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Abstract
MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis
of small differences between nested structural equation models (SEMs). In their framework, the null
and alternative hypotheses for testing a small difference in fit and its related power analyses were
defined by some chosen root-mean-square error of approximation (RMSEA) pairs. In this article, we
develop a new method that quantifies those chosen RMSEA pairs and allows a quantitative
comparison of them. Our method proposes the use of single RMSEA values to replace the choice of
RMSEA pairs for model comparison and power analysis, thus avoiding the differential meaning of
the chosen RMSEA pairs inherent in the approach of MacCallum et al. (2006). With this choice, the
conventional cutoff values in model overall evaluation can directly be transferred and applied to the
evaluation and power analysis of model differences.
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Comparison of nested structural equation models (SEMs) was traditionally based on the null
hypothesis that competing models have the same fit in population. By far, the classical normal
theory-based likelihood ratio (NTLR) test (e.g., Jöreskog, 1971; Steiger, Shapiro, & Browne,
1985) is the most common method used for testing this null hypothesis. Unquestionably, the
power of the NTLR test to detect any difference in fit between competing models should be
an important issue for this null hypothesis testing.

Despite the popularity of this approach, MacCallum, Browne, and Cai (2006) suggested that
the traditional null hypothesis that competing models have the same fit in population is always
false and will be rejected by the NTLR test in practice when the sample size (N = n + 1) is large
enough. Instead, they advocated that a null hypothesis of testing some small difference in fit
between nested models should replace the traditional one for comparison of SEMs. Under this
new null hypothesis, the restricted model can be selected if the NTLR test doesn't detect a
large enough difference in fit between two nested models. Similarly, for this type of null
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hypothesis testing, the power of the NTLR test to detect a large enough difference in fit between
two nested models should be an important issue, too.

MacCallum et al. (2006) proposed a unified approach to such model comparison and power
analysis. In their approach, the null and alternative hypotheses needed for model comparison
and power analysis are defined by pairs of root-mean-square error of approximation (RMSEA;
Browne & Cudeck, 1993; Steiger & Lind 1980) values chosen for competing models. Under
these newly defined hypotheses, the power of the NTLR test and the comparison of models by
the NTLR test can be investigated.

In this article, we first review this new approach to model comparison and power analysis.
Then we propose a new method to quantify the RMSEA pairs chosen for the model comparison
and the power analyses in MacCallum et al. (2006). By this new method, the choice of single
RMSEA values is suggested to replace the choice of RMSEA pairs to define the null and
alternative hypotheses needed for model comparison and power analysis. Our new method is
then compared with the choices of RMSEA pairs by MacCallum et al. (2006) and applied to
some empirical examples in the literature, followed by a discussion at the end of the article.

An Approach to Model Comparison and Power Analysis
Let us assume for the moment that the model is estimated by the normal theory-based maximum
likelihood (ML) discrepancy function, which is defined as

where S is the sample covariance matrix, Σ̂ is the covariance matrix implied by the model, and
q is the number of observed variables. Let two models M1 and M2 have degrees of freedom
ν1 and ν2 respectively and M2 be nested in M1. Let F̂1 and F̂2, respectively, be the minimized
FML values of M1 and M2 in sample. Let F1 and F2 be the corresponding population values of
F̂1 and F̂2 respectively. Suppose for the moment that the data are normal, and two nested models
are not badly specified and satisfy the so-called population drift assumptions (see Steiger et
al., 1985, for detail). The well-known NTLR statistic TML = nF̂2 − nF̂1 will asymptotically

follow the noncentral  distribution with degrees of freedom ν2 − ν1 and
noncentrality parameter nF2 − nF1.

In SEM, analysis of statistical power of TML to reject H0 : F2 − F1 = 0, the null hypothesis of
no difference in fit between nested models, is a traditional issue. For this power analysis,
because the value of F2 − F1 is generally unknown, we need an alternative hypothesis H1 :
F2 − F1 = δ, where δ is a positive chosen value. Then TML will have an approximate central

 distribution with degrees of freedom ν2 − ν1 under H0 and an approximate noncentral

 distribution with degrees of freedom ν2 − ν1 and noncentrality parameter nδ under
H1. Let us use α = .05. The critical value for TML to reject H0 will be the 95 percent quantile

of the central  distribution. Let us denote this critical value by . The approximate

power of TML to reject H0 under H1 is the probability of TML greater than  under H1.
For this power analysis, given ν2 − ν1, n, and α, the distribution of TML and the critical value

 are fixed under H0. However, a value must be chosen for δ to define the noncentral

 distributions of TML under H1.
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MacCallum et al. (2006) defined the value of δ as follows. Let r1 and r2 denote the population

RMSEAs of M1 and M2 respectively and be defined as  and . Then F2
− F1 can be expressed as

(1)

Mimicking the expression of F2 − F1 in (1), MacCallum et al. (2006) defined

(2)

where r1δ and r2δ are some RMSEA values chosen for M1 and M2, respectively, to define δ in
H1 for the power analysis.

