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Abstract

Conservation biologists, as well as veterinary and public health officials, would benefit greatly from being able to forecast
whether outbreaks of infectious disease will be major. For values of the basic reproductive number (R0) between one and
two, infectious disease outbreaks have a reasonable chance of either fading out at an early stage or, in the absence of
intervention, spreading widely within the population. If it were possible to predict when fadeout was likely to occur, the
need for costly precautionary control strategies could be minimized. However, the predictability of even simple epidemic
processes remains largely unexplored. Here we conduct an examination of simulated data from the early stages of a fatal
disease outbreak and explore how observable information might be useful for predicting major outbreaks. Specifically,
would knowing the time of deaths for the first few cases allow us to predict whether an outbreak will be major? Using two
approaches, trajectory matching and discriminant function analysis, we find that even in our best-case scenario (with
accurate knowledge of epidemiological parameters, and precise times of death), it was not possible to reliably predict the
outcome of a stochastic Susceptible-Exposed–Infectious-Recovered (SEIR) process.
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Introduction

If the basic reproductive number, R0, of an introduced pathogen

does not greatly exceed one, outbreaks of infectious disease in

small, closed populations may either be minor as a result of

stochastic fadeout after a small number of transmissions, or major

in which case fadeout only occurs after infection has spread

through the majority of the population and only a few susceptible

individuals remain [1,2]. This bimodal nature of epidemic

outcomes is of profound importance from a management

perspective. If major outbreaks were predictable in the earliest

stages of an outbreak, reactive control strategies could be

implemented, such as vaccination, quarantine, or culling [3–6].

However, such measures are costly, time-consuming, inconve-

nient, and potentially reduce support for future interventions, thus

it is not feasible to implement them for every outbreak. Despite its

importance, the issue of being able to accurately predict whether

outbreaks will be minor or major remains largely unexplored (but

see [7–9]).

The distribution of final outbreak sizes is bimodal for values of

R0.1 (though only weakly bimodal for values near 1), with the

trough between peaks distinguishing minor from major outbreaks.

Anderson & Watson (1980) provide an analytic solution for

predicting the probability that an outbreak will be major (pm) for a

SEIR (Susceptible-Exposed-Infectious-Removed) process with (a)

gamma-distributed incubating (exposed) and infectious periods

and (b) initial conditions that include various numbers of

incubating or infectious individuals [10]. When exact initial

conditions are known, and R0.1, stochastic simulations confirm

that pm reliably predicts the probability of a major outbreak.

Several factors influence whether an epidemic will be major or

minor, including: R0, the shape of the distribution describing the

infectious period, and the numbers of incubating and infectious

individuals at the time of prediction (i.e., the state of the system at

the time of the xth death, denoted hR = x). However, neither

epidemiological parameters nor the timings of particular infection

or removal events are likely to be known with certainty [11]. Even

for closely observed epidemic processes, we rarely know the

number of incubating individuals (E), we sometimes know the

incidence of infected (I) individuals, and for fatal diseases we may

have estimates for the number of dead (R) individuals. Intuitively,

we expect that useful information for predicting final outbreak size

may be contained in observable data: specifically the patterns of

death times at the beginning of an outbreak (see Figure 1 for a

hypothetical schematic). This study was originally motivated as a

result of requests to advise on whether or not reactive vaccination

programs should be initiated for the control of rabies outbreaks in

Ethiopian Wolf (Canis simensis) populations. This prompted a more

detailed examination of conventional infectious disease models.

The objective of this paper is to consider whether the timing of

early cases can be used to determine the likelihood of a minor or

major outbreak.

We evaluate the ability of two estimation techniques, trajectory

matching and discriminant function analysis (DFA), to predict

whether the final size of outbreaks will be minor or major based on
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the timings of observed deaths in the early stages of the outbreak.

We assume the best-case scenario where we have precise

knowledge of the times of all deaths and the underlying

epidemiological parameters, such as R0 and the shapes of the

distributions describing the incubation and infectious periods.

Even under these optimal conditions we find that these techniques

provide very little predictive information regarding final outbreak

size.

