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Abstract
LPA (lysophosphatidic acid, 1-acyl-2-hydroxy-sn-glycero-3-phosphate), is a growth factor-like
lipid mediator that regulates many cellular functions, many of which are unique to malignantly
transformed cells. The simple chemical structure of LPA and its profound effects in cancer cells
has attracted the attention of the cancer therapeutics field and drives the development of
therapeutics based on the LPA scaffold. In biological fluids, LPA is generated by ATX
(autotaxin), a lysophospholipase D that cleaves the choline/serine headgroup from
lysophosphatidylcholine and lysophosphatidylserine to generate LPA. In the present article, we
review some of the key findings that make the ATX–LPA signalling axis an emerging target for
cancer therapy.
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The many roles of autotaxin and lysophosphatidic acid in malignancy
ATX (autotaxin) is a member of the NPP (nucleotide pyrophosphatase/phosphodiesterase)
enzyme family and is also known as NPP2 [1,2]. ATX was originally identified as a secreted
phosphatase in melanoma culture supernatant that promoted cancer cell motility [3]. Ten
years later, ATX was identified as a lysophospholipase D responsible for the production of
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LPA (lysophosphatidic acid, 1-acyl-2-hydroxy-sn-glycero-3-phosphate) in blood [4,5].
ATX-KO (knockout) mice die in utero due to angiogenic defects, whereas heterozygous
ATX-KOs appear to be normal, but have half the plasma LPA concentration compared with
wild-type littermates [6,7].

Many cancers secrete ATX, which contributes to their invasive properties (Figure 1).
Ovarian cancer cells produce high levels of LPA [8,9]. Whether plasma LPA levels due to
ATX production by cancer cells are elevated and can be used as a cancer biomarker has
generated some controversy. The plasma ATX level does not appear to be a cancer marker
because it is also elevated in patients with liver disease [10,11], during pregnancy [12] and
in patients with acute coronary syndrome [13]. Plasma LPA levels follow the trend of
plasma ATX levels. Gene copy numbers are elevated in ovarian cancers in chromosomal
region 8q24, which contains the gene encoding ATX [14]. There is consensus in the field
that LPA levels are highly elevated in ovarian cancer ascites [8,15], but also in tumour cell
effusates from other types of malignancies [8]. The acyl chain composition of plasma LPA
and the LPA in tumour cell effusates differ suggesting that LPA does not freely cross the
barriers between body compartments [8]. Plasma LPA level has been found elevated in only
a select group of malignancies that include pancreatic cancer [16] and follicular lymphoma
[17]. Extreme care must be exercised during the collection, handling and storage of blood
samples intended for ATX and LPA analysis because LPA production continues ex vivo due
in part to the removal of the LPA degradation by cells of the vasculature and the liver, and
also due to the continued action of ATX [18] and the release of phospholipases A1 and A2
from platelets [19].

ATX is among the 40 most up-regulated genes in highly metastatic cancers [20]. Ectopic
expression of ATX in mice leads to mammary intraepithelial neoplasia, developing into
invasive and metastatic tumours [21]. ATX inhibits paclitaxel-induced apoptosis in breast
cancer cells [22], and we have shown that LPA renders ovarian cancer cells chemoresistant
to cisplatin and adriamycin [23]. ATX becomes overexpressed in patients with recurrent
disease after treatment with chemotherapy [24]. In a genome-wide siRNA (small interfering
RNA) screen, we identified ATX as a candidate drug-resistance gene in ovarian cancer and
showed that an inhibitor of ATX increases paclitaxel sensitivity of resistant cancer cells
[25].

LPA receptors in cancer cells
LPA activates two clusters of GPCRs (G-protein-coupled receptors). The EDG (endothelial
differentiation gene) cluster includes the LPA1, LPA2 and LPA3 receptors that are close
relatives of the EDG family sphingosine 1-phosphate receptors. LPA1 and LPA2 are broadly
expressed. Many cancers overexpress multiple subtypes of LPA receptors [26]. LPA1 has
been shown to be a regulator of cancer cell motility and metastasis [27] and matrix
metalloproteinase expression [28]. LPA2 plays an important role in the invasiveness of
ovarian cancer in at least two ways. First, LPA2 promotes production of VEGF (vascular
endothelial growth factor), uPA (urokinase-type plasminogen activator) and matrix
metalloproteinases [29]. LPA increases VEGF production, and in turn up-regulates ATX
production, which increases LPA levels [30], another potential feedforward loop that also
promotes angiogenesis. Secondly, LPA-induced uPA production promotes invasiveness of
ovarian cancer cell lines [31]. Clinically, high uPA levels indicate poor prognosis in ovarian
cancer patients [32].

