 human miRNAs have been identified

and validated to date (www.mirbase.org), and are predicted to

regulate about one-third of the human genome, with involvement

in development and progression of many diseases [7–9].

Presumably, miRNAs evolved to allow organisms and cells to

effectively deal with stress [10]. Recent studies demonstrating that

a single miRNA can impact hundreds of targets [11] and that

multiple miRNAs can affect a single target [12] point to broad

implications of miRNAs, able to affect all most important cellular

processes. Indeed, several experimental and clinical findings have

also implicated miRNAs in the response to chemotherapy [13],

demonstrating a role for miRNAs in the modulation of genes

involved in DNA repair [14;15].

The CpG-ODN-induced down-modulation of DNA repair

genes in tumor cells might represent a physiologic phenomenon

that occurs locally in the presence of an infectious event. Upon
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detection of an infectious agent via endosomal TLRs, cells

involved in the immune response might induce modulation of

DNA repair genes in infected (or transformed) cells to facilitate

their death [16]. Identification of miRNAs that are used

‘‘physiologically’’ to modulate DNA repair genes may have

therapeutic implications.

In the present study, we analyzed the effect of CpG-ODN on

modulation of miRNAs in tumor cells, the integration of miRNA

with mRNA expression modulation induced by CpG-ODN, and

the relevance of the identified miRNAs for the response to

chemotherapy.

Materials and Methods

Ethical Commitee
The in vivo experiment was approved by the Ethics Committee

for Animal Experimentation of the Fondazione IRCCS Istituto

Nazionale Tumori of Milan according to institutional guidelines.

Drugs and Antibodies
Purified phosphorothioated ODN1826 (59-TCCAT-

GACGTTCCTGACGTT-39) containing CpG motifs was syn-

thesized by TriLink Biotechnologies (San Diego, CA, USA).

Phosphorothioate modification was used to reduce susceptibility of

the ODN to DNase digestion, thereby significantly prolonging its

in vivo half-life. Cisplatin was purchased from Teva Italia (Milan,

Italy). Anti-HDAC4 (D15C3), anti-p21 (sc-397) and anti-GAPDH

(GAPDH-71.1) antibodies were purchased from Cell Signaling

Technology (Danvers, MA, USA), Santa Cruz Biotechnology

(Santa Cruz, CA, USA) and Sigma (St. Louis, MO, USA),

respectively.

Cells
Human IGROV-1 ovarian tumor cells (gift from Dr. J. Benard,

Institute Gustave Roussy, Villejuif, France) were adapted to

growth i.p. and maintained by serial i.p. passage of ascitic cells into

healthy mice as described [3,17]. Every 6 months, cells were

authenticated by morphologic inspection and by FACS analysis

for the presence of specific markers. For in vitro experiments,

IGROV-1 cells were maintained in RPMI medium 1640

supplemented with 10% FCS (Sigma) and 2 mM glutamine

(Cambrex, East Rutherford, NJ, USA) at 37uC in a 5% CO2 air

atmosphere.

miRNA Extraction from Tumor Samples
miRNAs were extracted from the IGROV-1 xenograft tumors

used for gene expression analysis or from a replica of the in vivo

experiment [3]. Briefly, solid i.p. masses were mechanically

disrupted and homogenized in the presence of QIAzol Lysis

reagent (Qiagen, Valencia, CA, USA) using a Mikrodismembrator

(Braun Biotech International, Melsungen, Germany). RNA was

extracted using the miRNeasy Mini kit (Qiagen) according to the

manufacturer’s instructions. RNA concentrations were measured

with the NanoDrop ND-100 Spectrophotometer (NanoDrop

Technologies, Wilmington, DE, USA), while RNA quality was

assessed with the Agilent 2100 Bioanalyzer (Agilent Technologies,

Palo Alto, CA USA) using the RNA 6000 Nano kit (Agilent).