Materials and Methods

The premise of our approach is to take as truth a simple

epidemiological model that does not include demography (i.e.

birth and natural death processes), assume that we know

parameters precisely and that they do not vary, and then quantify

our ability to predict whether an outbreak will be major or minor

using two methods. This analytical approach was designed to

maximize opportunities for finding predictive relationships

between the timing of the first few deaths and outbreak size and

we specifically explore conditions where both minor and major

outbreaks are probable. Our initial intention to add increasingly

complex forms of stochastic variation was redundant as, even

under the best-case scenarios, essentially no predictive power was

identified.

(a) The epidemiological model
Stochasticity is often introduced into SEIR models through

observational noise, process noise, and most commonly, event-

driven approaches [12,13]. Because dynamics at the beginning of

infectious disease outbreaks inherently deal with small numbers of

infected individuals, we focus on individual-based (event-driven)

stochastic methods [14]. Here, we constructed a stochastic SEIR

compartment model with no births or natural deaths [2] (Table 1).

Dynamics were simulated using Gillespie’s Direct Method [15,16]

with density-dependent transmission in a closed, well-mixed

population. Such a model could be used to characterize many

different diseases, but here, we have in mind the spread of a fatal

disease (e.g. rabies [17]). Although the upper limit on the size of

the population is not critical to our arguments, we examined

disease dynamics in a population of 200 individuals (as might be

representative of an endangered population of Ethiopian wolves)

using two values of R0 that are consistent with rabies in canids

(R0 = 1.2 [18]) and with a greater bimodal separation of minor and

major outbreaks (R0 = 1.8). For each value of R0 we explored two

scenarios (Table 2). For the first scenario, we assumed conven-

tional exponential distributions for both the exposed and infectious

period distributions (denoted 1:1 EPD/IPD). However, because

exponentially distributed transition times tend to overestimate the

variance of the distribution, we also tested a second scenario with

Figure 1. Outbreak schematic of our motivating assumption. Schematic of two infection histories of the first four infected individuals in an
outbreak illustrating the times of infection (light gray squares), transitions from incubation to infectious period (gray triangles), and death of
infectious individuals (black circles). We hypothesize that minor outbreaks are more likely when intervals between death times are wide and the
number of concurrently infected individuals is low (A) and major outbreaks should occur with higher probability when death times are clustered and
several individuals may be simultaneously infected (B). A more realistic pattern of deaths would include increased variability in incubating and
infectious periods.
doi:10.1371/journal.pone.0057878.g001
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gamma distributed transition times, which may be more biolog-

ically realistic than the exponential. For the second scenario, we

used the method of stages to limit the dispersion of exposed and

infectious period distributions [19,20] adopting three exponential-

ly-distributed stages for both periods (denoted 3:3 EPD/IPD). For

each R0 value and for each EPD/IPD scenario (i.e. four models),

we assumed a mean 22.3 day incubation period, a mean 3.7 day

infectious period, and 100% fatality rate for infected individuals

[18]. All simulations and analyses in this manuscript were

performed in R [21].

(b) Simulating a wide range of final outbreak sizes
To explore whether the pattern of early deaths could predict the

probability of a major outbreak, we used our SEIR model to

simulate hypothetical outbreaks. To ensure we evaluated a wide

range of outbreaks—in case final outbreak sizes produced by ‘rare’

outbreaks are more or less predictable than ‘common’ outbreaks—

a stratified sample of outbreaks was generated based on the

probability of a major outbreak, pm. Based on Anderson & Watson

(1980), pm = 1- py where p is the smaller root of:

p 1z
R0

n
1{pð Þ

� �n

~1 ð1Þ

and n is the number of stages used to represent the infectious

period. The parameter y is a function of the initial conditions:

y~Ez
1

n

Xn

j~1

(n{jz1)Ij ð2Þ

where E is the total number of incubating individuals and Ij is the

number of infectious individuals at stage j [10]. The value y
represents the weighted sum of exposed and infectious individuals;

all incubating individuals are fully counted (valued at 1) because

they have the entire infectious period yet to come, but in cases

where there are multiple infectious period stages (n.1) it is

necessary to discount the value of the individuals that are already

in the later stages. The number of incubating period stages affects

neither the value of y, nor pm; similarly the population size of

susceptible individuals is not present in Equation 1, and thus

cannot directly influence the analytical estimate of the proportion

of outbreaks that would be major. Note that because n, E and I are

integers, there are only a finite number of values that pm can be for

a given value of R0, and p is a decreasing function of n such that

the probability of a major outbreak increases as a function of n. In

order to stratify our sampling efforts based on pm, we simulated an

outbreak until the xth death occurred; we then effectively ‘froze’ or

stopped the simulated outbreak, and recorded the state of the

system at that moment (i.e. the number of incubating and

infectious individuals) and the epidemiological parameters (R0, n).

