
Charge Group Partitioning in Biomolecular Simulation

STEFAN CANZAR,8,* MOHAMMED EL-KEBIR,1,2,* RENÉ POOL,2,3 KHALED ELBASSIONI,4
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ABSTRACT

Molecular simulation techniques are increasingly being used to study biomolecular systems
at an atomic level. Such simulations rely on empirical force fields to represent the inter-
molecular interactions. There are many different force fields available—each based on a
different set of assumptions and thus requiring different parametrization procedures. Re-
cently, efforts have been made to fully automate the assignment of force-field parameters,
including atomic partial charges, for novel molecules. In this work, we focus on a problem
arising in the automated parametrization of molecules for use in combination with the
gromos family of force fields: namely, the assignment of atoms to charge groups such that
for every charge group the sum of the partial charges is ideally equal to its formal charge. In
addition, charge groups are required to have size at most k. We show NP-hardness and give
an exact algorithm that solves practical problem instances to provable optimality in a
fraction of a second.

Key words: atomic force fields, biomolecular simulation, charge groups, dynamic programming,

gromos, tree decomposition.

1. INTRODUCTION

In the context of drug development, biomolecular systems such as protein-peptide (Yang et al.,

2010), protein-ligand (Sharma et al., 2009), and protein-lipid interactions (Boggara et al., 2010) can be

studied with the use of molecular simulations (Allen and Tildesley, 1987; van Gunsteren et al., 2006) using a

force-field model that describes the interatomic interactions. Many biomolecular force fields are available,

including amber (Cornell et al., 1995), charmm (Brooks et al., 2009), opls ( Jorgensen et al., 1996), and

gromos (Scott et al., 1999; Oostenbrink et al., 2004; Schmid et al., 2011). These force fields have in common

that the nonbonded intermolecular interactions are represented in terms of interatomic pair potentials.
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Typically, the number of atoms in biomolecular systems are in the range of 104 to 106. To observe

relevant biological phenomena, time scales in the order of nano- to milliseconds need to be simulated. For

such large-scale systems, evaluating all atom–atom interactions is practically infeasible. One way of

dealing with this is to only consider interactions of atoms whose distance is within a pre-specified cutoff

radius. Since not all interactions are considered, an error is introduced. The magnitude of the error due to

omitting atom–atom interactions is inversely proportional to the distance between the atoms. More prob-

lematically, there are discontinuities as atoms move in and out of the cutoff radius.

Errors and discontinuities are reduced by combining atoms into charge groups, for which individual

centers of geometry are determined. If the distance between two centers of geometry lies within the cutoff

distance then all interactions between the atoms of the involved charge groups are considered. Ideally,

charge groups should be neutral as interactions are then reduced to dipole–dipole interactions that scale

inversely proportional to the cubed interatomic distance. Charge groups should not be too large. This is

because the effective cutoff distance of an individual atom in a given charge group is given by the cutoff

distance minus the distance to the center of geometry of the charge group. If the distance of an atom to the

center of geometry becomes large, the effective cutoff becomes small, leading to errors and discontinuities

as described above. For the same reason, charge groups should be connected as interatomic bonds impose

spatial proximity.

To simulate a molecule, a force field requires a specific topology, which includes the atom types, bonds

and angles, the atomic charges, and the charge group assignment. Most biomolecular force fields come with

a set of topologies for frequently simulated molecules such as amino acids, lipids, nucleotides, and co-

factors. Unparametrized molecules, however, require the construction of their topologies. Such a situation

occurs, for instance, when assessing the binding affinity of a novel druglike compound to a certain protein.

Manually building topologies for new compounds is a tedious and time-consuming task, especially when a

large chemical library needs to be screened, for example, when determining binding affinities for large sets of

potential drug compounds to a newly discovered protein target. Therefore, automated approaches are needed.

