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SUMMARY

Motivated by studying the association between nutrient intake and human gut microbiome composi-
tion, we developed a method for structure-constrained sparse canonical correlation analysis (ssCCA) in a
high-dimensional setting. ssCCA takes into account the phylogenetic relationships among bacteria, which
provides important prior knowledge on evolutionary relationships among bacterial taxa. Our ssCCA for-
mulation utilizes a phylogenetic structure-constrained penalty function to impose certain smoothness on
the linear coefficients according to the phylogenetic relationships among the taxa. An efficient coordinate
descent algorithm is developed for optimization. A human gut microbiome data set is used to illustrate this
method. Both simulations and real data applications show that ssCCA performs better than the standard
sparse CCA in identifying meaningful variables when there are structures in the data.
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1. INTRODUCTION

A microbiome is a collection of micro-organisms (mostly bacteria) in a certain environment such as the
human gut. The development of next generation sequencing methods such as 454 pyrosequencing and
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Solexa sequencing enables researchers to study the microbiome composition by directly sequencing the
environmental DNAs. A commonly used sequencing strategy is to sequence a variable region of the 16S
ribosomal RNA (rRNA) gene in the bacterial genome, and this variable region can be used for taxonomic
classification by comparing it with existing 16S rRNA gene databases. Such 16S data can eventually pro-
duce a taxonomic profile for each sample, that is, the abundance for all the identified taxa. However, bac-
terial taxa are not independent of one another and are related evolutionarily by a phylogenetic tree. Taxa
that are phylogenetically close usually behave similarly or have similar biological functions. Such phylo-
genetic tree information has been effectively utilized in the commonly used UniFrac distance between two
microbiome samples (Lozupone and Knight, 2005). In an attempt to visualize the human gut microbiomes
from different samples, Purdom (2011) proposed a phylogenetic tree-based principle component analysis
(PCA) on the 16S data set. This phylogenetic PCA was shown to separate the environmental samples in a
biologically more sensible way than the standard PCA.

In this paper, we consider another commonly used dimension-reduction method, canonical correlation
analysis (CCA), that can be used to relate the bacteria taxa with environmental covariates when the number
of covariates is large. Our motivating example is a data set generated from a human gut microbiome study
at the University of Pennsylvania, where we aim to associate nutrient intake to the bacterial composition in
the human gut (see Section 6 for details). We have both the nutrient intake data and the bacterial abundance
data measured on 99 individuals and are interested in selecting the bacterial taxa and nutrients that are most
closely correlated. CCA aims to identify the linear combinations of two sets of variables that are maximally
correlated with each other and provides an important tool to summarize the overall dependency structures
between the two sets of variables. It has been applied to linking two sets of high-dimensional genomic data
measured on the same set of samples (Parkhomenko and others, 2009).

The standard CCA, however, does not perform variable selection and hence usually lacks biological
interpretability, especially when the dimension of variables is high. When the number of variables exceeds
the number of observations, CCA cannot be applied directly due to singularity of the covariance matrix. To
overcome these two major limitations, various types of sparse CCA (sCCA) have been proposed and devel-
oped and applied to genomic data analysis (Parkhomenko and others, 2009; Witten and others, 2009). In
sCCA, a sparsity penalty function such as the l1 penalty is often imposed on the linear coefficients in order
to explain the correlation between two data sets using the least number of variables. The sparsity constraint
in sCCA not only makes the computation feasible but also increases the biological interpretability of the
selected variables.

Available approaches to sCCA do not, however, exploit the prior structure information among the vari-
ables. In many applications, there exists some structure among the set of variables in the CCA analysis.
These structures can be simple group structures such as gene sets or graphical structures such as gene
networks in genomic studies. By including this prior structure information of the data, one can gain bet-
ter biological insight from the analysis. This has been clearly demonstrated in sparse regression analy-
sis (Li and Li, 2008).