These values were then used in Equations 1 and 2 to calculate pm

deterministically. Stratification balanced sampling across a wide

Table 1. SEIR model with demographic stochasticity.

Parameters

S = number of susceptible individuals

E = number of exposed/incubating individuals

I = number of infectious individuals

R = number of removed/recovered/dead individuals

N = total population size where S+E+I+R = 200 individuals

s= 1/incubation period, where the incubation period is 22.3 days

c= 1/infectious period, where the infectious period is 3.7 days

m = the number of stages (compartments) used to model the exposed period, where m = 1 or 3

n = the number of stages (compartments) used to model the infectious period, where n = 1 or 3

B~ R0c
N

, where R0 = 1.2 or 1.8

Stochastic event and rate Result

Exposure occurs at rate bSI SRS - 1 and E1RE1+1

Rate of transition between exposed stages: msE EiREi - 1 and Ei+1REi+1+1, (i = 1, … , m-1)

Rate of becoming infectious: msE EmREm - 1 and I1RI1+1

Rate of transition between infectious stages: ncI IjRIj - 1 and Ij+1RIj+1+1, (j = 1, … , n-1)

Death occurs at rate ncI InRIn - 1 and RRR+1

where, E~
Pm
i~1

Ei , I~
Pn
j~1

Ij , and bSI represents density-dependent transmission.

doi:10.1371/journal.pone.0057878.t001

Table 2. Study design for each model.

R0 Scenario m n
Resulting
distribution Notation

1.2 1 1 1 exponential 1.2, 1:1

1.2 2 3 3 gamma 1.2, 3:3

1.8 1 1 1 exponential 1.8, 1:1

1.8 2 3 3 gamma 1.8, 3:3

For each R0, two scenarios are tested which are described by the number of
stages in the exposed period distribution (m) and the number of stages in the
infectious period distribution (n). The abbreviated model notation is also
included.
doi:10.1371/journal.pone.0057878.t002
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range of expected outcomes, thereby further maximizing oppor-

tunities for detecting predictive relationships.

All simulations were started with an identical initial condition

(Et = 0 = 1). In order to have a consistent number of death times to

evaluate across all simulations, only outbreaks with at least x

deaths were retained for inclusion in the analysis. Here we attempt

to predict whether the outbreak will be major or minor at the time

of the 4th death (x = 4) as this corresponds closely to the real-world

problem of having to decide whether to launch a control program

to protect a population at threat at the beginning of a potentially

major outbreak [17]. For each simulation, we computed and

recorded (i) the times of the first four deaths, (t1, … , t4), (ii) the final

size of the outbreak, which was used to classify the outbreak as

minor or major (through use of the k-means clustering method

with two centers [22]), and (iii) pm at the time of the fourth death.

We ran simulations until we found outbreaks satisfying a wide

range of pm values. Specifically, we searched for outbreaks with pm

in each of 10 strata for intervals of 0.1 between 0 and 1. We

evaluated two techniques (trajectory matching and DFA) for

predicting the final outbreak size of these stratified ‘‘observed’’

outbreaks. For each of the 10 pm strata, we searched for 20

outbreaks for the trajectory matching technique and for the DFA

we simulated 5000 outbreaks, or until 1 million simulations had

been scanned per interval.

(c) Trajectory matching
The premise of trajectory matching is to find simulated

outbreaks that match characteristics of a single observed outbreak

to within a defined tolerance (in our case these characteristics were

the timings of the first four deaths). The matching simulations are

then forward simulated to determine the number of deaths of the

matching outbreak, thereby developing an empirical frequency

distribution of outcomes, and where each outbreak can be

classified as major or minor. If trajectory matching were a useful

technique we would expect to find that matched trajectories tend

to predict the true outcome better than at random.

We simulated 20 observedtm outbreaks in each of the 10 pm strata.

