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Background and Objectives. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of
motor neurons in the brainstem, motor cortex, and spinal cord. Oxidative stress and neuroinflammation have been implicated in
the pathophysiology of ALS. Members of the family of damage-associated molecular patterns, including reactive oxygen species,
high-mobility group box 1, and eosinophil-derived neurotoxin (EDN), may participate in pathological conditions. In this study,
we aim to discover new biomarker for detecting ALS.Materials and Methods. We examined 44 patients with ALS, 41 patients with
Alzheimer’s disease, 41 patients with Parkinson’s disease, and 44 healthy controls. The concentration of serum EDN was measured
using an enzyme-linked immunosorbent assay. Results. EDN levels were significantly increased 2.17-fold in the serum of patients
with ALS as compared with healthy controls (𝑃 < 0.05). No correlation between the levels of serum EDN and various clinical
parameters of ALS was found. Moreover, the levels of serum EDN in patients with Parkinson’s disease and Alzheimer’s disease and
healthy controls were similar. Conclusion. A higher level of serum EDNwas found specifically in patients with ALS, indicating that
EDN may participate in the pathophysiology of ALS.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is the most common
and devastating adult-onset neurodegenerative disease [1].
The underlying pathology involves the selective loss of motor
neurons in the spinal cord, brainstem, and cerebral cortex [2].
Weakness and muscle atrophy are the typical earliest symp-
toms of ALS and are followed by rapid progression leading to
total paralysis and respiratory failure within 2 to 5 years after
diagnosis. Generally, ALS is considered to be a neuromus-
cular disorder, but more studies are beginning to recognize
ALS as a multisystem neurological disease [3–5]. The annual
incidence of ALS is 1-2 per 100,000 persons [6]. There are
two types of ALS. One is familial ALS, which accounts for

only 10% of all ALS cases [7]. A known hereditary factor,
mutant Cu/Zn superoxide dismutase 1 (SOD1), is associated
with ∼20% of cases of familial ALS.The second type of ALS is
sporadic ALS, the cause(s) of which is less well understood.

Currently, the etiology of ALS is unclear. However, sev-
eral lines of evidence suggest that neuroinflammation [8],
glutamate excitotoxicity [9], altered cytoskeletal proteins [10],
impaired axoplasmic transport [11], and oxidative stress [12]
are involved in disease development. Oxidative stress is
believed to play an important role in ALS. Some SOD1 muta-
tions such as SOD1-G93A, SOD1-G85R, and SOD1-G37R lead
to a loss of dismutase activity in transgenic mice, resulting in
the accumulation of high concentrations of reactive oxygen
species (ROS) in motor neurons [13]. Subsequently, the free
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radicals generated by superoxide may damage neurons.
Moreover, as motor neurons encounter excessive oxidative
stress, high levels of cytoprotective heat shock proteins
(HSPs) may be induced [14]. Generally, overexpression of
HSPs is associated with cellular stress responses including
heat shock [15], heavy metal stress [16], and disease [17].
A recent ALS study has indicated that the serum levels of
HSPs are elevated in patients with ALS and in ALS mouse
models [14]. Expression of protective proteins suggests that
ALS may result from pathophysiological stress such as neu-
roinflammation. Neuroinflammation has been widely dis-
cussed as a mechanism of ALS [18]. During chronic neu-
roinflammation, activated microglia play direct and indirect
destructive roles in inducing the expression and release of
cytokines such as tumor necrosis factor-𝛼, which stimulates
local inflammatory responses and neuronal degeneration [19,
20]. Furthermore, microglia also secrete proinflammatory
factors such as chemokines and ROS, which contribute to
neuroinflammatory processes [21, 22]. Microglia may attack
neurons, inducing progressive cell loss in specific neuronal
populations in neurodegenerative disorders [23–25]. There-
fore, factors that induce inflammatory responses could serve
as potential biomarkers. Serum levels of the inflammatory
alarm protein, high-motility group box 1 (HMGB1), have
been reported to be overexpressed in the spinal cord and
brain in an ALS mice model and in biopsies from patients
with ALS [26, 27]. Because these prevalent damage factors
and danger signals are involved in ALS, we hypothesized that
two signals belonging to the danger signal family, eosinophil-
derived neurotoxin (EDN) and eosinophil cationic protein
(ECP), may be correlated with ALS.