In this paper, we utilize the phylogenetic tree structure of the data from human microbiome studies in
CCA analysis. The phylogenetic information from the bacterial taxa could guide us to select relevant taxa
in the context of CCA by inducing a tendency to select closely related taxa together, since these taxa are
very likely to be associated with the covariates in a similar fashion. We propose to develop a structure-
constrained sCCA (ssCCA), where we impose an additional structure-constrained penalty function based
on the phylogenetic tree structure. The ssCCA extends the sCCA formulation of Witten and others (2009)
by imposing a smoothness penalty for the loading coefficients of the taxa based on their closeness on the
phylogenetic tree. We also develop an efficient coordinate descent algorithm to implement ssCCA. Our
simulations that mimic real microbiome data demonstrate that ssCCA can result in much better perfor-
mance in selecting bacteria that are associated with other environmental variables. Our analysis of the
microbiome and nutrient data has concluded that fat-related nutrients are closely related to human gut
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microbiome composition, a conclusion that agrees with a previous analysis of the data set (Wu and others,
2011).

The rest of the paper is organized as follows. The data structure from 16S microbiome and the concept
of phylogenetic tree-structured data are presented in Section 2. A brief review of CCA and the formulation
of ssCCA is given in Section 3. Details of the coordinate descent algorithm are presented in Section 4.
Results from simulation studies to evaluate our method are given in Section 5. An application to a real
human microbiome study to associate nutrient intake with bacterial abundance is presented in Section 6.
Finally, a brief discussion of the methods and results is presented in Section 7.

2. 16S MICROBIOME DATA PROCESSING, PHYLOGENETIC TREE AND LAPLACIAN MATRIX

Typical gut microbiome study involves the collection of fecal samples, isolating all bacterial DNA and
then sequencing it using next generation sequencing machines such as the 454 genome sequencer. Since
each bacterial cell is assumed to have the same number of copies of this gene, the basic step of a 16S
microbiome study is to count different versions of the sequences, and then to identify to which bacteria the
versions correspond; in this way, the types and abundance of different bacteria in a sample are determined.
After preprocessing of the raw sequences, the 16S sequences are either mapped to an existing phylogenetic
tree in a taxonomy-dependent way (Matsen and others, 2010) or clustered into operational taxonomic units
(OTUs) at a certain similarity level in a taxonomic-independent way (Caporaso and others, 2010). At the
97% similarity level, these OTUs are used to approximate the biological species.

The method proposed in this paper is mainly applied to OTU-based 16S data where each of the
N 16S sequences belongs to one of p OTUs. Each OTU is characterized by a representative DNA
sequence and can be assigned a taxonomic lineage by comparison to a known bacterial 16S rRNA database
(Wang and others, 2007). Most species-level OTUs are in extremely low abundance with a large propor-
tion of OTUs being simply singletons, possibly due to a sequencing error. We can further aggregate the
OTUs from the same genus to form genus-level OTUs and perform analysis at the genus level, which is
more robust to sequencing error and can reduce the number of variables significantly. A distance between
any two OTUs can be computed using the OTU representative sequences based on an evolution model
such as the Jukes–Cantor, Kimura, and Felsenstein model, and a phylogenetic tree for the OTUs can be
built based on these distances (Felsenstein, 2003).

Let x= (x1, x2, . . . , x p)
T represent the vector of the relative abundance of p OTUs obtained from the

16S sequencing, where each OTU is a leaf node of a phylogenetic tree of all the OTUs. We first construct
an adjacency matrix using a pairwise distance matrix between any two OTUs. With the given phylogenetic
tree, we can use the patristic distance, which is the sum of the branch lengths linking the two OTUs. The
distance is usually normalized to the scale of [0,1], with 0 for identity and 1 for complete difference.
Denote by d jk the distance between OTU j and OTU k. We then form a p × p adjacency matrix A with
the diagonal elements of 1 and the jkth element between OTUs j and k defined as a jk = φ(d jk), where φ is
some decreasing function. Several possible functions are a jk = (1− dm

jk), a jk = exp(−dm
jk), or a jk = 1/dm

jk ,
where the power m > 0 determines how much weight one puts on closely related OTUs. In this paper, we
define the adjacent matrix as

a jk = 1/d2
jk for j |= k. (2.1)

By taking the square of d jk , large edge weight is given to closely related OTUs and meanwhile, the edge
weights for distantly related OTUs are made small. As shown later, this adjacent matrix is only used in the
definition of the smoothness penalty. The choice of the adjacent matrix definition should not greatly affect
the variable selection results.