Thus, there could be a maximum of 200 observedtm outbreaks for

each of the 4 models examined (Table 2) although, as expected,

there were very few low values of pm at higher values of R0

(R0 = 1.8). For each observedtm outbreak, we then simulated 200

‘‘matched’’ outbreaks where the timing of the first x deaths was

similar to the observedtm outbreak (or until 1 million simulations

were scanned). A simulated outbreak was deemed similar enough,

or ‘matched’, if:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXx

i~1

ti(matched){ti(observedtm)

� �2

s
vg ð3Þ

where g is a tolerance value to be chosen and ti(matched) is the ith

death time from the matched outbreaks while ti(observedtm) is the ith

death time from the observedtm outbreaks. Equation 3 is a

generalization of the Pythagorean theorem in Euclidean x-space.

A large value of g represents very inclusive criteria, whereas a

small value of g would select for a narrower range of outbreaks

where the timings of deaths are very similar. There is a tradeoff

when selecting a value for g. For example, setting g to a small

value would select for simulations with more similar death times,

however this becomes more computationally intensive as more

simulations must be scanned in order to find these ‘good fits’.

Although the specific value of g is not crucial to our argument,

here we show results for g = 4. This value of g would intuitively

correspond to a scenario where each of the four ti(matched) could be

different from ti(observedtm) by up to two days. In the electronic

supplementary information we also show results for a sensitivity

analysis at more ‘narrow’ matching criteria of g = 2 and 3. For

each unique value of pm from observedtm, we pooled the

corresponding matched outbreaks and calculated the mean propor-

tion of predicted major outbreaks. We then evaluated the

predictive power of trajectory matching by comparing the

proportion of major outbreaks among the 200 matched outbreaks

to the calculated value of pm (at the time of the xth death) for the

corresponding observedtm outbreak.

(d) Discriminant function analysis
Discriminant function analysis (DFA) can be used as a

classification tool [23]. DFA can quantify how well known

explanatory variables contribute to correct classification of known

categorical response variables. The end result is a model where the

explanatory variables predict the group classification; the models

can have poor or good predictive power. For the purposes of this

manuscript, we used DFA to classify outbreaks as minor or major

based on the time intervals between sequential deaths. We

simulated 5000 outbreaks in each of the 0.1 intervals of pm, or

until 1 million simulations had been run per interval (some values

of pm are rare for a given value of R0 resulting in fewer samples in

these bins). These observeddfa simulations were used to evaluate

whether quadratic DFA (which is a type of DFA that does not

assume that the covariance matrix is identical for different classes)

[23] could predict whether an outbreak would be minor or major

based on the x-1 time intervals between the ith and ith-1 deaths

(i = 2, 3, … , x). The explanatory variables for our discriminant

function were the three time intervals between the four deaths,

while the categorical response variable was whether an outbreak

was minor or major. We used the qda function in the R package

MASS [23] to construct a discriminant function on a random

sample of half of the observeddfa outbreaks. We then used the

discriminant function model to predict the classification of minor

and major outbreaks for the remaining half of the observeddfa

outbreaks. We compared the percentage of actual (observeddfa)

minor and major outbreaks with the percentage of DFA-predicted

minor and major outbreaks. We used the kappa statistic k̂k
� �

to

measure agreement, where ,0 is poor, 0–0.2 is slight, and 1 is

perfect prediction [24].

Results

(a) Simulated outbreak sizes
For all 4 models (Table 2), outbreaks were characterized by final

outbreak sizes ranging from 0–73% of the population when

R0 = 1.2, and from 0–91% of the population when R0 = 1.8

(Figure 2). Outbreak size distributions are only weakly bimodal

when R0 = 1.2, but are clearly separated when R0 = 1.8. Predictive

power is expected to be highest when the outbreak size

distributions do not overlap, and slightly reduced when a degree

of overlap in the size distributions impairs our ability to classify an

outbreak as major or minor. Overall, we found that both

estimation methods performed poorly at predicting the outcome

of an epidemic based on the timing of the first four deaths.

(b) Trajectory matching
If the predicted proportions of major outbreaks from matched

simulations and calculated values of pm were similar, this would

show that information contained in the times of the first few deaths

could be used to reliably predict the probability of a major

outbreak. For perfect agreement, we would expect a slope of one

on a linear regression between pm calculated using Equations 1 and

Estimating the Probability of a Major Outbreak
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2 for each of the observedtm outbreaks and the predicted proportion

of major matched outbreaks per pm value. Although there was a

positive relationship between calculated pm and the predicted

proportion of major outbreaks, (statistically significant for both 1:1

EPD/IPD scenarios), the slopes of the linear regressions were far

below the expected unit value, as the highest slopes were only 0.25

and 0.26 for the 1:1 EPD/IPD scenarios, and close to 0 for the 3:3

EPD/IPD scenarios (Figure 3). Even though the observedtm

outbreaks were selected to vary across the fullest possible range

of values of pm, the proportion of major outbreaks in the matched

simulations only varied from 0.28 to 0.50 for R0 = 1.2 and from

0.72 to 0.98 for R0 = 1.8. This result did not change with our

sensitivity analysis for lower values of g = 2 and 3 (Figure S1).