EDN, also known as RNase2, is a member of the ribonu-
clease A superfamily [28]. EDN is a single-chain polypep-
tide with an observed molecular mass of 18.6 kDa. EDN
is expressed mainly in eosinophils but is also detected in
mononuclear cells and possibly neutrophils [29]. EDN pos-
sesses full ribonucleolytic activity and is involved in defend-
ing the upper bronchial tract from infection by respiratory
syncytial virus [30, 31]. In addition, EDN is likely to be a host
molecule that may induce proinflammatory cytokine pro-
duction in monocyte/macrophages and the maturation of
dendritic cells through Toll-like receptor 2 (TLR2) [32].
Furthermore, EDN causes serious damage to myelinated
neurons in the rabbit brain, an event known as the Gordon
phenomenon [33–35]. Damage to Purkinje cells and devas-
tating spongiform degeneration in the white matter of the
brainstem, cerebellum, and spinal cord are also caused by
EDN [36]. Therefore, it is rational to suggest that EDN plays
a critical role in neuronal damage and is involved in the loss
of neurons, resulting in neurodegenerative disorders.

ECP is a paralog of EDN in humans, and they share 70%
similarity at the protein level. They are both secreted by acti-
vated eosinophils during pathogenic stimulation and inflam-
matory processes [37]. In patients with asthma, the serum
level of ECP is elevated and serves as a clinical biomarker for
monitoring asthma severity [38]. In pathophysiological con-
ditions, accumulation of ECP induces chronic inflammation
and enhances the severity of inflammation such as that which
occurs during the inflammation of the intestinal mucosa in

Crohn’s disease [39]. The tissue damage attributed to ECP
depends on its interaction with the organism surface, which
occurs during its translocation into the cell.The hypothesized
mechanism of ECP-triggered cell damage is that ECP desta-
bilizes the cell membrane via the processes of pore formation,
permeability changes, and membrane leakage [40].

Because EDN and ECP participate in the induction of
inflammatory diseases and because both serve as disease
biomarkers, we examined the serum levels of EDN and ECP
in patients with ALS.

2. Materials and Methods

2.1. Participants. The demographic information for the nor-
mal control individuals and the patients with ALS is given in
Table 1. Forty-four patients with ALS (25 male, 19 female), 39
patients with Alzheimer’s disease (AD; 16 male, 23 female),
40 patients with Parkinson’s disease (PD; 20male, 20 female),
and 44 age-matched, unrelated healthy controls (24 male, 20
female) were recruited by the Taipei City Hospital Zhongxiao
Branch, Taipei, Taiwan. Informed consent was obtained
before blood sampling, and all procedures were approved by
the Institutional Review Board of Taipei City Hospital. All
patients and controls were Taiwanese. The clinical severity
of patients with ALS was evaluated using the Amyotrophic
Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-
R) ranged from 0 to 47.Themean and SD of ALSFRS-R in this
study were 17.8 and 13.28, respectively.The disease duration of
patients with ALS ranged from 2 to 84 months (mean = 13.6
months, SD = 14.65), and the onset types were classified as
brainstem (B), hand (H), and foot (F).

2.2. Enzyme-Linked Immunosorbent Assay (ELISA). Venous
blood (10mL) was collected from patients with ALS, AD,
and PD as well as controls; all participants were free of acute
infection and acute stress at the time of collection. Serum
collected using yellow-stopper clot-accelerating tubes was
harvested by centrifugation at 3000×g for 20min, divided
into aliquots, and frozen at −30∘C until use. The serum
levels of EDN and ECP were measured using commercially
available ELISA kits for humanEDNandECP (both kits from
MBL, Naka-Ku, Nagoya, Japan).