MacCallum et al. (2006) stated that H0 : F2 − F1 = 0 is too restrictive and always would be
false in practice. As an alternative, they advocated the good enough principle (Serlin & Lapsley,
1985) for model comparison, and proposed a new null hypothesis of the form

(3)

where δ* is some chosen small positive value. They argued that this null hypothesis of small
difference in fit between nested models is more realistic than the null hypothesis of no
difference in fit between nested models for SEM model comparison in practice. Under this null
hypothesis, M2 can be selected as long as the difference in fit between M1 and M2 is small
enough. Under this null hypothesis, the critical value for TML to reject H0 now becomes the 95

percent quantile of the noncentral  distribution and can be denoted by . If

TML is greater than , M1 would be preferred. Otherwise, M2 would be preferred.
MacCallum et al. (2006) defined

(4)

where r1δ* and r2δ* are some RMSEA values chosen for M1 and M2, respectively, to determine
the value of δ*.

As with the power of rejecting H0 : F2 − F1 = 0, the statistical power of TML to reject H0 : F2
− F1 ≤ δ* should be an important issue for testing the null hypothesis H0 : F2 − F1 ≤ δ*. Notice
that the power of TML in this context no longer refers to the probability of detecting any
difference in fit between competing models as in traditional power analysis. Instead, it now
becomes the probability of detecting a large enough difference in fit between models.

For this type of power analysis, an alternative hypothesis H1 : F2 − F1 = δ** is needed. Under

this alternative hypothesis, TML has an approximate noncentral  distribution. The
approximate power of TML to reject H0 : F2 − F1 ≤ δ* is the probability of TML greater than

 under the alternative hypothesis. MacCallum et al. (2006) again defined δ** in
terms of a RMSEA pair as

(5)
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where r1δ** and r2δ** are some RMSEA values chosen for M1 and M2, respectively, to
determine δ**. Notice that δ** here must be greater than δ* for this type of power analysis.

A New Method for the Choice of RMSEAs
From the description above, it is clear that the choice of RMSEA pairs, such as (r1δ, r2δ) in
(2), (r1δ*, r2δ*) in (4), and (r1δ**, r2δ**) in (5), is crucial to the power analyses and model
comparison methodology proposed in MacCallum et al. (2006). In this article, we propose a
way to quantify those RMSEA pairs chosen for model comparison and power analysis and
suggest a new method to replace the choice of RMSEA pairs to define δ, δ* or δ** across
models and conditions.

We use δC to represent the chosen value for δ, δ* or δ**, and use (r1C, r2C) to represent the
chosen values for the defining RMSEA pairs in (2), (4), and (5). Then the equations in (2), (4),
and (5) can be expressed in a general equation, that is,

(6)

We use Figure 1 to illustrate our idea. Let us assume for moment that ν1 = 20 and ν2 = 22. Let
the horizontal and vertical axes in Figure 1 represent r1C and r2C respectively. Then in Figure
1 the area of any reasonable (r1C, r2C) pair to define δ, δ* or δ** should be above Line 0, where

Line 0 is the line  with δC = 0. This is because the minimum value of F2 −
F1 is zero and δC defined by (r1C, r2C) must be greater than zero. In addition, Line 0 clearly

should be lower than the diagonal line since M2 is assumed to be nested in M1 and .

Let p1 denote the point (r1C, r2C) = (.06,.08) in Figure 1 and be our choice of RMSEA pair,
for example for (r1δ**, r2δ**). There should exist one line, Line A in Figure 1, which consists
of a series of points (r1C′, r2C′) in Figure 1 and satisfying the following equality

(7)

Similarly, when the point p2 = (.07,.10) is chosen for (r1δ**, r2δ**), Line B exists in Figure 1
by (7). In fact, to any RMSEA pair chosen for such as (r1δ, r2δ) in (2), (r1δ*, r2δ*) in (4), and
(r1δ**, r2δ**) in (5), there will always exist a line in the figure consisting of infinitely many
RMSEA pairs satisfying (7). Let us call this line the equi-discrepancy line because all RMSEA
pairs on this line have the same value of δC and represent the same degree of discrepancy
between two nested models.

It is not hard to see that Line 0 is also a line satisfying (7), where all RMSEA pairs represent
the same zero discrepancy between nested models. Suppose that the points on Line 0 are chosen
as (r1C, r2C) for model comparison. The null hypothesis of no difference in fit between nested

models can be redefined as  and can be interpreted as
a null hypothesis of whether the true RMSEA pair (r1, r2) is on Line 0 or not. In addition,

combining the identity  in (1) with (3) and (4), we obtain a null hypothesis
equivalent to (3), that is,

(8)
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By (8), testing the null hypothesis of small difference in fit between nested models can be
interpreted as testing if the true RMSEA pair (r1, r2), which we don't know exactly, is inside
the area between the equi-discrepancy line defined by the chosen RMSEA pair (r1δ*, r2δ*)
and Line 0 or not. When the chosen RMSEA pair (r1δ*, r2δ*) represents a higher equi-
discrepancy line, the area of testing is larger, δ* is larger, and a greater discrepancy is allowed
between nested models. In contrast, when (r1δ*, r2δ*) represents a lower line, the area of testing
is smaller, δ* is smaller and less discrepancy is allowed.

This is also the case for power analysis. When the chosen RMSEA pair (r1C, r2C) for defining
δ or δ** in the alternative hypothesis represents a higher equi-discrepancy line, TML will have
more power of rejection given n, ν2 − ν1, α and a fixed null hypothesis. Otherwise, it will
have less power of rejection.