Here, we focus on the gromos family of force fields, which has been specifically tailored to simulate

biochemical processes, including protein-drug binding and peptide folding. A widely used topology gen-

erator for the gromos force field is prodrg (Schüttelkopf and van Aalten, 2004). However, the charge

group assignment by prodrg for amino acid topologies contained several large charge groups comprising

disconnected atoms, which is inconsistent with gromos (Lemkul et al., 2010). The Automated Topology

Builder (atb) is a recent method for automated generation of gromos topologies (Malde et al., 2011). The

assignment of atomic charges and charge groups by the atb proceeds in three consecutive stages. Firstly,

partial charges are computed using quantum calculations. Subsequently, the symmetry of the molecule is

exploited to ensure that symmetric atoms have identical charges. Finally, the molecule is partitioned into

charge groups using a greedy algorithm. The atb method was experimentally verified for a set of

biologically relevant molecules (Malde et al., 2011). For some large molecules, such as the cofactor

adenosine-5’-triphosphate (ATP), however, the atb assigns too large charge groups, which leads to in-

stabilities during simulation as described above.

As existing automated procedures such as prodrg and the atb fail in assigning appropriate charge

groups, we have investigated the problem in detail. Our contribution is threefold: (1) We introduce the

charge group partitioning problem and give a sound mathematical problem definition resulting in charge

groups of small size and zero charge. We prove NP-hardness of the problem and identify important special

cases, for which we give polynomial time algorithms. (2) Exploiting the properties of molecular structures

enables us to present a tree decomposition-based algorithm that solves typical practical problem instances

to optimality within fractions of a second. (3) We evaluate the performance of our method by running

simulations using the resulting charge group assignments of amino acid side chains, which yield results

consistent with experimentally known values. Moreover, for large, highly charged molecules such as ATP,

we obtain charge groups that are both suitable for use in simulations as well reasonable from a chemical

perspective.

2. PROBLEM STATEMENT AND COMPLEXITY

In this section, we give a formal definition of the problem associated with assigning appropriate charge

groups within a molecule. Our aim is to capture the two important aspects of chemical intuition discussed
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above: (1) The number of atoms in a charge group should not exceed a given integer k and (2) the sum of

partial and formal charges of a charge group is ideally equal. Mathematically, the latter condition is

equivalent to requiring the sum of differences of formal and partial charges in a charge group to be close to

zero. We prove NP-hardness of the problem even if we take into account special characteristics of graphs

representing a molecular structure. For the special case k = 2, we obtain a polynomial-time algorithm by

reducing the problem to a minimum-cost perfect-matching problem.

A molecular structure can be modeled as a degree-bounded graph G = (V, E), where the nodes corre-

spond to atoms and the edges to chemical bonds. In addition, we consider node weights d : V ! R, where

d(v) corresponds to the difference between formal and partial charge of the atom v. A formal definition of

the charge group partitioning problem is as follows:

Definition 1 (Charge group partitioning, cgp). Given a graph G = (V, E), node weights d : V ! R,

and an integer 2 £ k £ jVj - 1, find a partition V of V such that for all V 0 2 V it holds jV0j £ k, the

subgraph G[V0] induced by V0 is connected, and which has minimal total error

c(V) :=
X
V 02V

X
v2V 0

d(v)

�����
�����:

Each subset V 0 2 V of the nodes in the partition corresponds to a charge group. The following theorem

shows NP-hardness of the problem, even for the restricted case where G is planar. As we will discuss in

Section 3, most molecular graphs are planar.

Theorem 1. cgp is NP-hard, even in the restricted case where G is planar, k = 4, the maximum

degree of a node in the graph is 4, and the node weights are O(1).

Proof. Clearly, the problem belongs to NP. Consider the following problem.

Definition 2 (Planar three-dimensional matching, planar 3DM). Given disjoint sets X1, X2, X3 with

jX1j = jX2j = jX3j = m and a set of n triples T � X1 · X2 · X3. The bipartite graph B, with T as its one color

class and X = X1 W X2 W X3 as its other color class and an edge between T 2 T and x 2 X if and only if

x 2 T , is planar. Each element of X appears in 2 or 3 triples only. Does there exist a perfect matching in T
(i.e., a subset M � T of m triples such that each element of X occurs uniquely in a triple in M)?