The phylogenetic tree is a special case of general undirected graphs, and the adjacency matrix is
related to the Laplacian matrix associated with the graph. For a given adjacency matrix A, define
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D= diag(d1, d2, . . . , dp), where d j =∑p
k=1 a jk . The associated Laplacian matrix is defined as L=D− A

(Chung, 1997). The Laplacian matrix L is associated with a labeled weighted graph G = (V, E, w) with
vertex set V = 1, . . . , p and edge set E = {( j, k) : ( j, k) ∈ V × V }. Here a jk is the weight of edge ( j, k)

and d j is the degree of vertex j . For a given vector u, it is easy to show that

uTLu=
∑

1� j<k�p

a jk(u j − uk)
2, (2.2)

which measures the smoothness of the vector u with respect to the labeled weighted graph G. Based on
this interpretation, Li and Li (2008) proposed a smoothness penalty of the form uTLu in high-dimensional
regression settings. The structure constraint displays a local smoothing effect by encouraging the variables
that are linked on the prior graphical structure to have similar coefficients. In the next section, we extend
sCCA to include this smoothness penalty to further encourage some smoothness of the coefficients in
linear projections.

3. STRUCTURE-CONSTRAINED SPARSE CANONICAL CORRELATION ANALYSIS

We consider the CCA between two random vectors x= (x1, x2, . . . , xp)
T and y= (y1, y2, . . . , yq)

T, where
vector x contains an abundance of p OTUs on a given phylogenetic tree and y is the q-dimensional vector
of the environmental covariates. Suppose that we have collected n i.i.d. samples of x and y, denoted by X
and Y, respectively. Assume both are column-standardized to have mean 0 and variance 1. Let A be the
adjacency matrix defined in the previous section based on the phylogenetic tree structure and L be the
corresponding Laplacian matrix.

CCA aims to find two projection directions u1 ∈R
p and v1 ∈R

q so that

(u1, v1)= arg max
u,v

Corr(uTx, vTy)= arg max
u,v

uT�xyv√
(uT�xxu)(vT�yyv)

,

where �xx, �yy, and �xy are covariance and cross-covariance matrices. This maximization is equivalent to

max
u,v

uT�xyv subject to uT�xxu= 1 and vT�yyv= 1. (3.1)

Here u1, v1 are called the first pair of canonical vectors, while the new variables η1 = u1
Tx, ξ1 = v1

Ty are
called the first pair of canonical variables or latent variables and ρ1 =Corr(η1, ξ1) is referred to as the first
canonical correlation. When data are available, one estimates u1 and v1 by replacing �xy, �xx, and �yy by
the observed sample cross-covariance and covariance matrices XTY, XTX, and YTY, respectively.

When the dimensions p and q are high, regularization is required in order to obtain a unique solu-
tion to the optimization problem (3.1). Given the tuning parameters c1 > 0, c2 > 0, c3 > 0, we propose the
following ssCCA criterion that extends the sCCA of Witten and others (2009):

max
u,v

uTXTYv

subject to uTXTXu � 1, vTYTYv � 1, ‖u‖1 � c1, ‖v‖1 � c2, uTLu � c3, (3.2)

where ‖u‖1 =∑p
i=1 |ui | and ‖v‖1 =∑p

i=1 |vi | are sparsity l1 penalty functions. Different from the sCCA
formulation, we impose another structure constraint on the coefficient vector u through the quadratic
Laplacian quantity defined in (2.2), uTLu � c3. This constraint encourages smoothness of the estimated
coefficients of the OTUs that are closely related on the phylogenetic tree. A smaller value of the tuning
parameter c3 results in a smoother estimate of the coefficient vector u over the phylogenetic tree.
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It has been shown that in other high-dimensional problems, treating the covariance matrix as diagonal
can yield good results (Tibshirani and others, 2003; Witten and others, 2009). For this reason, rather than
using (3.2) as our ssCCA criterion, following the same strategy adopted by many of the existing sCCA
algorithms (Parkhomenko and others, 2009; Witten and others, 2009), we substitute in the identity matrix
I for XTX and YTY in the ssCCA formulation (3.2), which gives the ssCCA formulation that we use in
this paper:

max
u,v

uTXTYv subject to ‖u‖2
2 � 1, ‖v‖2

2 � 1, ‖u‖1 � c1, ‖v‖1 � c2, uTLu � c3. (3.3)

4. COORDINATE DESCENT ALGORITHM FOR THE SSCCA

4.1 Algorithm to obtain the first ssCCA factor

To facilitate computation, we write constraints on u in Lagrangian form and the ssCCA criterion (3.3)
becomes:

min
u,v

(
−uTXTYv+ 1

2
‖u‖2

2 + λ1‖u‖1 + λ2

2
uTLu

)
subject to ‖v‖2

2 � 1, ‖v‖1 � c2, (4.1)

where λ1 � 0, λ2 � 0, and c2 > 0 are tuning parameters. Note that when λ2 = 0, ssCCA is reduced to sCCA.
Since the Laplacian penalty function (λ2/2)uTLu is convex in u, the criterion (4.1) remains biconvex in u
and v, such that we can still use an iterative method to solve this optimization problem.

Algorithm to obtain the first ssCCA factor

(1) Initialize v as the first right singular vector with unity l2 norm from the singular value decomposition
of XTY.

(2) Iterate until convergence:

(a)

u← arg min
u

(
−uTXTYv+ 1

2
‖u‖2

2 + λ1‖u‖1 + λ2

2
uTLu

)
,

which can be solved by a graph-constrained regression problem (Li and Li, 2008):

u← arg min
u

(
1

2
‖XTYv− u‖2

2 + λ1‖u‖1 + λ2

2
uTLu

)
.

(b) v← arg minv−uTXTYv subject to ‖v‖2
2 � 1, ‖v‖1 � c2, which is given by

v← S{(uTXTY)T, δ}
‖S{(uTXTY)T, δ}‖2

,

where S(., .) is the soft-thresholding function, i.e.

S(a, b)=
{

sgn(a)(|a| − b) if |a|> b,

0 Otherwise,

and δ = 0 if this results in ‖v‖1 � c2; otherwise, δ is chosen so that ‖v‖1 = c2. The choice of δ

can be determined using a binary search (Witten and others, 2009).
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Let L=U	UT and S=U	1/2. Then step 2(a) can be converted into a simple Lasso problem as in Li and Li
(2008):

u← arg min
u

(
1

2
‖A∗u− b∗‖2

2 + λ1‖u‖1

)
,

where

A∗2p×p =
(

Ip×p√
λ2ST

)
, b∗2p =

(
XTYv

0p

)
,

Ip×p is a p × p identity matrix, and 0p is a p-dimensional vector of 0’s. Note that no intercept is included
in this Lasso problem and a coordinate descent algorithm can be implemented to obtain the solution at a
given λ1 (Friedman and others, 2007).

Though the objective function is biconvex, i.e. is convex in either u or v, it is not convex in (uT, vT)T, so
the coordinate descent algorithm does not necessarily converge to the global optimum; however, by using
the first right singular vector of the covariance matrix as the initial starting point, it does converge to a
stationary point (Tseng and Yun, 2009) and interpretable solutions.