(c) Discriminant function analysis
When R0 = 1.2, 47% of the 1:1 and 40% of the 3:3 scenarios for

the observeddfa outbreaks were major; when R0 = 1.8, 70% and 63%

of observeddfa outbreaks were major (1:1 and 3:3, respectively). If our

DFA method were perfect in predicting outbreak size, we would

expect 100% agreement between actual observeddfa major and DFA-

classified major outbreaks, and 100% agreement between minor

outbreaks. For R0 = 1.2, 1:1 and both R0 = 1.8 scenarios, DFA

correctly classified major outbreaks quite well (Table 3). However,

because DFA classified almost everything as major for these

models, DFA performed poorly in predicting minor outbreaks. For

R0 = 1.2, 3:3, DFA predicted minor outbreaks slightly better than

random, and was poor at predicting major outbreaks. Overall the

agreement between actual outbreak size and DFA-predicted

outbreak size was no better than by chance (20.009,k̂k,0.007).

Trajectory matching likely performs better than DFA because it

captures more of the unobserved process (the number of

Figure 2. Outbreak sizes. Frequency distribution of outbreak sizes based on 10,000 stochastic simulations of four SEIR models with R0 of 1.2 or 1.8,
and either exponentially distributed or gamma-distributed incubation and infectious periods (1:1 and 3:3, respectively). All outbreaks were retained
for this figure regardless of the number of deaths.
doi:10.1371/journal.pone.0057878.g002

Figure 3. ‘‘Matched’’ versus ‘‘calculated’’ probabilities. The
proportion of estimated matched outbreaks that are major (y axis)
compared to calculated pm values from the corresponding observedtm

outbreaks at the time of the 4th death (x axis) for each of the four
models. Each ‘predicted proportion of major outbreaks’ point on the
figure represents the average of 200 to 4000 matched outbreaks. The
lines represent fitted values from a linear regression model.
doi:10.1371/journal.pone.0057878.g003

Estimating the Probability of a Major Outbreak
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incubating individuals) as compared to DFA, which is solely based

on time intervals between deaths.

Discussion

The probability that an outbreak in our observed samples will be

major can vary from ,0.1 to .0.9 (e.g. Figure 3) depending on

the fully specified condition at the time of the xth death (hR = x).

While this information could be valuable in deciding whether

intervention measures in the early stages of an infectious disease

outbreak are required, the number of incubating and infectious

individuals is likely unknown, hence the probability of a major

outbreak is not directly estimable using Equations 1 & 2 alone.

Instead, we tested whether information relating to the probability

of a major outbreak might be recovered from directly observable

data: namely the incidence of deaths. While intuitively we expect

that early death times, or specifically the pattern of these death

times, would help to predict final outbreak size, our proposed

techniques are unable to predict the outcomes of the SEIR

processes we examine, even given a realistic and arguably highly

optimistic knowledge of the epidemiological parameters and

timings of deaths.

Once the number of observable deaths increases, major

outbreaks are more probable. For example, the average probabil-

ity of a minor outbreak given the occurrence of 5 deaths in our

model was only 0.08 for R0 = 1.8, 3:3, and this probability then

drops to 0.06 for 6 observed deaths. For low values of R0 (1.2 and

1.8) predicting outbreak size appears to be hampered by

insufficient information (specifically a limited number of deaths),

but by delaying the prediction and awaiting more information

(deaths), the result becomes a foregone conclusion (since more

deaths means a major outbreak is underway). For higher values of

R0, there are few, if any fadeouts.

One contributory source of variation is clearly contained in the

incubating and infectious period distributions. Although increasing

the number of stages from 1 to 3 stages corresponds to an

approximately three-fold reduction in the variance of the exposed

and infectious period durations, the variance is still substantial.

Second, this variance has a cumulative effect, so even small

amounts of variation in the duration of the incubation and

infectious periods can result in considerable variation in the timing

of deaths after a few transmission events (e.g. by the fourth death).