This problem has been shown as NP-complete by Dyer and Frieze (1985). We reduce it to cgp in

polynomial time. Take the bipartite graph B in the definition of Planar 3DM with T and X as color

classes. Give each x 2 X a weight d(x) = -1 and each T 2 T a weight d(T ) = 3. For each T 2 T we

introduce three extra vertices sT
1 ‚ sT

2 ‚ sT
3 with weights d(sT

1 ) = �‚ d(sT
2 ) = �‚ d(sT

3 ) = -3�, for an arbitrary

0 < e < 1, and connect them by the path (T‚ sT
1 ‚ sT

2 ‚ sT
3 ), which we call the tail of T. See Figure 1 for an

example. Clearly, the resulting graph G remains planar (and bipartite). Since each x 2 X is in at most three

triples, it is easy to see that G has bounded degree 4.

Given a feasible partition to the cgp-instance, we say a group is of type i if it contains exactly i nodes

from X‚ i 2 f0‚ 1‚ 2‚ 3g and exactly one node from T . Notice that, for i = 1, 2, 3, each type i group

contributes error (3 - i) by itself, and because it covers a T -node and therefore leaves a tail-path, it

contributes indirectly an extra error e (the alternative of including one of the tail nodes into the group with

the triple node does not decrease the sum of the two errors). A type 0 group consists of a T -node only and

therefore will be combined with its tail to yield an error of 3 - e. Let yi denote the number of type i groups,

i 2 f0‚ 1‚ 2‚ 3g. Let y denote the number of X-vertices that form a group on their own. Then the feasible

solution has total error

W = y0(3 - �) + y1(2 + �) + y2(1 + �) + y3� + y: (1)

We show that there exists a perfect matching if and only if G admits a partition with total error

W = m� + (n - m)(3 - �):

Suppose M � T is a perfect matching. For every triple Ti 2 M, we create a type 3 group consisting of the

corresponding vertex Ti in G and the three vertices corresponding to its three elements. Hence y3 = m. By
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the properties of the matching all X-vertices of G are now covered, and n - m triple-vertices of G remain

uncovered. The latter necessarily form n - m type 0 groups: y0 = n - m. Insertion in Equation (1) yields

W = me + (n - m)(3 - e).

Now assume that no perfect matching exists. First, note that in any optimal solution to the cgp-instance

y = 0. Assume y > 0 and let x 2 X be such a vertex. Then every neighbor of x in T is contained in a group

of type i, with i £ 2. Therefore, adding x to any such group would decrease the cost of the solution by at

least 2(1 - e). Furthermore, every group that contains two nodes from T can be split into two groups

without increasing the cost of the solution. Now, since there exists no perfect matching, we need m + c

groups of type 1, 2, or 3, for some c ‡ 1, to cover all vertices in X. Using equations

y1 + y2 + y3 = m + c (2)

y1 + 2y2 + 3y3 = 3m (3)

we get

y3 = m - 2c + y1 (4)

y2 = 3c - 2y1 (5)

and the cost contributed to Equation (1) by type 1, 2, and 3 groups becomes equal to me + c(3 + e).

Together with the remaining n - m - c groups of type 0, the total weight becomes

m� + (n - m)(3 - �) + 2c�: -

Using the same reduction but extending the tails to length k - 1 paths with e weight on the internal

vertices and - (k - 1)e weight on the leaf proves the problem to be hard for any k ‡ 4.

cgp with k = 2 can be solved by formulating a minimum-cost perfect-matching problem. Starting from

G = (V, E), we assign a weight to the edges that is equal to the error that the pair of vertices will contribute

if chosen as a group of the partition. For each vertex v 2 V creates a shadow vertex v0 with d(v0) = 0. The

weight on the edge {v, v0} is then jd(v)j, the error if v is chosen as a single vertex group. Additionally, we

insert an edge {u0, v0} of weight 0 if and only if fu‚ vg 2 E. It is not difficult to see that a minimum-cost

perfect-matching in this graph corresponds to an optimal partition, where an edge in the matching between

a vertex and its shadow vertex signifies a single vertex group in the partition.