4.2 Choosing tuning parameters

The tuning parameters λ= (λ1, λ2, c2) control the model complexity and have to be tuned. We use an
M-fold two-stage cross-validation (CV) method to choose λ. First, we divide all the samples into M disjoint
subgroups, also known as folds, and denote the index of samples in the mth fold by Im for m = 1, . . . , M .
The M-fold cross-validated function is defined as

CV(λ)= 1

M

M∑
m=1

Corr{XT
m û−m(λ), YT

m v̂−m(λ)}, (4.2)

where Corr(., .) is the correlation function and û−m(λ), v̂−m(λ) is the estimate of u, v based on the
samples (

⋃M
m=1 Im)\Im with λ as the tuning parameter. It is well known that CV can perform poorly

in tuning parameter selection for problems involving l1 penalties due to biases in parameter estimates
(Meinshausen and Bühlmann, 2006). To reduce the shrinkage problem, we reestimate the non-zero coeffi-
cients without penalization by performing singular value decomposition on the training data set excluding
the variables with zero coefficients in the penalized procedure. Specifically, for a given tuning parameter
λ, we recalculate the loading coefficients using the variables that are selected by ssCCA and use these
coefficients in the CV score (4.2). This avoids bias of the estimates due to penalization. We then choose
λ∗ = argmaxλCV(λ) as the best tuning parameters. From our simulations, we observe that the two-stage
CV procedure almost always performs better than standard CV without reestimating the parameters.

5. SIMULATION STUDIES

We present Monte Carlo simulations to evaluate ssCCA in identifying the relevant variables that explain
the correlation between two multivariate vectors. The solution of sCCA is obtained by setting λ2 = 0 in
ssCCA. The simulations are carried out to mimic an association study between nutrient intake and genus-
level OTU abundance that is presented in Section 6. Since the phylogenetic tree implies distances between
the OTUs, we simulate the distance matrix directly. Specifically, since OTUs are often clustered on the
phylogenetic tree, we generate random OTU clusters of size 1–15, where the OTU cluster members are
sequentially indexed. If two OTUs are from the same cluster (e.g. from the same taxonomic rank family),
their distance is drawn from a uniform distribution on (0.1, 0.2); if two OTUs are from different clusters,
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then their distance is drawn from a uniform distribution on (0.2, 1). We then construct the adjacency matrix
A using the method (2.1) based on the distances.

5.1 Simulation based on a latent variable model

We use a latent variable model to generate the data matrices X and Y where the dependency between these
two sets of variables is induced by a latent random variable ζ and the variances in x, y can be explained
in part by ζ . We assume x= ζwx + εx and y= ζwy + εy, where ζ ∼ N (0, σ 2

ζ ), εx, εy are random noise
vectors that follow εx, εy ∼ N (0, σ 2

ε I), and wx ∈R
p, wy ∈R

q are column vectors of preset weights. The
σε/σζ ratio controls the overall association strength between x and y, with a small value indicating strong
association. The coefficients wx and wy control the relative contributions of individual variables to the
overall association. We assume that only the first px = 10 elements of wx and the first qy = 10 elements of
wy are non-zero and take the values of (0.1, . . . , 0.1) and (0.08, 0.084, 0.089, . . . , 0.12), respectively. In
addition, we let wi and w j be identical or similar if xi and x j are from the same cluster of the phylogenetic
leaf nodes. We consider the scenarios where we have one relevant cluster of size 10, two relevant clusters
of size 5 and 5, and three relevant clusters of size 3, 4, and 4. The highest correlation between linear
combinations of x and y is given by Parkhomenko and others (2009):

ρmax =
σ 2

ζ√
(σ 2

ζ + pxσ 2
ε )(σ 2

ζ + pyσ 2
ε )

. (5.1)

We fix σ 2
ε = 1 and vary σ 2

ζ to control the strength of the canonical correlation. When σζ = 5, ρmax = 0.7.

5.2 Evaluation of the selection performance

We evaluate the performance of our methods in terms of selecting the relevant variables that lead to
correlation between random vectors x and y by considering models with various combinations of the
parameters. For each simulated data set, we use 5-fold two-stage CV to select the tuning parameter values
and then compute the true positive rate (TPR), false positive rate (FPR), and Matthew’s correlation coeffi-
cient (MCC) to measure the selection performance for both x and y. These three measures are defined as

TPR= TP

TP+ FN
, FPR= FP

FP+ TN
, MCC= TP× TN− FP× FN

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
,

where TP, FP, TN, and FN are true positives, false positives, true negatives, and false negatives,
respectively. For each model, we generate the observed data set X and Y 100 times and summarize the
TPR, FPR, and MCC as averages over 100 runs. Results from 10-fold two-stage CV are very similar and
are omitted here.