Third, there are other sources of variation that may also play an

important role in eroding predictive power, such as the variation

in the number of transmissions that results from each infectious

case. For instance, even if there were no variation in the duration

of the infectious period, when R0 = 1.2 the number of transmis-

sions that occurs per infectious case is Poisson distributed with

mean R0 and 95% confidence intervals of 0–4 transmissions. This

is clearly also an important source of variability in transmission

dynamics and could mask any potential gain in predictive power

that might result from less variable exposed and infectious periods.

There are three issues that warrant further discussion. The first

is that the trajectory matching approach might fail because our

matched outbreaks are not similar enough and hence g must be

smaller. However, our sensitivity analysis indicated prediction

performance did not improve when g is reduced (Figure S1). We

conjecture that because of the inherent variability characteristic of

the early stages of a stochastic epidemic, a wide range of system

states (hR = x, and hence values of y) are likely consistent with any

single temporal sequence of deaths, and that even reducing g to

very low values will not help in procuring better predictors of pm.

In other words, while there are certainly initial conditions that are

much more likely to give rise to larger or smaller outbreaks than

others (and Anderson and Watson’s 1980 manuscript formalizes

this relationship), the early time-of-death patterns generated from

these initial conditions are also likely to be generated during

outbreaks destined to be of many different final sizes. Therefore we

cannot reverse the direction of inference and use time-of-death

patterns to infer final outbreak size. This interpretation is

consistent with the results of our DFA.

Second, we expected that the 3:3 scenario would perform better

than the 1:1 scenario due to less dispersed incubating and

infectious periods and more certainty around the means, yet the

opposite was true (Figure 3), though it must be emphasized that

neither scenario predicted well. We further note that some of our

conclusions may be influenced by the relative durations and

variances in the exposed and infectious periods, and this could be

an avenue for future studies. Our case study for this manuscript

was rabies, so this work was based on a model where the duration

of the incubation period was approximately 7 times larger than the

infectious period. It is known, however, that the ratio of the

durations of these periods can affect dynamics [20,25], and that

some of the details regarding how predictability changes as a

function of variation in the exposed and infectious periods may be

influenced by the specifics of model parameterization.

Finally, in this study we fail to predict outbreak size even

assuming the underlying parameters of the system are fixed and

known. Including either real variation or measurement error in

these parameter values is likely to erode what little predictive

power we have described.

Where there is the possibility of either minor or major outbreaks

in a closed, well-mixed stochastic SEIR setting, we come to the

surprising conclusion that outcomes are essentially indeterminate

given a realistic knowledge of the epidemiological process, and we

therefore caution against possible over-interpretation of timings of

early incidences. We note that the distribution of cases among

groups may be more informative in structured populations and

that other methods or early outbreak incidence metrics might

predict major outbreaks with more accuracy. We often find

ourselves ‘blaming the data’ for the inability to forecast final

outbreak size. The results from our analyses suggest the problem

may be more fundamental.

Table 3. Percentage of major or minor outbreaks classified by
DFA as minor or major and the kappa statistic for each model.

1.2, 1:1, kappa = 0.003 DFA classified as minor DFA classified as major

Actual observeddfa minor 22.5 77.5

Actual observeddfa major 22.2 77.8

1.2, 3:3, kappa = 20.009 DFA classified as minor DFA classified as major

Actual observeddfa minor 62.5 37.5

Actual observeddfa major 63.3 36.7

1.8, 1:1, kappa = 0.002 DFA classified as minor DFA classified as major

Actual observeddfa minor 11.7 88.3

Actual observeddfa major 11.6 88.4

1.8, 3:3, kappa = 0.007 DFA classified as minor DFA classified as major

Actual observeddfa minor 5.8 94.2

Actual observeddfa major 5.3 94.7

doi:10.1371/journal.pone.0057878.t003
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Supporting Information

Figure S1 ‘‘Matched’’ versus ‘‘calculated’’ probabilities
and sensitivity analysis. The mean proportion of estimated

matched outbreaks that are major (y axis) compared to calculated pm

values from the corresponding observedtm outbreaks at the time of

the 4th death (x axis) for R0 = 1.2 and 1:1 EPD/IPD for g = 2, 3,

and 4. The lines represent fitted values from a linear regression

model. All g had p,0.001.

(DOC)
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