2.3. Statistical Analysis. The serum concentrations of EDN
and ECP were compared among patients with ALS, AD, and
PD and controls using an ANOVA. The one-way ANOVA
test was used to determine the difference among all of the
test groups. When the 𝑃 value of the ANOVA reaches the
significance level, Bonferroni multiple comparison test was
used to determine the significant difference among the
groups of control, AD, PD, and ALS. The Spearman rank
correlation was used to correlate the levels of EDN or ECP
versus the subgroups of age, ALSFRS-R, disease duration, or
onset types.

3. Results

3.1. EDN Is Elevated in Sera of Patients with ALS. The con-
centration of serum EDN in patients with ALS, AD, and PD
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Table 1: Study population demographics and clinical characteristics.

𝑁
Age (years)a Gender ALSFRS-Rb Disease durationc Type of onset

Mean (SD) Range Median (M/F) Mean (SD) Mean (SD) (B/H/F)d

Control 44 60 (10.10) 30–87 65 23/17 — — —
AD 39 80 (7.71) 54–90 81 16/23 — — —
PD 40 76 (9.17) 53–90 77 20/20 — — —
ALS 44 58 (9.88) 34–79 57 25/19 17.8 (13.29) 13.6 (14.65) 13/12/19
a
Age was at the time of blood collection.

bThe ALSFRS-R is a scale from 0 to 48 which assesses disability in patients with motor neuron diseases. 0 means serious and 48 means normal.
cThe disease duration indicates months since the onset of symptoms.
dB: brainstem, H: hand, F: foot.

and in healthy controls was measured using a commercial
ELISA kit. The average EDN levels in patients with ALS
and controls were 45.7 ng/mL (SD = 29.3 ng/mL; range,
8.9–140.9 ng/mL) and 21.0 ng/mL (SD = 14.9 ng/mL; range,
8.6–79.4 ng/mL), respectively (Table 2). The level of EDN
was significantly increased by 2.17-fold in the sera of patients
with ALS as compared with the control group (𝑃 < 0.005;
Figure 1(a)). The serum EDN level in patients with ALS was
significantly increased 1.61- and 1.84-fold as compared with
patients with AD (28.3 ng/mL; SD = 36.6 ng/mL; range,
1.9–158.0 ng/mL) and PD (24.8 ng/mL; SD = 20.7 ng/mL;
range, 3.1–95.5 ng/mL), respectively (Figure 1(a)). These data
indicate that serum EDN is specifically elevated in patients
with ALS and may serve as an indicator for ALS.

Next, the ALSFRS-R, disease duration, age, and disease
onset amongpatientswithALSwere analyzed and statistically
correlated with EDN levels. The clinical indicators were not
correlated with EDN levels (Table 2).

3.2. The Serum Levels of ECP Are Similar among Patients with
ALS, AD, and PD and Healthy Controls. The levels of ECP
were not significantly different in the sera from patients with
ALS (24.1 ng/mL; SD = 24.5 ng/mL; range, 0.4–88.8 ng/mL),
AD (15.4 ng/mL; SD = 17.4 ng/mL; range, 0–97.1 ng/mL),
and PD (15.8 ng/mL; SD = 15.2 ng/mL; range, 0–77.8 ng/mL)
and healthy controls (21.1 ng/mL; SD = 27.4 ng/mL; range,
1.7–109.9 ng/mL; Figure 1(b), Table 2). Correlations between
ECP levels and clinical indicators were also compared. No
meaningful correlations were observed between ECP levels
and each indicator. Hence, EDN, but not ECP, may serve as
an indicator for ALS.

3.3. Prediction of Performance of EDN as an Indicator for
ALS. A receiver operating characteristic (ROC) curve was
used to determine the performance of EDN and ECP cor-
related among ALS, AD, and PD. EDN showed the best
performance with 88.53% accuracy, 77.27% sensitivity, and
84.09% specificity when the cut-off concentration was set at
23.43 ng/mL for ALS. ROC curve analysis also showed that
EDN had the highest area under the curve (AUC) value of
0.8264. As expected, values for AD and PD were 0.5294 and
0.5538, respectively, indicating a nearly random distribution
(Figure 2(a)). For ECP, 54.55% sensitivity, 63.64% specificity,
and 69.61% accuracy were detected for predicting ALS.
The AUC value for ALS was 0.5754, similar to a random

distribution, andAUC values for AD and PDwere 0.5025 and
0.5089, respectively (Figure 2(b)). These results indicate that
EDN, but not ECP, may serve as an ALS indicator.