Furthermore, no matter whether a RMSEA pair is chosen for model comparison or power
analysis, its corresponding equi-discrepancy line in Figure 1 by (7) will cross the vertical axis

and have a point  for which . In Figure 1, for example,  for

Line A, and  for Line B, illustrate this phenomenon. Combining

 with (6) and (7), we obtain

(9)

By (9), any discrepancy defined by a chosen RMSEA pair (r1C, r2C) for model comparison or
power analysis is equivalent to a discrepancy between the saturated model and a close-fitting

model with degrees of freedom ν2 and true . For example, p1 on Line A can be
considered to represent an overall discrepancy of a model with degrees of freedom 22 and true
RMSEA=.056 against the saturated model, while for p2 on Line B, this close-fitting model has
degrees of freedom 22 and a true RMSEA=.074. By (9), we translate the choice of (r1C, r2C)

for model comparison and power analysis into an equivalent choice of  for a close-fitting
reference model with degrees of freedom ν2.

Given this equivalence, we can be free from a two-dimensional choice of (r1C, r2C) and instead

define δ, δ* or δ** for model comparison and power analysis based on the choice of . By

definition, RMSEA indicates discrepancy per degree of freedom. Choosing  to define δ,
δ* or δ** would retain the same meaning for δ, δ* or δ** in spite of the change of ν1 or ν2.
Specifically, even though the value of δ, δ* or δ** and the shape of the corresponding equi-
discrepancy line may change with ν1 or ν2 by (7) and (9), the δ, δ* or δ** defined by a specific

 means the same average discrepancy over degrees of freedom across studies.

In contrast, this is not the case when a two-dimensional choice of (r1C, r2C) is used for defining
δ, δ* or δ**. For example, MacCallum et al. (2006) selected r1δ* = .05 and r2δ* = .06 for δ*
in (3) to test small difference between models for two published empirical studies: Joireman,
Anderson, and Strathman (2003) and Dunkley, Zuroff, and Blankstein (2003). In Joireman et
al. (2003), ν1 = 10 and ν2 = 12. By (9), with r1δ* = .05 and r2δ* = .06, the corresponding

. In Dunkley et al. (2003), ν1 = 337 and ν2 = 338. With

r1δ* = .05 and r2δ* = .06,  correspondingly. By
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our method, we find that the values of δ* defined by r1δ* = .05 and r2δ* = .06 as in MacCallum

et al. (2006) vary in terms of  and hence have different meaning across these two studies.
The same phenomenon could happen to δ or δ** when a constant RMSEA pair (r1C, r2C) is
selected for the power analyses across studies.

In addition to eliminating this differential meaning of RMSEA pairs inherent in the approach

of MacCallum et al. (2006), the choice of  also allows us to utilize the RMSEA cutoff criteria,
established in SEM for a close-fitted reference model, for our model comparison and power
analyses. It is well-known that RMSEAs equal to .056 or .074 may represent discrepancies
between some mildly misspecified models and the corresponding saturated models. Thus, p1

and p2 by their corresponding  equal to .056 and .074 respectively can be considered to
allow too much discrepancy to define δ* in (3) for small difference evaluation. In SEM, .05 is
the widely used RMSEA cutoff value for model close fit (e.g., Browne & Cudeck, 1993). It

can be used as  to define δ* for model comparison.

MacCallum, Browne, and Sugawara (1996) used  to define the alternative hypothesis
and estimated the power, or the minimum N, of the likelihood ratio test to reject the exact fit
of SEM models with degrees of freedom ν2. In this article, by (9) and the equi-discrepancy

lines above, we demonstrated the connection between choices of  for model overall
evaluation and for model comparison. This connection also bridges our power analysis with

MacCallum et al. (1996). By the same rationale, we could use  to define δ in the
alternative hypothesis and then estimate the power, or the minimum N, of TML to reject the null
hypothesis of no difference in fit between nested models.

Moreover, with δ* defined by such as  in the null hypothesis, the  for defining δ**

in the alternative hypothesis should be greater than .05. With such choice of , the
corresponding δ** may represent some degree of discrepancy between a mildly misspecified

model and the saturated model. MacCallum et al. (1996) used  for the alternative
hypothesis and estimated the power of the likelihood ratio test to reject model close fit.

Similarly, we could use  to define δ** and then estimate the power of TML to reject the
null hypothesis of a small difference in fit between nested models.

Of course, we need to emphasize here that the cutoff values above borrowed from the model
overall evaluation are merely guidelines. We have no intention to insist any constant RMSEA
value for all situations. For example, some other values less than .05 such as .033 or .039

mentioned above can be selected as  for model comparison too. MacCallum et al. (2006)
provided a good discussion on how these cutoff criteria for model overall evaluation may not

consistently yield valid conclusions in practice. In total, the choices of  for model difference
evaluation and power analysis still depend upon the scrutiny of investigators for their particular
application. However, no matter what values they choose, our method is still valid and there
would be no contradiction between their choices and our method.