Samples included in the present analysis had a RIN (RNA

Integrity Number) score .7 and a 28S:18S rRNA ratio ,2:1.

miRNA Expression Profiling
Mature miRNAs were detected with the Illumina Human_v2

MicroRNA expression profiling kit, based on the DASL (cDNA-

mediated Annealing, Selection, Extension, and Ligation) assay,

according to the manufacturer’s instructions (Illumina Inc., San

Diego, CA, USA). Briefly, 600 ng/sample total RNA was

converted to cDNA followed by annealing of a miRNA-specific

oligonucleotide pool consisting of: i) a universal PCR priming site

at the 59 end; ii) an address sequence complementary to a capture

sequence on the BeadArray; and iii) a miRNA-specific sequence at

the 39 end. After PCR amplification and fluorescent labeling,

probes were hybridized on Illumina miRNA BeadChips, washed,

and fluorescent signals were detected by the Illumina BeadAr-

rayTM Reader. Data were collected using BeadStudio V3.0

Figure 1. miRNA expression profiling in IGROV-1 ovarian
tumors from CpG-ODN-treated athymic mice. Heat-map of 23
modulated miRNAs with FDR ,0.1 and fold change .1.8 in CpG-ODN-
versus saline-treated mice. Among the 20 miRNAs belonging to
miRBase12.0, 16 were down- and 4 up-modulated in CpG-ODN-treated
mice (red: up-regulated miRNAs; green: down-modulated miRNAs).
Columns and rows represent samples and miRNAs, respectively.
doi:10.1371/journal.pone.0058849.g001

Cisplatin Sensitivity Modulated by miRNA
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software. Raw and normalized data are available on the Gene

Expression Omnibus website with accession numbers GSE41783

and GSE23441 for miRNA and gene expression profiling,

respectively.

Real-time Quantitative PCR (RT-qPCR)
RT-qPCR microRNA assays specific for hsa-miR-18a, hsa-

miR-18b, hsa-miR-140-5p, hsa-miR-101, hsa-miR-556-3p, hsa-

miR-424, hsa-miR-136, hsa-miR-340, hsa-miR-302b were pur-

chased from Exiqon (Vedbaek, Denmark). RT-qPCR was

performed using the miRCURY LNA Universal RT microRNA

PCR system (Exiqon) according to the manufacturer’s instructions.

Total RNA (20 ng) was polyadenylated and reverse-transcribed at

42uC (60 min), followed by heat-inactivation at 85uC (5 min) using

a poly-T primer containing a 59 universal tag. The resulting cDNA

was diluted 80-fold and 8 ml used in 20-ml PCR amplification

reactions at 95uC for 10 min, 40 cycles of 95uC for 10 sec, and

60uC for 60 sec. Results were normalized with snord48 (Assay

ID:203903). P-values were calculated using two-tailed Student’s t-

test.

Figure 2. Independent biological validation of CpG-ODN miRNA profile. miRNA expression was assessed by RT-qPCR on IGROV-1 xenografts
collected from a replica of a previous experiment [3]. RT-qPCR data are plotted as 2DCt. P-values were calculated using two-tailed Student’s t-test.
doi:10.1371/journal.pone.0058849.g002
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Bioinformatics Analysis
Analyses were performed using BRB-Array Tools v4.0 stable

release developed by Dr. Richard Simon (NCI) and the BRB-

Array Tools development team (EMMES Corp.) and the R

package (http://www.bioconductor.org/). The same data-process-

ing was used in both miRNA and gene expression profiling to

improve data integration. Quantile normalization was used to

correct experimental distortions. A detection threshold of p,0.05

was set for each gene and miRNA. Probes detected in less than

50% of the samples were eliminated from the analysis. Genes and

miRNAs differentially expressed were identified using a random-

variance t-test, which allows computation of a t-test statistic for

each detected miRNA and genes between the classes of samples

under investigation without assuming that all miRNAs have the

same variance [18]. To limit the number of false-positive findings,

miRNAs and genes were considered statistically significant at a

false-discovery rate (FDR) ,0.1. To identify the most likely

targets, mRNA and miRNA expression data were integrated using

the MAGIA web tool [19]. A parametric linear correlation

measure (Pearson’s correlation coefficient, recommended for

normally distributed data and a sample size .5) was used to

assess the degree of anti-correlation between miRNA and gene

expression data.