We also compare the performance of different methods using the receiver operating characteristic
(ROC) curve (FPR against TPR) for identifying the relevant taxa OTUs by varying the tuning parame-
ters. Specifically, the three tuning parameters are searched over a 10× 10× 10 grid for a total of 1000
tuning parameter combinations. For each combination, we obtain the FPR and the TPR, which represents
one point in the ROC plot. The ROC curve is then obtained by joining these points for each run. We then
average the ROC curves over 100 runs to produce an average ROC curve.
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5.3 Comparison of ssCCA and sCCA under one latent variable model

We consider models with various combinations of the parameters (labeled A1–D2), including the number
of relevant OTU clusters, the signal strength as measured by σ 2

ζ and the dimensions p and q and present the
results in Table 1 and Figure 1. We observe that the advantage of ssCCA over sCCA is more obvious under
weak association (Model A1). As the signal becomes stronger, the performance of sCCA becomes closer to
ssCCA (Model A2). This agrees with our intuition: the advantage of ssCCA lies in borrowing information
from closely related OTUs and, when the association is weak, pooling information across closely related
OTUs can improve the OTU selection. Another interesting observation is that better selection of OTUs can
lead to better selection of nutrients, which is best shown in the weak association case by obtaining a higher
MCC. We also observe that as the dimension increases, both ssCCA and sCCA become less efficient in
selecting relevant OTUs and nutrients (Models B1 and B2). However, ssCCA performs consistently better
than sCCA in all dimensions considered. Finally, as the cluster size decreases, we do not see a significant
deterioration of the selection performance of ssCCA (Models C1 and C2). ssCCA still performs better than
sCCA. As long as the cluster contains more than one OTU, using structure information always improves
variable selection.

Since the smoothness penalty encourages the variables that are close on the phylogenetic tree to have
similar linear projection coefficients, we evaluate the sensitivity of ssCCA when this assumption does not
hold. We investigate the performance of ssCCA when data contradict with our smoothness assumption.
We consider the model where the first 10 elements of wx have different coefficients but with the same
signs, and take values that are equally spaced on [0.08, 0.12] (Model D1). The performance of ssCCA
is still much better than sCCA. Model D2 considers the scenario when the first five and the second five
elements of wx are 0.1s and −0.1s, respectively, where the coefficients are different and have different
signs. This scenario violates our model assumption that closely linked OTUs have similar coefficients. The
structure-constrained penalty now has an adverse effect. This is clearly seen in the ROC plot (Figure 1(D2)).
However, when the CV procedure is applied to select the tuning parameters and the corresponding OTUs
and nutrients, the performance of ssCCA and sCCA is very similar (Table 1). This is because if the prior
structure information is not useful, CV procedure tends to select λ2 = 0, which reduces ssCCA to sCCA.
Therefore, the selection performance of ssCCA should be at least as good as sCCA, but ssCCA performs
better when the prior assumption holds.

5.4 Comparison of ssCCA and sCCA under complex models

We compare the performance of ssCCA and sCCA under several complex models and also present the
results in Table 1 and Figure 1. Under Model E, we consider the scenario when the noises are correlated
with correlation 0.4|i− j | for εi and ε j for both x and y, where the OTU cluster members have sequential
index numbers. The performances of ssCCA and sCCA are both slightly worse when compared with Model
A2 when the noises are independent; ssCCA still outperforms sCCA.