Another interesting point we should mention here is that the interval between Line 0 and any
other equi-discrepancy line always shrinks as r1C increases as in Figure 1. Substantively, this
means that under the same tolerable discrepancy for two nested models, the model comparison
as in (8) allows more restriction or parsimony (larger r2 − r1) when the general model contains
less misspecification (smaller r1), or equivalently, less restriction (smaller r2 − r1) when the
general model becomes less trustable (larger r1). Although we do not know the values of r1
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and r2, the model comparison as in (8) automatically sets a corresponding standard for r1 and
r2 by the equi-discrepancy lines.

Relevant Developments
The equi-discrepancy line above is defined by a series of infinite equivalent alternatives to an
arbitrary pair of RMSEA values. In fact, the equivalence of infinitely many RMSEA pairs is
not a completely new idea. MacCallum, Lee, and Browne (2010) used a series of infinite
alternatives to an arbitrary RMSEA pair to define their isopower contour. For any RMSEA
pair on the isopower contour, the power of the likelihood ratio statistic to reject model overall
fit (either exact or close fit) remains the same. The isopower contours in their Figures 9 and
10 look similar to our equi-discrepancy lines in Figure 1.

However, we need to point out that the equivalence of their infinite alternatives is defined by
a power calculation which requires (among other things) a choice of discrepancy function, a
test statistic, the distribution of the test statistic under the null hypothesis, the distribution of
the test statistic under the alternative hypothesis, sample size N, and a choice of α. Each point
on the isopower contour represents the power of a statistic for model overall evaluation. On
the other hand, the equivalence of our infinite alternatives requires none of these and is defined
by (7) only. The points on our equi-discrepancy lines do not yield a plot for the power of a test
statistic without further information.1 Although coming from different directions, the idea of
the equivalence of infinitely many RMSEA pairs is shared by the two studies and may be
applicable to other SEM contexts beyond these studies in the future.

Comparison and Application to Issues in SEM
Our new method quantifies the RMSEA pairs chosen for the model comparison and the power
analyses proposed by MacCallum et al. (2006) and allows discrepancies defined by different
RMSEA pairs to be compared with each other quantitatively in a common metric. By our

method, the choice of a single  is suggested to replace the choice of a RMSEA pair (r1C,
r2C) for the model comparison and the power analyses proposed by MacCallum et al. (2006).
In this section, we reexamine the RMSEA pair choices for the examples in MacCallum et al.

(2006) using our method and apply our choice of  to issues in SEM.

Quantification of the RMSEA pair choices
MacCallum et al. (2006) suggested to use a large set of pairs of r1C and r2C in a reasonable
range to define δ or δ** for power analysis. For example, in their Table 1 and Table 2, given
ν1 = 20 and ν2 = 22, MacCallum et al. (2006) selected r1δ from .03 to .09 and r2δ from .04
to .10 to define δ in the alternative hypothesis and estimated the power, or minimum N, of
TML to reject the null hypothesis of no difference in fit between nested models. We apply our

method to compare those choices and use (9) to calculate the  values for the pairs of r1δ and
r2δ selected by MacCallum et al. (2006) in their tables. The R code used for the calculation is
given in the Appendix and the calculated values are presented in our Table 1.

In our Table 1, eight pairs of r1δ and r2δ have  values less than .05, while all other twenty

pairs have  values greater than .05. By our method, we would say that for this power analysis
eight pairs of r1δ and r2δ suggested by MacCallum et al. (2006) may represent a discrepancy
between a close-fitting model and the saturated model while all other twenty pairs may
represent a larger discrepancy. Furthermore, in our Table 1, with the same ν1 and ν2, the

1To further distinguish the difference between the isopower contour and our equi-discrepancy line, please see the Appendix.
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RMSEA pairs at the higher end of the RMSEA scale such as (.08,.10) have larger  values
and represent larger discrepancies than the pairs at the lower end of the RMSEA scale with the
same difference of r1δ and r2δ such as (.03,.05) or (.04,.06). This phenomenon in turn accounts
for the increasing statistical power in detecting model difference or the decreasing minimum
N required for the same power along the diagonal bands of Table 1 and Table 2 in MacCallum
et al. (2006).

The choice of  for issues in SEM

The choice of  was recommended in this article to replace the choice of RMSEA pairs to
define δ, δ* and δ** for model comparison and power analysis. MacCallum et al. (2006)
selected r1δ = 0.4 and r2δ = .06 to define δ in the alternative hypothesis H1 : F2 − F1 = δ and
conduct power analysis for two published empirical studies (Manne & Glassman, 2000; Sadler
& Woody, 2003). In Sadler and Woody (2003), ν1 = 24 and ν2 = 27. In Manne and Glassman

(2000), ν1 = 19 and ν2 = 26. Suppose that we choose a single value  to define δ for

power analysis. By (9),  for Sadler and Woody (2003) and

 for Manne and Glassman (2000). Given these δ s, we can calculate
the power of TML to reject H0 : F2 − F1 = 0 in each study. As mentioned before, TML would

have an approximate central  distribution under H0 : F2 − F1 = 0 and have an approximate

noncentral  distribution under H1 : F2 − F1 = δ. With α = .05, this power is the

probability of TML to exceed the critical value  under H1 : F2 − F1 = δ. In Sadler and
Woody (2003), ν2 − ν1= 3 and N = 112. Given α = .05, the power is .62. In Manne and
Glassman (2000), ν2 − ν1= 7 and N = 191. Given α = .05, the power is .73. The steps of
power calculation for the two studies are coded in R and given in the Appendix.