For k = 3 and for general, non-planar graphs, cgp is NP-hard by reduction from ordinary 3DM. In-

triguingly, for planar graphs and k = 3 the complexity is still unknown.

FIG. 1. Reduction from planar

3dm (see Definition 2): every x 2 X

corresponds to a node with weight

d(x) = - 1, whereas every T 2 T
corresponds to a node with weight

d(T) = 3. There is an edge between

nodes x 2 X and T 2 T if and only

if x 2 T . In addition to every

T 2 T , a path (T‚ sT
1 ‚ sT

2 ‚ sT
3 ) is at-

tached with weights d(sT
1 ) = d(sT

2 ) = �
and d(sT

3 ) = - 3�.
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3. DYNAMIC PROGRAMMING FOR BOUNDED TREEWIDTH

While problem cgp is NP-hard in general, as shown in the previous section, we can solve it by a

dynamic program in polynomial time if the molecule graph is a tree. Starting from the leaves, we proceed

toward an arbitrarily chosen root node. At a given node i we guess the group V0 that contains i in the

optimal solution to the subproblem induced by the subtree rooted at i and recurse on the subtrees obtained

when removing V0. Due to the size restriction jV0j £ k, we only have to consider a polynomial number of

groups.

Although the structural formula of biomolecules is not always a tree, as we will see later, it is usually still

treelike, which has already been exploited in Dehof et al. (2011). Formally, this property is captured by the

treewidth of a graph (Robertson and Seymour, 1986). The definition is as follows.

Definition 3. A tree decomposition (T, X) of a graph G = (V, E) consists of a tree T and sets Xi for

all i 2 V(T), called bags, satisfying the three following properties:

1. Every vertex in G is associated with at least one node in T :
S

i2V(T) Xi = V

2. For every edge fu‚ vg 2 E, there is an i 2 V(T) such that {u, v} 4 Xi.

3. The nodes in T associated with any vertex in G define a subtree of T.

The width of a tree decomposition is maxijXij - 1. The treewidth of G is the minimum width of any tree

decomposition of G.

In this section, we propose a tree decomposition-based dynamic program for problem cgp, whose

running time grows exponentially with the treewidth of G. Therefore, a tree decomposition of small width

is crucial for the efficiency of our approach. Unfortunately, computing a tree decomposition of minimum

width is NP-hard (Arnborg et al., 1987). However, for the class of r-outerplanar graphs, an optimal tree

decomposition can be determined in time O(r � n) (Alber et al., 2005). A graph is r-outerplanar if, after

removing all vertices on the boundary face, the remaining graph is (r - 1)-outerplanar. A graph is 1-

outerplanar if it is outerplanar, that is, if it admits a crossing-free embedding in the plane such that all

vertices are on the same face. Interestingly enough, most molecule graphs of biomolecules are r-outerplanar

for some small integer r. For example, Horváth et al. (2010) have observed that 94.3% of the molecules in

the National Cancer Institute (NCI) database (http://cactus.nci.nih.gov/) are 1-outerplanar. Even more,

every r-outerplanar graph has treewidth at most 3r - 1 (Bodlaender, 1998). Therefore, not surprisingly,

Yamaguchi et al. (2003) observed that out of 9,712 chemical compounds in the kegg ligand database

(Goto et al., 2002), all but one had treewidth between 1 and 3, with a single molecule having treewidth 4. In

fact, among the molecules considered here, the maximal treewidth was 2. As a result, our tree decom-

position-based dynamic program found an optimal charge group partitioning in well under one second.