We then consider Model F where we simulate count data with zeros. Specifically, we first generate
the data matrix X as previously. We then convert it into a proportion matrix P and generate the counts
based on P. For the j th column X j , we first map the column values into the range of [0, pmax

j ] by a
linear transformation pi j = ((xi j −mini (xi j ))/(maxi (xi j )−mini (xi j )))pmax

j , where pmax
j is sampled from

[0.01, 0.1], so the maximum OTU abundance can vary by 10-fold. Rows of P are further scaled to sum up
to 1. Given the OTU proportions for each sample, we generate counts using a Dirichlet-multinomial model
with a total count of 1000 and an overdispersion of 0.01. Since we introduce extra variation by simulating
counts, we increase the first 10 components of wx to 0.4 to achieve a moderate association (ρ1 ∼ 0.7).
Under this parameter setting, the data matrix contains about 20% 0’s. To apply ssCCA and sCCA, we
convert the simulated count matrix into a proportion matrix. Table 1(F) and Figure 1(F) again show that
ssCCA outperforms sCCA in selecting the relevant variables.
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Table 1. Simulation results to evaluate ssCCA under models of different association
signals, dimension sizes, cluster sizes, model misspecification, and complexity

Selection of x variables Selection of y variables

Method TPR-x FPR-x MCC-x TPR-y FPR-y MCC-y

A1: one cluster, σζ = 4, p, q = 100
ssCCA 0.91 (0.20) 0.07 (0.10) 0.76 (0.22) 0.78 (0.22) 0.12 (0.12) 0.58 (0.18)
sCCA 0.70 (0.31) 0.09 (0.12) 0.56 (0.22) 0.75 (0.24) 0.12 (0.12) 0.54 (0.21)

A2: one cluster, σζ = 5, p, q = 100
ssCCA 0.96 (0.10) 0.03 (0.08) 0.89 (0.16) 0.87 (0.17) 0.05 (0.09) 0.78 (0.16)
sCCA 0.89 (0.17) 0.05 (0.08) 0.79 (0.17) 0.87 (0.16) 0.05 (0.09) 0.77 (0.17)

B1: one cluster, σζ = 5, p, q = 200
ssCCA 0.98 (0.08) 0.05 (0.11) 0.87 (0.19) 0.87 (0.16) 0.07 (0.11) 0.75 (0.18)
sCCA 0.89 (0.17) 0.09 (0.15) 0.74 (0.22) 0.87 (0.16) 0.08 (0.11) 0.72 (0.20)

B2: one cluster, σζ = 5, p, q = 400
ssCCA 0.89 (0.30) 0.06 (0.11) 0.74 (0.33) 0.81 (0.28) 0.12 (0.13) 0.60 (0.30)
sCCA 0.77 (0.32) 0.09 (0.23) 0.66 (0.32) 0.78 (0.31) 0.11 (0.12) 0.57 (0.32)

C1: two clusters, σζ = 5, p, q = 100
ssCCA 0.93 (0.14) 0.03 (0.07) 0.88 (0.15) 0.83 (0.16) 0.05 (0.09) 0.76 (0.16)
sCCA 0.87 (0.16) 0.05 (0.08) 0.78 (0.16) 0.85 (0.16) 0.06 (0.10) 0.76 (0.17)

C2: three clusters, σζ = 5, p, q = 100
ssCCA 0.94 (0.11) 0.03 (0.07) 0.88 (0.15) 0.88 (0.15) 0.07 (0.11) 0.75 (0.18)
sCCA 0.89 (0.16) 0.05 (0.10) 0.80 (0.18) 0.88 (0.16) 0.07 (0.10) 0.76 (0.18)

D1: one cluster, σζ = 5, p, q = 100, variable coefficients of the same signs
ssCCA 0.95 (0.11) 0.02 (0.05) 0.90 (0.13) 0.86 (0.19) 0.06 (0.10) 0.76 (0.17)
sCCA 0.87 (0.15) 0.04 (0.08) 0.79 (0.15) 0.88 (0.16) 0.07 (0.10) 0.75 (0.18)

D2: one cluster, σζ = 5, p, q = 100, variable coefficient of opposite signs
ssCCA 0.89 (0.14) 0.05 (0.09) 0.81 (0.17) 0.89 (0.15) 0.08 (0.11) 0.75 (0.20)
sCCA 0.90 (0.15) 0.04 (0.09) 0.82 (0.17) 0.90 (0.14) 0.07 (0.11) 0.76 (0.19)