Both Sadler and Woody (2003) and Manne and Glassman (2000) failed to detect a significant
difference between their nested models by TML. As a result, both studies selected the restricted
models after comparison. Given the power analyses above, the nonsignificance of TML in both
studies, as mentioned by MacCallum et al. (2006), may partially be due to the moderate power
of rejection in both studies. Given this possibility, we decided to calculate the minimum N to
achieve a .80 power of rejection. With α = .05, this minimum N is the minimum sample size

that the probability of TML to exceed  under H1 : F2 − F1 = δ is equal to or greater

than .80. In Sadler and Woody (2003), given ν2 − ν1= 3 and δ defined by  above, we
find that this minimum N is 163. In Manne and Glassman (2000), given ν2 − ν1= 7 and δ

defined by  above, we find that this minimum N is 222. The steps for the calculation
of minimum N s are coded in R and given in the Appendix. As in MacCallum et al. (2006),
our minimum N s calculated here suggest that more additional subjects are needed for TML in
both studies to reach a rejection power of .80.

We demonstrated before that when the δ* in H0 : F2 − F1 ≤ δ* is defined by r1δ* = .05 and

r2δ* = .06 as in MacCallum et al. (2006), the corresponding  would be equal to .039 for
Joireman et al. (2003) and be equal to .033 for Dunkley et al. (2003). Now we instead select a

single value, for example , to define δ*. By (9),  for
Joireman et al. (2003). With ν2 − ν1= 2, α = .05 and N = 154, the critical value for rejecting

H0 : F2 − F1 ≤ δ* is . The observed value of TML = 19.13 yields a significant
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level of p < .05, indicating rejection of the null hypothesis of small difference in fit for this
study. For Dunkley et al. (2003), δ* = 338×.0332 = .368 by (9). With ν2 − ν1= 1, α = .05

and N = 163, the critical value is . The observed value of TML =3.84 yields
a nonsignificant level of p >.99, suggesting that the null hypothesis of small difference in fit
is acceptable. The steps for the calculation of critical and p -values are coded in R and given
in the Appendix.

Both Joireman et al. (2003) and Dunkley et al. (2003) observed the significance of TML when
they compared a general model with a more parsimonious and interpretable model under the
traditional approach. As a result, Joireman et al. (2003) selected the general model while
Dunkley et al. (2003) selected the parsimonious one despite the significance of TML. Like the
traditional one, our model comparison under the null hypothesis of small difference in fit
supports the choice of the general model for Joireman et al. (2003). However, for Dunkley et
al. (2003), it is different from the traditional approach and supports the parsimonious model,
the choice of the authors in their article.

For our model comparisons above, a related issue is the power of TML to reject the null
hypothesis of small difference in fit. In their example with ν1= 20 and ν2= 22, MacCallum
et al. (2006) selected r1δ** = .05 and r2δ** = .08 to define δ** in the alternative hypothesis

H1 : F2 − F1 = δ**. From our Table 1, we find the corresponding . As a result, we set

 to define δ** for our power analysis. By (9),  for

Joireman et al. (2003) and  for Dunkley et al. (2003). Given

these δ** s and the δ* s defined by  above, we can calculate the power of TML to reject
H0 : F2 − F1 ≤ δ* in the two studies. In this case, TML would have an approximate noncentral

 distribution under H0: F2 − F1 ≤ δ** and have an approximate noncentral 
distribution under H1 : F2 − F1 = δ**. With α = .05, this power is the probability of TML to

exceed the critical value  under H1 : F2 − F1 = δ**. Our steps of power calculation
for the two studies are coded in R and given in the Appendix. Our calculation shows that the
power of rejection is .35 for Joireman et al. (2003) and is 1 for Dunkley et al. (2003). Notice
that the degrees of freedom of competing models in Dunkley et al. (2003) are high. This may

explain the higher power in their study with the same . The  value may be adjusted
downward given the high degrees of freedom of their models (see p. 32 of MacCallum et al.,
2006).

Our power analysis results above strengthen the selection of the general model for Joireman
et al. (2003) and the restricted model for Dunkley et al. (2003). In Joireman et al. (2003), the
observed TML is significant even though the power for this study is just .35. In contrast, the
observed TML in Dunkley et al. (2003) is nonsignificant even though the power is 1. Given the
low power in Joireman et al. (2003), we calculate the minimum N for TML to reach a .80 power
of rejection in this study. The steps for this calculation are coded in R and given in the Appendix.
Our calculation shows that this minimum N is 555. Some additional subjects are needed for
this study to gain a desirable power.

Discussion and Recommendations
In this article, we followed the footsteps of MacCallum, Browne, and Cai (2006) and developed
a new method for conducting model comparison and power analysis consistent with the
approach of MacCallum et al. (2006). In this development, we defined an equi-discrepancy
line by equation (7). Our equi-discrepancy line reminds investigators that there always exists
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a series of infinite alternatives to their chosen RMSEA pair to equivalently define the null or
alternative hypothesis for model comparison and power analysis as in MacCallum et al.
(2006). With these infinite alternatives, testing no or a small difference between nested models
can be graphically translated or understood as testing whether the true RMSEA pair of nested
models falls on Line 0 or the region below the equi-discrepancy line in Figure 1.