Let (T, X) be a tree decomposition of width ‘ for graph G = (V, E). The high-level idea of the algorithm is

as follows (Fig. 2). For an arbitrarily chosen root i of the tree decomposition, we guess the groups that

intersect Xi, denoted by the dashed lines in the figure. After removing these groups, G falls apart into

connected components, denoted by the filled regions in the figure. By the properties of a tree decompo-

sition, these connected components will correspond one-to-one to the subtrees of the tree decomposition

FIG. 2. Illustration of the tree decomposition-

based dynamic programming algorithm. A graph

G falls apart into connected components (gray

regions) by removing the groups (dashed lines)

that intersect bag Xi.
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obtained by removing bags that became empty. Recursing on the roots of these new subtrees yields the

overall optimal solution.

Without loss of generality we assume that T has at most n : = jV j vertices and depth O( log n)
(Bodlaender, 1989), with r being the root of T. In the following, we let Vi =

S
j2Ti

Xj, where Ti denotes the

subtree rooted at i, and write V(Ti) for the set of nodes in Ti. We define an extension of a partition of a

vertex set V1 4 V with nodes in V2yV1 into connected subgraphs of G of size k at most:

Definition 4. For vertex sets V1 4 V2 4 V, set LG(V1‚ V2) contains all sets V 2 2V2 with

V1 �
S

V 02V V 0, all sets in V being disjoint, and all V 0 2 V satisfying: (i) G[V0] is connected, (ii) jV0j £ k,

and (iii) V1 X V0s ;.

Furthermore, by r(S) we denote the root of a subtree S of T, and for any node i in T and any vertex set

A 4 V we denote by S(i‚ A) the set of trees, corresponding to the connected components of Ti[ j 2 V(Ti) j
XjyA 6¼ ;] whose roots are not a descendant of another subtree in S (i.e., there are no Si‚ Sj 2 S for which

Vr(Si) � Vr(Sj)). With a slight abuse of notation, for sets A 4 V and V � 2V we will write A [ V instead ofS
V 02V V 0 [ A, when the meaning is clear from the context. Then for any node i of T and any subset A 4 V,

the cost of an optimal solution to cgp on graph G[ViyA], denoted by cgp(i, A), can be described by the

recurrence

cgp(i‚ A) = min
V2LG(XiyA‚ViyA)

c(V) +
X

S2S(i‚ A[V)

cgp(r(S)‚ A [ V)

( )
‚ (6)

which also holds in the base case where S(i‚ A [ V) = ;, in particular when i is a leaf of T. The optimal

partition has cost cgp(r, ;). We can solve the recurrence relation (Eq. 6) using dynamic programming.

Theorem 2. The cost of an optimal solution to cgp on a graph of treewidth ‘ and maximum degree d

can be computed in time n � O(e2k‘4d4k - 2 � log n)‘.

Proof. Let (T, X) be a tree decomposition of G of width k and depth O( log n). Consider an arbitrary

node i in T and a subset A 4 V, for which XiyA s ;. We first observe that

jLG(XiyA‚ ViyA)j � ekd2k - 1(‘+ 1)2

(d - 1)k

� �‘+ 1

: (7)

Indeed, for each partition Y = fY1‚ . . . ‚ Yhg of XiyA, the number of possible extensions in LG(XiyA‚

ViyA) can be bounded as follows. For j = 1‚ . . . ‚ h, let Bj be the set of vertices at distance at most k - 1

from Yj in the graph Gj = G[Viy(A W Xi) W Yj] (this set can be found by contracting Y j to a single vertex yj

and performing BFS in Gj starting from yj). Each possible extension is then given by a family of pairwise-

disjoint sets Z1‚ . . . ‚ Zh, where Zj 4 Bj, G[Zj W Yj] is connected and jYj W Zjj £ k. Since the degree of each

vertex is at most d, it follows that jBjj £ jYjjdk - 1. Consequently, the total number of choices of sets Zj is at

most (‘ + 1)ekd2k - 1/(k(d - 1)) (and all these choices can be enumerated in time O(d2kk2(‘ + 1)2) and space

O(d2k(‘ + 1)2)) (see Uehara, 1999). Since h £ ‘ + 1, the overall number of choices we consider is bounded

by Equation (7).