In silico Bioinformatics Analyses
Two publicly available datasets GSE27290 [20] and GSE25204

[21] reporting miRNA expression and clinical annotated data

were downloaded from the Gene Expression Omnibus (GEO)

database. The former dataset consists of 62 diagnosed patients

with stage III or IV serous ovarian cancer profiled on a pre-

commercial version of miRNA chips (GPL7341) designed on

miRBase 9.1. Raw array data were processed using GeneSpring

software (Agilent) and quantile-normalized. The latter dataset

reports profiling of 85 stage III or IV epithelial ovarian cancers,

divided into a training set (55 cases) and test set (30 cases), profiled

with Illumina human_v2 MicroRNA chips. Raw data were

processed and quantile-normalized using BeadStudio V3.0 soft-

ware. Non-biological experimental variations between training

and test sets were adjusted using ComBat [22].

Statistical Analysis
The clinical impact on overall survival (OS) and time to relapse

(TTR) in GSE27290 and GSE25204, respectively, was assessed by

the Kaplan-Meier method, and differences between curves were

compared using a non-parametric (log-rank) test, with hazard

ratios and 95% confidence intervals also computed. GraphPadPr-

ism v5 (GraphPad software, La Jolla, CA, USA) was used for

statistical analyses.

miRNA Transfection and Cell Viability Analysis
IGROV-1 cells seeded in 6-well plates at 26105 cells/well were

transfected with miRCURY LNA inhibitors of hsa-miR-424 or

hsa-miR-340 or negative control A (Exiqon; final concentration,

100 nmol/L) using SiPort Neo-FX (Ambion) according to the

manufacturer’s instructions, or with hsa-miR-302b precursor or

negative control #1 pre-miR (Ambion; final concentration,

50 nmol/l). Transfections were verified by qRT-PCR as described

above. Cell viability after cisplatin treatment were assessed by

propidium iodide staining and flow cytometry as described [3].

Cell Growth Assay
IGROV-1 cells were transfected with 50 nmol/l pre-hsa-miR-

302b or scrambled oligonucleotide using SiPort Neo-FX transfec-

tion reagent according to the manufacturer’s protocol (Ambion)

and seeded in a 96-well plate at a density of 103, 1.56103, and

26103 cells/well. After 72 h of culture, cells were fixed with 10%

trichloroacetic acid for 1 h at 4uC, washed 5 times with distilled

and de-ionized water, air-dried, and incubated with 100 ml

sulforodamine (SRB) 0.4% (w/v) for 30 min. Cells were then

washed 4 times with 1% acetic acid, air-dried, and 10 mM Tris

solution (pH 10.5) added to dissolve the bound dye. Cell growth

was assessed based on optical density (OD) at 550 nm using an

ELISA microplate reader (Bio-Rad Lab, Inc., Hercules, CA,

USA).