Among these infinite alternatives, we also identified a unique RMSEA pair that is at the cross
of the equi-discrepancy line and the vertical axis in Figure 1. With this unique RMSEA pair,
any chosen RMSEA pair can be quantified into the RMSEA value of a reference SEM model.
Consequently, for investigators, their choices of RMSEA pairs for model comparison and
power analysis can be compared quantitatively. This comparison as in our Table 1 also provides
a reminder to investigators that the RMSEA pairs at the different parts of the RMSEA scale,
for example, (.03,.05) vs. (.08,.10) in our Table 1, would represent different discrepancies for
model comparison and have different implications for power analysis even though they have
the same difference of RMSEA values.

More importantly, given this quantification, the choice of RMSEA pairs in MacCallum et al.
(2006) now is recommended to be replaced by the choice of a single RMSEA value instead.
For model comparison and power analysis following MacCallum et al. (2006), this choice of
single RMSEA value can eliminate the differential meaning of the RMSEA pairs inherent in
the original approach of MacCallum et al. (2006). This choice also bridges the two branches
of SEM model evaluation, model overall evaluation and model difference evaluation, and
makes possible for the criteria established for model overall evaluation to be transferred and
applied to the issues of SEM model difference evaluation and power analyses.

As a result, in our new procedure illustrated in the examples above, we propose to first choose
some reasonable RMSEA values to define the null and alternative hypothesis for model
comparison and power analysis as per MacCallum et al. (2006). These choices could be made
based on some established criteria for model overall evaluation (e.g., Browne & Cudeck,
1993; MacCallum et al., 1996) or some other values upon the scrutiny of investigators. Once
these defining RMSEA values are chosen, model comparison and power analysis as in
MacCallum et al. (2006) can be conducted under the corresponding null and alternative
hypotheses as illustrated in our examples above.

Of course, as a followup to MacCallum et al. (2006), our proposed method for model
comparison and power analysis would inevitably inherit many issues encountered by
MacCallum et al. (2006). These issues include assumptions such as TML to be central or non-
central chi-square distributed, estimation methods other than the ML discrepancy function,
limitations of RMSEA cutoff criteria for practical use, different approaches to model
comparison (e.g., Satorra & Saris, 1985), etc. For all these issues, please refer to MacCallum
et al. (2006) for a thorough discussion in the context of the general framework. In addition, in
multisample SEM studies, due to constraints across groups, Steiger (1998) proposed a

modification of the definition of RMSEA. That is,  and  for
M1 and M2 respectively, where G is the number of groups. Under this definition, by dividing
the right side of (2), (4), (5) or (6) by G, our proposed method could be still valid to define the
value of δC for model comparison and power analysis in MacCallum et al. (2006). Of course,
RMSEA in this case doesn't have the interpretation as discrepancy per degree of freedom as
pointed out by MacCallum et al. (2006).

MacCallum et al. (2006) pointed out that their framework can be generalized into some fit
indices other than RMSEA. Correspondingly, our developments are also applicable to those
fit indices. For example, let γ1C and γ2C denote the values of Steiger's (1989) γ chosen for
M1 and M2 respectively. Then δC can be defined as δC = (p/2) · (1/γ2C − 1/γ1C) (see Kim,
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2005). Similarly, let Mc1C and Mc2C denote the values of McDonald's (1989) fit index chosen
for M1 and M2 respectively. Then δC can be defined as δC = −2log(Mc2C) + 2log(Mc1C) (see
Kim, 2005). Following the same logic for RMSEAs in (7) and (9), we obtain

and

where γ1C and γ2C′ constitute infinite alternatives to γ1C and γ2C, Mc1C′ and Mc2C′ constitute

infinite alternatives to Mc1C and Mc2C, and  and  are the corresponding values of
Steiger's γ and McDonald's fit index for the reference model. Again, by these infinite
alternatives, different equi-discrepancy lines can be drawn. By these equations, the choice of

 and  can replace the choice of pairs of Steiger's γ and McDonald's fit index to define
δ, δ* and δ** in the null and alternative hypotheses for model comparison and power analysis.
Similarly, some conventional cutoff values of these fit indices (e.g., Hu & Bentler, 1999) can

be used for the choice of  or  for model comparison and power analysis.
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Appendix
1. The R code to calculate the  values for the pairs of r1δ and r2δ selected by

MacCallum, Browne, and Cai (2006) in their Table 1 and Table 2:

 dfM1<-20 # degrees of freedom of M1

 dfM2<-22 # degrees of freedom of M2

 r1<-seq(.03,.09,.01) # RMSEA choice for M1

 r2<-r1+.01 # RMSEA choice for M2

 Fn<-matrix(0,length(r2),length(r1))

 for (i in 1:length(r2)) {

  for (j in 1:i) {

   Fn[i,j]<-sqrt((r2[i]ˆ2*dfM2-r1[j]ˆ2*dfM1)/dfM2)

  }

 }

 print(Fn,digits=2)