A second cluster of LPA receptors is found within the purinergic P2Y gene cluster. The
better characterized members of this cluster are LPA4 (P2Y9), LPA5 (GPR92) and LPA6
(P2Y5). Mouse embryonic fibroblasts isolated from LPA4-KOs showed increased migration
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to LPA and developed spontaneous tumours [33], suggesting that LPA4 has a tumour-
suppressor role. There are additional related GPCRs that appear to be activated by LPA. In
chronological order of discovery, these include GPR87, P2Y10 and GPR35, but their
biological function remains to be characterized.

Thus compelling evidence exists that the overexpressed LPA receptors play a fundamental
role in carcinogenesis, invasiveness, metastatic potential and therapeutic resistance in many
types of carcinomas.

Juxtacrine signalling between the metastatic cancer cell and cells of the
endothelial or mesothelial barrier

ATX via LPA production promotes metastasis. During haematogenous metastasis, cancer
cells have to cross the vessel wall twice, first when entering the blood stream and secondly
when transmigrating it to seed the site of metastasis. For this reason, the role of LPA and
ATX in the interaction between the cancer cell and the vascular endothelial cell is of
peculiar importance. ATX–LPA signalling takes place in the cancer cell microenvironment
(Figure 1). The recent elucidation of the crystal structure of ATX [34,35] reinforces this
concept in two ways: first, the interaction of the ATX somatomedin B domain with β3
integrin provides the structural framework for localizing ATX-mediated LPA production to
the cancer and endothelial cell surfaces, which express β3 integrin. Secondly, identification
of an LPA-binding site within a hydrophobic tunnel of ATX important for releasing LPA at
the cell surface juxtaposed to the LPA receptor provides yet another structural framework
for juxtacrine signalling. Thus dual targeting of ATX and LPA receptors for the control of
metastasis and tumour growth is a logical extension of the juxtacrine signalling concept
because one inhibits both targets that are spatially and functionally linked in the cancer cell
microenvironment.

Validation of ATX as a drug target for metastasis control
We examined the effect of silencing ATX expression in the B16 melanoma metastasis
model syngeneic to the C57BL/6 mouse strain. ATX expression was knocked down using a
lentivirally delivered shRNA (small hairpin RNA) construct (ShATX, Figure 2). ATX-KD
(knockdown) reduced the expression of ATX mRNA and protein (Figures 2A and 2B) and
also reduced the lysophospholipase D activity secreted into the conditioned medium
compared with wild-type B16 or Scr (scrambled) shRNA-transduced cells (Figure 2C). We
examined the effect of ATX-KD using a transcellular migration assay described previously
by Mukai et al. [36]. Briefly, ShATX and Scr shRNA transduced cells (105 cells/ml) were
seeded on to a confluent rat mesothelial cell monolayer and increasing concentrations of
LPC (lysophosphatidylcholine) or 3 μM LPA were added. After 6 h of incubation, the
medium was removed and the monolayer was washed and fixed. The number of B16
melanoma cells that penetrated the mesothelial monolayer was counted under a phase-
contrast microscope. LPA treatment increased the transmonolayer invasion of the ShATX
and control cells (Figure 2D). Addition of the ATX substrate LPC to Scr shRNA-transduced
melanoma cells dose-dependently increased invasion. In contrast, LPC failed to induce
invasion of the ShATX-transduced melanoma cells. These observations support the
hypothesis that down-regulation of ATX activity in the tumour cells alters their invasive
capacity.

To extend these in vitro observations, we injected 5×105 Scr- and ShATX-transduced B16
melanoma cells into C57BL/6 mice via the tail vein. At 3 weeks post-inoculation, animals
were killed, the lungs were washed, inflated and fixed with formalin, and the number of lung
metastases was determined. Melanoma cells with ATX-KD showed a 50% reduction in the

Gotoh et al. Page 3

Biochem Soc Trans. Author manuscript; available in PMC 2013 March 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



number of metastasis compared with control cells (Figure 2E). This observation reinforces
our in vitro findings and supports a role for ATX in metastasis.