Since every V considered in Equation (6) intersects XiyA (requirement 3), and due to the properties of

a tree decomposition and the connectivity of all parts V 0 2 V (in G), the induced subgraph

Ti[ j 2 V(Ti) j Xj \ V 0 6¼ ;], for all V 0 2 V, is a subtree of Ti rooted at i. Keeping this crucial observation in

mind, let us focus our attention on a particular node i in T, and bound the number of sets A that we need to

consider on the left-hand side of Equation (6). To this end, it is convenient to consider the computation

tree T for Equation (6) (that is, the recursion tree obtained when solving Eq. (6)) in a top-down fashion.

We can label each node in this tree by (j, A), where j is a node in T and A is a subset of V. The root of T is

(r, ;), and the children of node (j, A) are labeled by the elements of the set f(r(S)‚ A [ V) : S 2 S
(i‚V)‚V 2 LG(XiyA‚ ViyA)g.

Consider node (i, A) in T, and let (j1‚ A1)‚ . . . ‚ (jh‚ Ah) be its ancestors. It is clear that every vertex v 2 A

belongs to exactly one connected component (group) V0 that originated at some ancestor

(jr‚ Ar)‚ i:e‚ v 2 V 0 2 V 2 LG(Xjr yAr‚ Vjr yAr); we say, in this case, that ancestor (jr, Ar) contributes to

CHARGE GROUP PARTITIONING 193



(i, A). Since XiyA s ; [by our assumption that (i, A) appears in the computation tree], it follows by our

observation above that the number of ancestors that contribute to (i, A) is at most ‘ (since each such

ancestor contributes at least one component that has a nonempty intersection with Xi). In other words, A

can be partitioned into at most ‘ parts, such that each part belongs to a connected component that

originated at some ancestor of (i, A), and hence, jAj £ k‘. The number of choices for the contributing

ancestors is at most depth(T )‘. Using an argument similar to the one used to derive Equation (7), we can

conclude that for each vertex v in one of the chosen ancestors, the number of connected components

originating at v is at most ekd2k - 1/(k(d - 1)), and thus we obtain (ekd2k - 1‘ � depth(T)=(k(d - 1))‘ for the

total number of choices for A. For each such choice we have to evaluate a number of sets V bounded by

Equation (7), whose properties 1–3 can be verified in time O(n). Determining the roots of subtrees in

S(i‚ A [ V) takes time O(n‘). -

Additionally storing, along with each entry cgp(i, A), the partition V 2 LG(XiyA‚ ViyA) minimizing the

right-hand side in Equation (6), allows us to finally reconstruct a charge group partition that gives the

optimal cost.

4. EXPERIMENTAL EVALUATION

We implemented the dynamic programming method for bounded treewidth in C + + using the lemon

graph library (http://lemon.cs.elte.hu). We used libtw (www.treewidth.com/) to obtain bounded treewidth

decompositions of the input molecules. In our implementation, we solve the dynamic programming re-

currence Equation (6) in a top-down fashion by employing memoization.

4.1. Hydration-free energy of amino acid side chains

We tested the quality of charge group assignments by comparing the calculated free energies of solvation

in water of a set of 14 charge-neutral amino acid side chain analogs to experimental values, which are

denoted by DGhyd,exp (Gerber, 1998; Oostenbrink et al., 2004). For each analog, we used the gromos 53A6

covalent and van der Waals parameters (Oostenbrink et al., 2004) and partial atomic charges symmetrized

by the atb (Malde et al., 2011). A united-atom representation is used for aliphatic carbon groups. For

comparison, we also include the manually parametrized solution that the gromos 53A6 force field provides

(Oostenbrink et al., 2004). The topologies are derived from the amino acid structures by truncating at the

Ca–Cb bond. For simplicity, we refer to these analogs by their parent amino acid.