2. The R code to calculate the power of TML to reject H0 : F2 − F1 = δ for Sadler and
Woody (2003):
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 n<-111 # (Sample size-1)

 dfM1<-24 # degrees of freedom of M1

 dfM2<-27 # degrees of freedom of M2

 delta<-dfM2*.05ˆ2 # define delta in the alternative hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1) # Critical value under the null hypothesis

 power<-1-pchisq(cv,df=dfM2-dfM1,ncp=n*delta)

 print(power,digits=2)

For Manne and Glassman (2000):

 n<-190 # (Sample size-1)

 dfM1<-19 # degrees of freedom of M1

 dfM2<-26 # degrees of freedom of M2

 delta<-dfM2*.05ˆ2 # define delta in the alternative hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1) # Critical value under the null hypothesis

 power<-1-pchisq(cv,df=dfM2-dfM1,ncp=n*delta)

 print(power,digits=2)

3. The R code to calculate the minimum N for TML to achieve the .80 power of rejecting
H0 : F2 − F1 = 0 in Sadler and Woody (2003):

 dfM1<-24 # degrees of freedom of M1

 dfM2<-27 # degrees of freedom of M2

 delta<-dfM2*.05ˆ2 # define delta in the alternative hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1) # Critical value under the null hypothesis

 for (n in 1:100000) {

  power<-1-pchisq(cv,df=dfM2-dfM1,ncp=n*delta)

  if (power>=.80) break # reach the desirable power

 }

 N<-n+1

 print(N)

For Manne and Glassman (2000):

 dfM1<-19 # degrees of freedom of M1

 dfM2<-26 # degrees of freedom of M2

 delta<-dfM2*.05ˆ2 # define delta in the alternative hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1) # Critical value under the null hypothesis

 for (n in 1:100000) {

  power<-1-pchisq(cv,df=dfM2-dfM1,ncp=n*delta)

  if (power>=.80) break # reach the desirable power

 }

 N<-n+1

 print(N)
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4. The R code to calculate the p -value for TML to reject H0 : F2 − F1 ≤ δ* in Joireman,
Anderson, and Strathman (2003):

 Tml<-19.13 # the observed value of the likelihood ratio test

 n<-153 # (Sample size-1)

 dfM1<-10 # degrees of freedom of M1

 dfM2<-12 # degrees of freedom of M2

 delta<-dfM2*.033ˆ2 # define delta* in the null hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1,n*delta) # Critical value under H0

 pvalue<-1-pchisq(Tml,df=dfM2-dfM1,ncp=n*delta)

 print(cv,digits=4)

 print(pvalue,digits=2)

For Dunkley, Zuroff, and Blankstein (2003):

 Tml<-3.84 # the observed value of the likelihood ratio test

 n<-162 # (Sample size-1)

 dfM1<-337 # degrees of freedom of M1

 dfM2<-338 # degrees of freedom of M2

 delta<-dfM2*.033ˆ2 # define delta* in the null hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1,n*delta) # Critical value under H0

 pvalue<-1-pchisq(Tml,df=dfM2-dfM1,ncp=n*delta)

 print(cv,digits=4)

 print(pvalue,digits=2)

5. The R code to calculate the power of TML to reject H0 : F2 − F1 ≤ δ* for Joireman et
al. (2003):

 n<-153 # (Sample size-1)

 dfM1<-10 # degrees of freedom of M1

 dfM2<-12 # degrees of freedom of M2

 delta1<-dfM2*.033ˆ2 # define delta* in the null hypothesis

 delta2<-dfM2*.064ˆ2 # define delta** in the alternative hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1,n*delta1) # Critical value under H0

 power<-1-pchisq(cv,df=dfM2-dfM1,ncp=n*delta2)

 print(power,digits=2)

For Dunkley et al. (2003):

 n<-162 # (Sample size-1)

 dfM1<-337 # degrees of freedom of M1

 dfM2<-338 # degrees of freedom of M2

 delta1<-dfM2*.033ˆ2 # define delta* in the null hypothesis

 delta2<-dfM2*.064ˆ2 # define delta** in the alternative hypothesis

 alpha<-.05

 cv<-qchisq(1-alpha,df=dfM2-dfM1,n*delta1) # Critical value under H0

 power<-1-pchisq(cv,df=dfM2-dfM1,ncp=n*delta2)
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 print(power,digits=2)

6. The R code to calculate the minimum N for TML to achieve the .80 power of rejecting
H0 : F2 − F1 ≤ δ* in Joireman et al. (2003):

 dfM1<-10 # degrees of freedom of M1

 dfM2<-12 # degrees of freedom of M2

 delta1<-dfM2*.033ˆ2 # define delta* in the alternative hypothesis

 delta2<-dfM2*.064ˆ2 # define delta** in the alternative hypothesis

 alpha<-.05

 for (n in 1:100000) {

  cv<-qchisq(1-alpha,df=dfM2-dfM1,ncp=n*delta1) # Critical value under H0

  power<-1-pchisq(cv,df=dfM2-dfM1,ncp=n*delta2)

  if (power>=.80) break # reach the desirable power

 }

 N<-n+1

 print(N)

7. The difference between the isopower contour of MacCallum, Lee and Browne
(2010) and our equi-discrepancy line:

The purpose of the description below is to help researchers distinguish those two
concepts in the two studies and facilitate the application of both of them. As a result,
the first difference we want to point out is that the context of the isopower contour of
MacCallum et al. (2010) is model overall evaluation (exact or close fit). Instead, our
equi-discrepancy line applies to comparison of any pair of nested SEM models. For
further illustration, we consider a special situation where the less restricted model
M1 is a saturated model with ν1= 0, F1 = 0 and r1 = 0, and the more restricted one
M2 is a model with degrees of freedom, for example, ν2 = 20 as assumed in Figure 9
of MacCallum et al. (2010)2. Notice that the isopower contour and the equi-
discrepancy line are now discussed in the same context of overall evaluation of M2.