Immunoblotting
Transfected cells were lysed in lysis buffer containing 50 mM

Tris-HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100 (Sigma),

10% (vol/vol) glycerol, 2 mM Na-orthovanadate, 10 mM leupep-

tin, 10 mM aprotinin, 1 mM phenylmethylsulfonyl-fluoride,

100 mM Na-fluoride, and 10 mM Na-pyrophosphate for 30 min

Figure 3. Forced expression of hsa-miR-302b increased cisplat-
in sensitivity in IGROV-1 cells without affecting cell prolifera-
tion. (A) Percent cell death of hsa-miR-302b- and scrambled-
transfected cells after cisplatin treatment. IGROV-1 cells were transfect-
ed with 50 nmol/l hsa-miR-302b precursor molecule or scrambled
control, and 72 h later, exposed to cisplatin (50 mM) for 1 h. Cell viability
was assessed 24 h after cisplatin treatment by propidium iodide
staining and flow cytometry. Data represent mean 6 SEM of 6
independent experiments. ***p,0.0001 by paired t-test. (B) Evaluation
of cell proliferation by SRB assay. Transfected cells were seeded in a 96-
well plate at a density of 103, 1.56103, and 26103 cells/well. Cell growth
was assessed by optical density (OD) determination 72 h after
transfection. Data represent mean 6 SEM of 3 independent experi-
ments.
doi:10.1371/journal.pone.0058849.g003
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at 4uC. Insoluble material was removed by 10-min centrifugation

at 15,500 6 g at 4uC. Protein concentrations were determined

using the Coomassie technique. Equal amounts of total lysates

(20 mg) were loaded and separated on 10% precast NuPage SDS-

Bis-Tris gels (Invitrogen) and transferred to PVDF membranes

(Millipore, Billerica, MA, USA). Western blots were performed

with the indicated antibodies, and binding was detected with

peroxidase-conjugated secondary antibodies and chemilumines-

cence ECL (GE Healthcare, Little Chalfont, UK) according to the

manufacturer’s instructions. Quantitation of p21 protein levels

reportedly regulated post-transcriptionally by miRNAs of the hsa-

miR-302 family [23] revealed the expected down-regulation of this

protein in IGROV-1 cells transfected with hsa-miR-302b precur-

sor (data not shown), suggesting that hsa-miR-302b exerts

biological effects in IGROV-1 cells similar to those observed in

other cellular models.

Plasmid Construction
For luciferase reporter experiments, a 1017-bp region of the

HDAC4 39 untranslated region including the binding site for hsa-

miR-302b was amplified from IGROV-1 cells. The PCR product

was digested with XbaI and cloned into the reporter plasmid

pGL3 control (Promega, Madison, WI, USA) downstream of the

luciferase gene. Mutations into the hsa-miR-302b binding site of

the HDAC4-39UTR were introduced using Quik-Change II Site-

Directed Mutagenesis kit (Agilent Technologies, Santa Clara, CA).

Figure 4. Computational integration of miRNA and gene expression profiles of tumor samples from CpG-ODN- and saline-treated
mice. Network between 15 of 20 differentially expressed miRNAs and their anti-correlated target genes. The top 250 interactions were used to
generate the network using the MAGIA tool.
doi:10.1371/journal.pone.0058849.g004
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HDAC4-wt-Fw: 59-AATTTCTAGAGGGGGACTTAATTC-

TAATCTCATT-39.

HDAC4-wt-Rw: 59-AATTTCTAGATTTTGTGTCAGAC-

CATTACGAA-39.

HDAC4-Mut-Fw: 59-GCACTGGCTGGGAGTCAG-

CAAGCGCCGCGGGTATATCCCTTTGACG-

GAAACCCTG-39.

HDAC4-Mut-Rw: 59-CAGGGTTTCCCTCAAAGGGATA-

TACCCGCGGCGCTTGCTGACTCCCAGCCAGTGC-39.

Luciferase Assays for Target and Promoter Identification
pGL3 reporter vector (200 ng) containing the hsa-miR-302b