Using the gromacs 4.5.1 package (Berendsen et al., 1995), we computed the free energy of hydration

DGhyd,calc using the thermodynamic integration method (Beveridge and DiCapua, 1989). A series of

simulations were performed at a constant pressure of p = 1 bar and a constant temperature T = 298.15 K.

The free energy was calculated for the process A / B, which involved switching off all nonbonded

interactions of the solute in water and in the gas phase. The hydration-free energy is calculated as

DGhyd,calc = DGAB,solution -DGAB,gas (Villa and Mark, 2002). The simulations were performed in cubic

periodic boxes of length L & 3 nm. Depending on the analog, the solvated system contained approximately

900 SPC (Villa and Mark, 2002) water molecules.

As described in the introduction, neutral charge groups lead to more accurate simulation results. In our

problem definition, we aim to identify a charge group assignment in which the constituent charge groups

have small residual error, which is the absolute difference between the sum of the formal charges and the

sum of the partial charges of the atoms in the charge group. To ensure neutral charge groups where

possible, we adjust the partial charges slightly by redistributing the residual error of every charge group

over its atoms.

The results are presented in Table 1 and Figure 3. The gromos 53A6 simulation results (ffG53A6 in

Table 1) for the studied analogs show good agreement with experiment, which is not surprising as the force

field has been parametrized to reproduce the hydration-free energy (Oostenbrink et al., 2004). Using the

atb charge group assignment solution (ATB in Table 1) leads to slightly larger deviations from experiment,

but the average deviation is also within the experimental error of approximately 5 kJ/mol (Malde et al.,

2011). Although the current method leads to values close to those obtained experimentally, they deviate

slightly more from experiment than the atb values.
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4.2. Adenosine tri-phosphate

Although showing good performance on the amino acid side chains, the atb method may lead to

unacceptably large charge groups, in particular for large highly charged molecules. An example is the

cofactor ATP, for which the atb combined all phosphate groups and part of the ribose and nucleotide ring

systems into a single charge group (Fig. 4c). In Figure 4b, the gromos 53A6 charge group assignment is

given. For comparison, our solution is presented in Figure 4a and shows that the phosphate groups have

been sorted in separate charge groups in agreement with the 53A6 assignment and in line with chemical

intuition where one expects functional group such as phosphate, amino, and hydroxyl moieties to form

separate charge groups.

Table 1. Comparison of Hydration-free Energies DGhyd of Amino Acid (AA) Analogs

DGhyd,calc

AA analog DGhyd,exp ffG53A6 ATB k = 5

Asn - 40.6 - 42.7 (2.1) - 40.5 (0.1) - 47.0 (6.4)

Asp - 28.0 - 30.1 (2.1) - 29.1 (1.1) - 28.6 (0.6)

Cys - 5.2 - 4.9 (0.3) - 7.0 (1.8) - 7.1 (1.9)

Gln - 39.4 - 40.4 (1.0) - 35.9 (3.5) - 35.9 (3.5)

Glu - 27.0 - 27.0 (0.0) - 28.2 (1.2) - 32.1 (5.1)

His - 42.9 - 44.8 (1.9) - 43.7 (0.8) - 40.9 (2.0)

Ile 8.7; 8.8 9.1 (0.3) 6.3 (2.5) 6.7 (2.1)

Leu 9.4; 9.7 10.8 (1.2) 7.4 (2.2) 7.1 (2.5)

Lys - 18.3 - 18.1 (0.2) - 7.2 (11.1) - 7.2 (11.1)

Met - 6.2 - 7.4 (1.2) 2.5 (8.7) 2.6 (8.8)

Phe - 3.1 - 1.3 (1.8) 1.8 (4.9) 0.6 (3.7)

Trp - 24.7 - 25.9 (1.2) - 20.9 (3.8) - 19.7 (5.0)