Let (r1I, r2I) be a pair of RMSEA values to define the null hypothesis H0 : r2 ≤ riI and
its alternative one H1 : r2 = r2I for overall evaluation of M2 as in MacCallum et al.
(2010). With a choice of α and sample size N, the central or noncentral χ2 distribution
of TML under H0 and H1 can be determined and the power of TML to reject H0 under
H1 can be calculated. MacCallum et al. (2010) argued that TML can reach the same
rejection power when H0 and H1 are defined by another RMSEA pair among an
infinite number of isopower alternatives to (r1I, r2I). Let α = .05, N = 200, r1I =.05
and r2I = .10 as in Figure 9 of MacCallum et al. (2010). Then we calculated some of
those isopower alternatives and replicated the isopower contour in their Figure 9 as
Line 1 in our Figure 23. The rejection power of TML under any set of H0 and H1 defined
by the points on Line 1 would be the same as .84.

For model comparison and power analysis by our method, r1C and r2C are selected
for M1 and M2 respectively to define δ in H1 : F2 − F1 = δ, or δ* in H0 : F2 − F1 ≤
δ*, or δ** in H1 : F2 − F1 = δ**. According to MacCallum et al. (2006), r1C and r2C
should be some reasonable RMSEA values representing the misspecification of two
nested models. When M1 is assumed to be a saturated model with ν1= 0, F1 = 0 and
r1 = 0, the only reasonable choice of RMSEA value for r1C (and its alternative r1C′)

2We thank James Steiger for this valuable suggestion.
3We thank Taehun Lee for providing their SAS code to replicate this isopower contour.
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should be zero. Correspondingly, r2C and its alternative r2C′ should be the same by
the definition of the equi-discrepancy line in (7). Consequently, in the context of
overall evaluation of M2 as in MacCallum et al. (2010), our equi-discrepancy line is
no longer a line and reduces to a point on the vertical axis in Figure 2. For example,
when .076 or .126 is selected for r2C, our equi-discrepancy line reduces to the point
p1 or p2 in Figure 2, respectively.

In fact, even when r1C or r1C′ is not limited to zero and can be any value greater than
zero, r2C and r2C′ should still be the same to satisfy (7) because M1 is a saturated
model and ν1= 0 at this time. For example, when ν1= 0, ν2= 20, and the point p1 =
(.00,.076) is selected as (r1C, r2C), r1C′ should always be .076 by (7) in spite of the
value of r1C′. As a result, the equi-discrepancy line in this case would be Line 2 in
Figure 2, which is a straight line parallel to the horizontal axis. Similarly, when the
point (.08,.126) is selected as (r1C, r2C), the equi-discrepancy line would be Line 3 in
Figure 2, which crosses the vertical axis at p2.

Furthermore, in spite of the value of (r1C, r2C) or (r1C′, r2C′) on the equi-discrepancy

line, equation (7) now would reduce to  because ν1= 0 and (r1C, r2C′). Given
F1 = 0 now, substituting this δC into the null and alternative hypotheses, H1 : F2 −
F1 = δ could reduce to H1 : r2 = r2C, H0 : F2 − F1 ≤ δ* could reduce to H0 : r2 ≤
r2C, and H1 : F2 − F1 = δ** could reduce to H1 : r2 = r2C. Obviously, in the context
of model overall evaluation, the points (r1C, r2C) and (r1C′, r2C′) on an equi-
discrepancy line (if this line exists) equivalently define either riI of H0 : r2 ≤ riI or
r2I of H1 : r2 = r2I in MacCallum et al. (2010), instead of both.

Finally, when ν1 becomes some positive values rather than zero and M1 is no longer
a saturated model, the isopower contour of MacCallum et al. (2010) doesn't apply
while our equi-discrepancy line still exists. We plotted the equi-discrepancy line when
ν1 is equal to 2, 10 and 19, as Line 4, Line 5 and Line 6 in Figure 2, respectively. The
equi-discrepancy lines now become some curves similar to the isopower contour of
MacCallum et al. (2010). However, they can not coincide with each other because the
isopower contour does not exist in this situation. In addition, notice that the points on
an equi-discrepancy line can equivalently define the null or alternative hypothesis for
model comparison and its related power analysis. However, unlike the points on the
isopower contours, they do not represent a plot of power for any test statistic without
further information.
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Figure 1.
The equi-discrepancy lines with ν1 = 20 and ν2 = 22
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Figure 2.
The equi-discrepancy line vs. the isopower contour with ν2 = 20
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