binding site, 40 ng of the phRL-SV40 control vector (Promega),

and 50 nmol/l miRNA precursors or scrambled sequence miRNA

control (Ambion Inc, Austin, TX. USA) were co-transfected into

IGROV-1 cells in 48-well plates. Cells were transfected with

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

instructions. Firefly luciferase activity was measured with a Dual

Luciferase Assay Kit (Promega) 48 h after transfection and

normalized with a Renilla luciferase reference plasmid. Reporter

Figure 5. Targeting of HDAC4 in IGROV-1 cells by hsa-miR-302b. IGROV-1 cells were transfected with 50 nmol/l hsa-miR-302b or a scrambled
oligonucleotide and RNA and proteins were collected after 72 h. HDAC4 mRNA levels were evaluated by RT-qPCR (A) and protein expression was
evaluated by Western blot (B). GAPDH was used to normalize protein loading per lane. Data are representative of 6 independent experiments with
superimposable results. (C) Schematic representation of the interaction between hsa-miR-302b and the binding site on the wild-type HDAC4-39UTR
and the mutated control. (D) Relative luciferase activity in IGROV-1 cells for HDAC4-39UTR-wt co-transfected with reporter vector and with hsa-miR-
302b precursor molecule or negative scrambled control for 48 h. (E) Relative luciferase activity in IGROV-1 cells for HDAC4-39UTR-mut co-transfected
with reporter vector and with hsa-miR-302b precursor molecule or negative scrambled control for 48 h.
doi:10.1371/journal.pone.0058849.g005
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assays were carried out in quadruplicate. Data (mean6S.E.M.)

were analyzed using unpaired Student’s t-test.

Results

Differentially Expressed miRNAs in IGROV-1 Ovarian
Tumors from CpG-ODN-Treated Mice

RNA extracted from omentum-adherent tumors of human

IGROV-1 ovarian carcinoma-bearing mice treated i.p. with CpG-

ODN or saline (control group) as described [3] was analyzed for

miRNA expression using Illumina human miRNA_v2 array. Out

of 1145 miRNAs represented on the Illumina chips, 567 mature

miRNAs annotated on miRBase12.0, along with 150 putative

miRNAs, were consistently detected. Class comparison identified

23 miRNAs showing a FDR,0.1 and a fold-change .1.8 between

CpG-ODN- and saline-treated mice (Fig. 1). Among them, 20

miRNAs (16 up-regulated in saline- and 4 in CpG-ODN-treated

mice) were annotated on miRBase12.0, whereas 3 miRNAs were

putative miRNA sequences derived from deep- sequencing

approaches as referred by Berezikov et al. [24] and Solexa

(Illumina), which were excluded from further analysis due to the

lack of information.

To validate the microarray data, 9 differentially expressed

miRNAs were analyzed by RT-qPCR using both the RNA

profiled in microarray analysis and the RNA extracted from tumor

samples obtained from a replica of the IGROV-1 tumor-bearing

mice treated as described [3]. Of the 9 miRNAs, hsa-miR-18a and

hsa-miR-18b were selected based on their reported role in the

pathogenesis of ovarian cancer [25;26], and hsa-miR-101 and hsa-

miR-302b for their described involvement in DNA repair

processes and sensitivity to chemotherapy [20]; the remaining 5

miRNAs were randomly selected. RT-qPCR using the RNA

profiled in microarray analysis validated all 9 miRNAs (Fig. S1),

whereas RT-qPCR using the RNA of the replica confirmed 6 of 9

miRNAs (p,0.05), with a trend observed for hsa-miR-18b and

hsa-miR-101 but not for hsa-miR-136 (Fig. 2).

Increased Expression of hsa-miR-302b in IGROV-1 Cells
Significantly Improved Cisplatin Activity

We previously showed that TLR9-expressing cells in the tumor

microenvironment can sensitize cancer cells to DNA-damaging

cisplatin treatment by down-modulating genes involved in DNA

repair [3]. To determine whether miRNAs modulated by CpG-

ODN treatment are able to modify the sensitivity to DNA-

Figure 6. In silico evaluation of ovarian cancer patients’ clinical course according to hsa-miR-302b and hsa-miR-340 expression
levels. Kaplan-Meier survival curves of patients stratified according to hsa-miR-302b expression (A) and has-miR-340 expression (B) on GSE25204 and
referred to TTR. (C) Kaplan-Meier survival curves for hsa-miR-302b expression on GSE27290 and referred to OS. Patients were dichotomized using
median expression as threshold.
doi:10.1371/journal.pone.0058849.g006