Drug discovery targeting ATX
On the basis of the relevance of the ATX–LPA–LPA receptor signalling axis to many types
of cancers, it is reasonable to propose drug discovery aimed at ATX and LPA receptors, or
the combination of these targets to prevent and inhibit cancer invasion, metastasis and
growth. At present, there are no FDA (U.S. Food and Drug Administration)-approved drugs
to either of these targets. ATX is continuously turning over with a half-life estimated to be
less than 1 h [37]. The half-life of LPA injected into blood is of the order of a few minutes,
indicating that this pool of LPA is rapidly turning over [38]. These two properties taken
together suggest that ATX has to be inhibited for a long duration in order to significantly
affect LPA production. We envisage that the drug candidates targeting ATX and/or LPA
receptors will ultimately be used as part of the multimodal treatment of cancers for the
prevention of metastasis before or after removal of the primary tumour. We must not ignore
the fact that ATX inhibitors have therapeutic utility in controlling inflammatory diseases as
well, because of the documented role of ATX in autoimmunity [39], asthma [40], macular
degeneration [41] and neuropathic pain [42].

We reported recently the characterization of a new ATX inhibitor 4PBPA (4-
pentadecylbenzylphosphonic acid) [43]. 4PBPA has a relatively long (10.5 h) half-life and it
reduced plasma LPA levels by 50% over a 24-h period [43]. This inhibitor was tested on the
invasion of confluent monolayers of HUVECs (human umbilical vein endothelial cells) by
MM1 hepatoma cells in 1% low-serum medium with or without 5 μM LPC (Figure 3A).
MM1 cells express ATX, whereas the mesothelium and HUVECs show very low
expression, and we were unable to detect ATX activity in HUVEC-conditioned medium
[43]. Thus the source of ATX in this system is primarily from the MM1 carcinoma cells.
Addition of LPC increased invasion significantly, whereas 4PBPA dose-dependently
blocked the LPC-induced invasion of MM1 cells on the HUVEC monolayers. These types
of monolayer invasion assays have been considered as excellent in vitro models for cancer
invasion because the invading cells must penetrate and migrate below the monolayer,
resembling the process that takes place during metastasis [36]. We also examined the effect
of 4PBPA or vehicle using the B16 melanoma metastasis model in vivo. Daily injections
starting 30 min after melanoma inoculation were continued until day 20. On day 21, mice
were killed, the lungs were harvested, and the number of melanoma nodules in the lungs was
counted. In this treatment paradigm, 4PBPA reduced the number of metastases from an
average of 42 per mouse in the vehicle group to eight per mouse (Figure 3B).

To examine the role of ATX inhibition on the micro-to-macro metastasis transition, we
performed the same experiment by delaying the first treatment with 4PBPA from 30 min to
96-h post-inoculation. The treatment continued with single daily doses of 4PBPA until day
20. The mice were killed on day 21 and the lung metastases were counted. 4PBPA injection
starting up to 48 h post-inocculation caused a highly significant reduction in the number of
metastases. However, when the treatment started at 72 h post-inocculation, the reduction of
metastases, although significant, began to diminish and when treatment began on 96 h after
inoculation it was no longer effective (Figure 3B). These results point to an important
limitation of ATX inhibition therapy and indicate that blocking of ATX activity only
reduces the seeding of metastases, but does not inhibit tumour growth. These results with the
melanoma model corroborate similar findings obtained in a breast cancer metastasis model
by the Peyruchaud group [44].
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Dual targeting of ATX and LPA receptors controls metastasis and tumour
growth

LPA exerts feedback inhibition on ATX [45]. This observation leads to the concept that one
should be able to find LPA analogues that inhibit ATX without activating any of the LPA
receptor subtypes. We obtained proof of this principle through the development of carba-
cyclic phosphatidic acid analogues that inhibited ATX without the activation of LPA1–4.
Carba-cyclic phosphatidic acid inhibited MM1 carcinoma and A2058 melanoma invasion in
vitro and also reduced the number of B16 melanoma metastasis in mice [46–48]. In
collaboration with the Prestwich group, we have characterized several lipid analogues of
LPA that inhibit ATX and also function as antagonists of multiple LPA receptors [49]. One
of the LPA bromophosphonate enantiomers was highly effective in blocking the metastasis
and growth of xenotransplanted human breast, colon and liver carcinomas in nude mice
[49,50].