Tyr - 26.6 - 26.9 (0.3) - 30.1 (3.5) - 39.5 (12.9)

Val 8.2 8.5 (0.3) 8.0 (0.2) 8.0 (0.2)

Average (1.1) (3.2) (4.7)

All free-energy values are given in kJ/mol. When two values separated by a semicolon are given, two experimental values were

found. The absolute free-energy differences between simulation outcomes and the experimental values are given in parentheses. The

average values of these differences are given in the bottom line. ‘‘ffG53A6’’ denotes results using the default gromos force field

parameters for the analog, ‘‘ATB’’ denotes those using the atb charge group assignment, ‘‘k = 5’’ denotes those using our method. We

performed a two-tailed paired Student’s t-test between the distributions given in column 6 (ATB) and column 8 (k = 5) resulting in a

p-value of 0.2867. The difference in hydration-free energy differences is thus not statistically significant.

FIG. 3. Calculated DGhyd values

versus experimental ones, showing

the effect of the charge group as-

signment on the simulated hydration-

free energy. The labels in the

legend are the same as in Table 1.

The solid line represents perfect

agreement with experiment, dotted

lines indicate the –5 kJ/mol ap-

proximate experimental error.
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5. DISCUSSION

In this work, we have formally introduced the charge group partitioning problem that arises in the

development of atomic force fields, and more generally, in the identification of functional groups in

molecules. The problem is to assign atoms to charge groups of size at most k and such that for every charge

group the sum of its partial charges is close to the sum of its formal charges. We showed NP-hardness

for k ‡ 4 and proposed and implemented an exact algorithm capable of solving practical problem instances

to provable optimality. With this combination of rigorous definition and exact solution approach, we

FIG. 4. Charge group assignments for adenosine tri-phosphate (ATP) at pH 5.0. The total molecular charge is -3.

The partial charges are shown in gray. (a) Our optimal assignment according to Definition 1, obtained with k = 5, (b)

gromos 53A6 assignment, and (c) assignment by the atb. Note that the C–H segments indicated by the rounded boxes

are considered as single atom types in the gromos assignment, whereas they comprise two atoms in the other

assignments.
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have made a first step toward formalizing and quantifying some of the aspects that make up ‘‘chemical

intuition’’.

Algorithmically, we showed that the case k = 2 is solvable in polynomial time. In addition, we have

presented a polynomial-time algorithm for bounded charge group size in cases where the molecular graph is

a tree. Based on the observation that molecular graphs have bounded treewidth in practice and exploiting

further properties such as outerplanarity and bounded degree, we developed a practical dynamic pro-

gramming algorithm, which is based on a tree decomposition of the graph corresponding to the chemical

structure of interest. An interesting open question is to settle the complexity status for the case k = 3.

Since our method relies on point charges obtained from quantum mechanical calculations, the quality of

charge group assignments and subsequently of simulation outcomes depends on the accuracy of these

calculations. However, our experiments have shown that taking into account charge group size and neu-

trality already gives good results, especially for large highly charged molecules such as ATP, where other

methods fail to produce meaningful solutions. Still, the greedy partitioning algorithm built into the atb

performs better on the set of smaller amino acid side chain molecules, which is due to the fact that this

method exploits additional chemical knowledge. It is thus able, for instance, to deal with a symmetric

molecule such as the tyrosine side chain, where the charge group assignment of our new method resulted in

a large deviation because we do not consider symmetry in our problem definition. We will, therefore,

investigate how to incorporate symmetry into our approach, which is not trivial as symmetry may interfere

with the optimal substructures required by the dynamic program. In addition to symmetry, we plan to

integrate other aspects of chemical intuition. For example, we will investigate the effect of bounding the

error per charge group. Additionally, we plan to integrate constraints that take spatial geometry into

account rather than using the number of atoms as a measure for charge group size. We would like to stress

that only through a proper problem definition, together with a method capable of obtaining provably

optimal solutions, one is able to make progress in answering the question how a good charge group

partition should look like.
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