Cisplatin Sensitivity Modulated by miRNA

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e58849



damaging agents, the 3 most significantly differentially expressed

miRNAs in tumor samples obtained from the replica of the in vivo

experiment (hsa-miR-424, hsa-miR-340 and hsa-miR-302b) were

examined applying a gain- or loss-of-function phenotype in order

to mimic the up- or down-modulation observed in miRNA

profiling (see Fig. 1). To reduce expression of hsa-miR-424 and

hsa-miR-340 (down-modulated in our miRNA expression profile),

IGROV-1 cells were transiently transfected for 72 h with the

respective LNA inhibitors or with a LNA negative control,

whereas cells were transfected with hsa-miR-302b precursor

molecule (or a scrambledoligonucleotide) to increase expression

of hsa-miR-302b. Cells were then treated with 50 mM of cisplatin

for 1 h and after 24 h the percentage of sub-G1 cells (as an

indicator of cell death) was determined by flow cytometry.

Reduced expression of hsa-miR-424 or hsa-miR-340 did not

significantly improve cisplatin cytotoxicity (data not shown),

whereas increased expression of hsa-miR-302b significantly

enhanced cisplatin cytotoxicity, with an increase of cell death

ranging from 26.5 to 43.9% in 6 independent experiments as

compared to negative scrambled-transfected cells (p,0.0001;

Fig. 3A). No significant differences in cell growth were observed

between IGROV-1 cells transiently transfected with hsa-miR-

302b precursor molecule and control cells (Fig. 3B), ruling out the

possibility that hsa-miR-302b sensitized cancer cells to cisplatin by

stimulating cell proliferation.

HDAC4 is Directly Targeted by hsa-miR-302b in IGROV-1
Cells

Because the effects of miRNAs might lead to expression changes

in their predicted target genes, we searched for expression patterns

deregulated following CpG-ODN treatment by integrating the

miRNA and mRNA expression profiles. Class comparison of

whole gene expression, previously identified by Illumina Hu-

manHT12_v3 beadchips using the same RNA samples assessed for

miRNA profile [3], revealed 215 genes differentially expressed

(141 up-regulated in saline- and 74 in CpG-ODN treated mice;

FDR,0.1 and fold change .1.8).

To identify functional miRNA-mRNA relationships, miRNA

and mRNA data were integrated using the freely available tool

MAGIA [19]. Given the frequent miRNA-miRNA interactions,

the 20 miRBase-annotated miRNAs were altogether compared to

the gene expression profile dataset using the union of Pita,

miRanda and TargetScan prediction target algorithms available

on MAGIA. The Pearson’s correlation between each miRNA and

its predicted target was then computed. The first 250 most

significantly negatively correlated miRNA-mRNA interactions

were visualized as a network using Cytoscope. Evidence of the

concerted interplay of miRNAs regulated by CpG-ODN and their

potential target mRNAs was observed (Fig. 4) for 2 miRNAs

upregulated (hsa-miR-302b and hsa-miR-374b) and for 13

miRNAs downregulated in CpG-ODN-treated mice (hsa-miR-

135a, hsa-miR-136, hsa-miR-340, hsa-miR-445-5p, hsa-miR-424,

hsa-miR-96, hsa-miR-142-3p, hsa-miR-140-5p, hsa-miR-542-3p,

hsa-miR-18a, hsa-miR-18b, hsa-miR-101, and hsa-miR-99a). The

latter 13 form a highly interconnected cluster where different

miRNAs exert their biological functions targeting the same genes.