The studies outlined in the present review provide the foundation for drug discovery
targeting the ATX–LPA–LPA receptor signalling axis. The lack of phenotype in
heterozygous ATX-KO mice with 50% lower plasma LPA levels and the initial data using
ATX inhibitors over extended periods of time for the treatment of tumour-bearing mice
revealed no obvious side effects. There are numerous publications that have appeared in the
literature during the last 2 years describing multiple ATX inhibitors. The race is on now to
find the one that has ideal pharmacokinetics and bioavailability with minimal side effects.
We predict that, within the next few years, many new chemical scaffolds that block ATX
and LPA receptors will be identified. Today, at the dawn of personalized medicine, we
envisage that combination treatment protocols consisting of a long-acting ATX inhibitor and
individual LPA receptor antagonists matching the expression profile of the patient’s
malignancy will emerge as valuable modalities of cancer treatment and metastasis control.
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Abbreviations used

ATX autotaxin

EDG endothelial differentiation gene

GPCR G-protein-coupled receptor

HUVEC human umbilical vein endothelial cell

KD knockdown

KO knockout

LPA lysophosphatidic acid

LPC lysophosphatidylcholine

NPP nucleotide pyrophosphatase/phosphodiesterase

4PBA 4-pentadecylbenzylphosphonic acid

Scr scrambled
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shRNA small hairpin RNA

siRNA small interfering RNA

uPA urokinase-type plasminogen activator

VEGF vascular endothelial growth factor
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Figure 1. Juxtacrine signalling via the ATX–LPA receptor axis
ATX secreted from the tumour cell can be captured at the cell surface through binding to β3
integrin in the vicinity of the LPA GPCR. Activation of the LPA GPCR elicits responses
that modulate the biological properties of the cancer cell.
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Figure 2. Down-regulation of ATX in B16-F10 melanoma cells inhibits invasion in vitro and
metastasis in vivo
B16 cells were transduced with lentivirus encoding a shRNA to ATX (ShATX) or an Scr
construct. mRNA level (A), ATX protein expression (B) and ATX catalytic activity in 48-h
conditioned medium measured using FS-3 substrate (C) were all down-regulated in ShATX
cells compared with Scr and wild-type (WT) B16-F10 cells. Scr cells showed an LPC dose-
dependent increase in invasion of rat mesothelial monolayers, whereas ShATX cells failed
to respond to LPC (D). Both cell types responded equally to LPA with increased invasion of
the monolayer. When injected into C57BL/6 mice (5×104/cell per mouse in 100 μl) via the
tail vein, ShATX cells yielded 50% fewer metastases compared with Scr and WT B16-F10
melanoma cells (E). n.s., not significant; *P < 0.05; **P < 0.01; P < 0.001. Reproduced from
[43] Gupte, R., Patil, R., Liu, J., Wang, Y., Lee, S.C., Fujiwara, Y., Fells, J., Bolen, A.L.,
Emmons-Thompson, K., Yates, C.R., Siddam, A., Panupinthu, N., Pham, T.C., Baker, D.L.,
Parrill, A.L., Mills, G.B., Tigyi, G. and Miller, D.D. (2011) Benzyl and naphthalene
methylphosphonic acid inhibitors of autotaxin with anti-invasive and anti-metastatic
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activity. ChemMedChem 6, 922–935. Copyright Wiley-VCH Verlag GmbH & Co. KGaA
with permission.
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Figure 3. Pharmacological inhibition of ATX blocks tumour cell invasion in vitro and seeding of
metastasis in vivo
The benzyl-methyl phosphonate ATX inhibitor 4PBPA inhibits the invasion of HUVEC
monolayers by MM1 rat hepatocarcinoma cells induced by 5 μM LPC added to the medium
(A). 4PBPA does not inhibit tumour growth, but reduces the number of metastases when
administered up to 72 h post-inocculation of the tumour cells. 4PBPA (1 mg/kg) was
injected daily starting at different times after tumour inoculation (7.5×104 cells/mouse) and
continued up to day 20. The number of lung metastases was counted on day 21. Note that
4PBPA yields very effective protection against the establishment of micrometastases even
when administration began at 48 h after inoculation of B16-F10 melanoma cells via the tail
vein. Reproduced from [43] Gupte, R., Patil, R., Liu, J., Wang, Y., Lee, S.C., Fujiwara, Y.,
Fells, J., Bolen, A.L., Emmons-Thompson, K., Yates, C.R., Siddam, A., Panupinthu, N.,
Pham, T.C., Baker, D.L., Parrill, A.L., Mills, G.B., Tigyi, G. and Miller, D.D. (2011) Benzyl
and naphthalene methylphosphonic acid inhibitors of autotaxin with anti-invasive and anti-
metastatic activity. ChemMedChem 6, 922–935. Copyright Wiley-VCH Verlag GmbH &
Co. KGaA with permission.
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