4. Discussion

Damage-associated molecular patterns (DAMPs) play an
important role in stimulating macrophages and T lympho-
cytes [41]. Recent studies have indicated that some DAMPs
including ROS [42], HSPs [43], and HMGB1 [43] are present
or are overexpressed in the spinal cord [44] andmotor cortex
in SOD1-G93A transgenic mice and/or patients with ALS
[45, 46]. In this study, we report that another DAMP, EDN,
was elevated in the sera of patients with ALS. EDN is secreted
from human activated eosinophils and neutrophils [47] and
is a powerful and important neurotoxin that causes neuronal
and axonal damage by inducing loss of normal cell shape
[33, 48]. Furthermore, the severe spongy vacuolation of the
white matter that is seen in the brainstem, cerebellum, and
spinal cord in mice is also caused by EDN overexpression
[36, 49]. This phenomenon suggests that the eosinophil-
secreted protein EDN plays a crucial role in progressive
neurodegenerative disorders. Our analyses showed no signif-
icant correlation between the serum concentration of EDN
and the stage of ALSFRS-R. ALSFRS-R integrates various
aspects of the ALS clinical condition includingmuscle power,
control ability, vigor, and voluntary movement [50, 51]. Our
finding may suggest that the neuroinflammation resulting
from elevated EDN occurs in the early stage of ALS and does
not correlate with disease progression.

We also observed no interaction between the level of EDN
and the age of patients with ALS. In the elder population,
chronic inflammation increases, and inflammatory stimu-
lation is upregulated during aging [52, 53]. Therefore, we
propose that EDN levels correlate with neuroinflammation
and may be highly specific to ALS without aging effects.
Therefore, EDN may be potentially useful for early diagnosis
of ALS caused by peripheral neuroinflammation at any age.

Neuroinflammation is critical in the pathogenesis of
ALS [54]. High numbers of dendritic cells and high levels
of monocyte chemotactic protein-1 (MCP-1) are found in
the ALS mouse model, which shows neuroinflammation
[55, 56]. MCP-1 has been implicated as a chemokine that
attracts monocytes, T cells, and dendritic cells [57]. MCP-1
may chemoattract various immunocytes to inflammatory
sites and induce more severe neuroinflammation [56, 58]. In
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Figure 1: Serum EDN is elevated in patients with ALS. Serum
concentrations of EDN (a) and ECP (b) in controls (𝑁 = 44) and
patients with AD (𝑁 = 39), PD (𝑁 = 40), and ALS (𝑁 = 44).
∗

𝑃 < 0.05, ∗∗𝑃 < 0.01, ∗∗∗𝑃 < 0.005. The bold black line indicates
the mean.

ALS, excessive EDN in hyperimmune conditions may be an
autoaggressive factor that interacts with normal neurons to
damage those cells and destroy their function, similar to
autoimmune diseases [59]. Therefore, higher levels of EDN
in ALS may be a damage factor, signal, or immune response.
Nevertheless, the mechanisms are still unclear.

Although macrophages, mast cells, and T cells are
reported to induce neuroinflammation in the cortex and
spinal cord in ALS [60] and although many inflamma-
tory molecules including interleukin-6, interferon-𝛾, tumor
necrosis factor-𝛼, and nitric oxide are elevated in the serum
of patients with ALS [61, 62], no studies have elucidated
the roles of EDN in ALS. This study is the first to report a
correlation between EDNandALS, andwe propose that EDN
may participate in the pathogenesis of ALS and may serve as
an ALS indicator.
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Figure 2: The performance of EDN as an indicator for ALS. ROC
curves represent the performance of a prediction method. The
curves for EDN (a) and ECP (b) for predicting the neurodegener-
ative diseases AD, PD, and ALS. The area under the curve (AUC)
was calculated.
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