Focusing on the 19 genes potentially targeted by hsa-miR-302b

as identified using MAGIA (q value ,0.1, Table S1), we evaluated

HDAC4, one of the top anti-correlated mRNAs, as a potential

molecular target of hsa-miR-302b associated with response to

chemotherapy. HDAC4, a member of the histone deacetylase

family, encodes a protein that reportedly mediates cisplatin

sensitivity in ovarian cancer [27]. Forced hsa-miR-302b expres-

sion in IGROV-1 cells decreased HDAC4 mRNA and protein

levels (Fig. 5A and B), supporting the interaction analysis data. To

determine whether the down-modulation of HDAC4 after hsa-

miR-302b overexpression was due to a direct interaction between

the miRNA and the mRNA of HDAC4, a luciferase reporter assay

was performed. Briefly, the target site of hsa-miR-302b was

identified within the HDAC4 39UTR according to the Target

Scan database (Fig. 5C), and the region including this site was

cloned downstream of the luciferase gene into the reporter plasmid

pGL3 control. Analysis of IGROV-1 cells co-transfected with hsa-

miR-302b precursor or a scrambled oligonucleotide and the

reporter vector, containing HDAC4 39UTR, revealed a significant

decrease in luciferase activity in hsa-miR-302b transfected cells as

compared to scrambled transfected cells (,50% reduction,

p = 0.0088, Fig. 5D), whereas mutated HDAC4-39UTR escaped

this inhibition (Fig. 5E). These data indicate the direct effect of

hsa-miR-302b on HDAC4 gene expression.

CpG-ODN-modulated miRNAs and Ovarian Cancer
Patients’ Clinical Course

The impact of expression levels of all 20 differentially expressed

miRNAs, including those for which validation was not carried out,

on the clinical course of ovarian cancer patients undergoing

chemotherapy was evaluated in silico. The time to relapse (TTR)

and overall survival (OS) with respect to each miRNA on two

public datasets (GSE25204 and GSE27290) [21;22] were

analyzed. Patients were stratified according to miRNA expression

below (low expression) or above (high expression) the median

expression value. In Bagnoli’s dataset [22], Kaplan-Meier analysis

showed that patients with low expression of hsa-miR-302b or with

high expression of hsa-miR-340 had a shorter TTR (log-rank,

P = 0.037; HR = 1.75, 95% CI: 1.03–2.95 and P = 0.047;

HR = 1.7, 95% CI: 1.01–2.86, respectively) (Fig. 6A and 6B).

Median TTR was 11 and 25 months for low and high expression

of hsa-miR-302b (Fig. 6A), and 26 and 12 months for low and high

expression of hsa-miR-340, respectively (Fig. 6B). In Shih’s dataset

[21], only the expression of hsa-miR-302b was significantly

associated to OS (log-rank, P = 0.034; HR = 2.02, 95%CI: 1.05–

3.88), with a median OS of 33.7 and 101.2 months for low and

high expression, respectively (Fig. 6C). In both datasets, the impact

of the other 18 miRNAs expression was not significantly associated

to TTR or OS (data not shown).

Discussion

miRNAs are a ubiquitous feature of all cells, and functional

studies prompted by the growing number of miRNA targets

identified have demonstrated the involvement of miRNAs in the

regulation of almost every cellular process investigated, including

development, proliferation, differentiation, apoptosis, and tumor-

igenesis [28]. Moreover, emerging evidence suggests that miRNAs

play important roles in the regulation of immunological functions,

including innate immune responses of macrophages and the

development, differentiation, and function of T and B cells

[29;30].

Changes in miRNA expression induced by TLR ligand

stimulation have been broadly investigated for their impact on

development and function of innate immune cells, the primary

expressors of TLRs [31]. Here, we show that in vivo treatment with

TLR9 agonist CpG-ODNs also induces modulation of several

miRNAs in tumor cells. This modulation is unlikely to reflect a

direct action of CpG-ODN on IGROV-1 cells, which do not

express TLR9 and do not respond to murine CpG-ODN, and

instead is likely mediated by TLR9-positive cells in the tumor

microenvironment directly and/or through soluble factors. More-
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over, several studies indicating that miRNAs can also be

transferred between cells, e.g., through exosomes [32], as a

mechanism to interact and exchange information raises the

intriguing possibility that the immune system responds to CpG-

ODN treatment by boosting miRNA modulation and interaction

with tumor cells.

Our analysis of 3 miRNAs (hsa-miR-424, hsa-miR-340 and hsa-

miR-302b) for their relevance to chemotherapy response showed

that the enforced expression of hsa-miR-302b on IGROV-1 cells

significantly enhanced cisplatin cytotoxicity. Consistent with

in vitro data, hsa-miR-302b expression was significantly associated

to TTR or OS in two datasets of ovarian cancer patients treated

with platinum-based therapy. These findings indicate that hsa-

miR-302b acts as a ‘‘chemosensitizer’’ in human ovarian

carcinoma cells and may represent a biomarker able to predict

response to cisplatin treatment, leading to a more accurate

selection of patients potentially responsive to a specific therapy.

Moreover, the correlation between miRNA expression and

response to specific therapies also suggests the potential usefulness

of miRNAs as therapeutic adjuvants. Notably, whereas to date this

hypothesis mainly derives from in vitro gain- or loss-of-function

studies, where candidate miRNAs are identified in tumor cell lines

with different degrees of sensitivity to specific therapeutic drugs

and then targeted in order to overcome drug resistance, by

contrast our study starts using an in vivo model to select a candidate

miRNA, then validated in vitro as adjuvant tool and in human

samples as predictive biomarker.

The integration of miRNA and mRNA expression profiles upon

CpG-ODN treatment revealed a broad concerted interplay of

miRNAs with their predicted target mRNAs, suggesting a relevant

role for miRNAs in CpG-ODN-induced expression of genes

involved in different cellular pathways. Concerning genes involved

in DNA repair, miRNA-mRNA interaction analysis identified

HDAC4 as a gene potentially targeted by hsa-miR-302b, as then

validated by the decreased HDAC4 mRNA and protein levels

upon enforced hsa-miR-302b expression in IGROV-1 cells.

Inhibition of HDAC has been reported to induce hyperacetylation

of core histones and consequent relaxation of chromatin structure;

such an open chromatin configuration would be expected to

increase accessibility of genomic DNA to drugs targeting DNA

[33;34]. These data have led to clinical studies using HDAC

inhibitors in combination with current DNA damaging agents,

such as topoisomerase inhibitors, DNA synthesis inhibitors, DNA

intercalators and agents that covalently modify DNA, as treatment

of several types of cancer [34;35]. However, whereas clinical

studies have shown efficacy against human hematologic malig-

nancies, results in solid tumor trials have been unsatisfactory

because of some HDAC inhibitor limitations such as cardiac

toxicity [36;37]. The observation that overexpression of miR-302b

increased the sensitivity of ovarian tumor cells to cisplatin, together

with the reported tissue specificity of miRNAs [38], raises the

possibility of using this miRNA to modulate DNA-damaging drug

sensitivity and avoiding HDAC inhibitor toxicity. Moreover, a

very recent study reports direct regulation of p21 protein by

members of the miR-302 family activated following DNA damage

in human embryonic stem cells [20], further suggesting that miR-

302 can impact the response to DNA-damaging agents by

modulating different target molecules.

Overall, miRNA modulators are no longer merely theoretical,

as evidenced by the recent demonstration that inhibition of hsa-

miR-122 reduces viral load in hepatitis C patients [39], and

instead are strong candidates as therapeutic agents [39].

Supporting Information

Figure S1 qRT-PCR validation of CpG-ODN miRNA
profile. Comparison of hsa-miR-18a, hsa-miR-18b, hsa-miR-

140-5p, hsa-miR-101, hsa-miR-556-3p, hsa-miR-424, hsa-miR-

136, hsa-miR-340, hsa-miR-302b expression obtained by miRNA

expression profile and qRT-PCR on tumors collected from human

IGROV-1 ovarian tumor-bearing mice treated daily i.p. with

CpG-ODN or saline (control group). P values of differential

expression between control and CpG-ODN-treated IGROV-1

xenografts are reported. qRT-PCR data are plotted as -DCt and

array data are plotted as log2 (expression).

(TIF)

Table S1 MAGIA output representing 699 interactions
between miRNA and mRNA of CpG-ODN-treated tu-
mors with q value,0.1.

(XLSX)

Materials & Methods S1 Supporting materials and
methods.
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