E: correlated noise, one cluster, σζ = 5, p, q = 100
ssCCA 0.92 (0.18) 0.04 (0.07) 0.84 (0.19) 0.78 (0.21) 0.05 (0.08) 0.72 (0.17)
sCCA 0.85 (0.20) 0.05 (0.10) 0.77 (0.18) 0.82 (0.21) 0.06 (0.10) 0.73 (0.18)

F: count data, one cluster, σζ = 5, p, q = 100
ssCCA 0.92 (0.16) 0.04 (0.11) 0.84 (0.17) 0.72 (0.26) 0.06 (0.14) 0.71 (0.20)
sCCA 0.72 (0.22) 0.09 (0.15) 0.62 (0.18) 0.80 (0.24) 0.08 (0.16) 0.75 (0.23)

G: two directions, one cluster, σζ = 5, p, q = 100
ssCCA 0.95 (0.13) 0.03 (0.08) 0.87 (0.17) 0.85 (0.17) 0.05 (0.09) 0.76 (0.16)
sCCA 0.85 (0.19) 0.07 (0.10) 0.73 (0.17) 0.82 (0.19) 0.06 (0.09) 0.72 (0.16)

H: two directions, two clusters, model misspecification, σζ = 5, p, q = 100
ssCCA 0.83 (0.20) 0.05 (0.09) 0.74 (0.19) 0.88 (0.19) 0.11 (0.13) 0.67 (0.20)
sCCA 0.87 (0.18) 0.06 (0.10) 0.76 (0.18) 0.89 (0.17) 0.10 (0.13) 0.69 (0.20)

Five-fold two-stage CV is used to select the tuning parameters. As a comparison, results from sCCA are also
presented. Each column represents a measure of selection performance for OTU (x) or nutrient (y). TPR,
true positive rate; FPR, false positive rate;MCC, Matthew’s correlation coefficient. The results are averaged
over 100 replications with SD indicated in the parenthesis.
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Fig. 1. ROC curves for selecting the OTUs using the ssCCA and sCCA for Models A1–H. The corresponding model
parameters are given in Table 1.
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Finally, we consider two models where two orthogonal directions induce the correlation between two
sets of random vectors. We assume x= ζ1w1

x + ζ2w2
x + εx and y= ζ1w1

y + ζ2w2
y + εy, where under Model

G, the two directions are given by

w1
x = (0.1, . . . , 0.1︸ ︷︷ ︸

5

, 0.1, . . . , 0.1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
90

)T

and
w2

x = 0.5(0.1, . . . , 0.1︸ ︷︷ ︸
5

,−0.1, . . . ,−0.1︸ ︷︷ ︸
5

0, . . . , 0︸ ︷︷ ︸
90

)T.

We assume that w1
y, w2

y are the same as w1
x, w2

x, and the OTUs from the same cluster have the same coeffi-
cients on the first direction. Under Model H, we consider model misspecification where the two directions
are given by

w1
x = (0.1, 0.1,−0.1,−0.1, 0.1︸ ︷︷ ︸

5

, 0.1, 0.1,−0.1,−0.1,−0.1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
90

)T

and
w2

x = 0.5(0.1, . . . , 0.1︸ ︷︷ ︸
5

, 0.1, . . . , 0.1︸ ︷︷ ︸
5

0, . . . , 0︸ ︷︷ ︸
90

)T,

and w1
y, w2

y are the same as w1
x, w2

x. OTUs from the same cluster have coefficients of different signs on the
first direction. Under Model H, ssCCA has higher true positive and lower false positive rates and higher
area under the ROC curve (Table 1(G) and Figure 1(G)). Under the model misspecification (Model H),
the performances of ssCCA and sCCA are comparable.

6. APPLICATION TO GUT MICROBIOME DATA ANALYSIS

We apply ssCCA to a microbiome study on association between the nutrient intake and bacterial abundance
in the human gut conducted at the University of Pennsylvania. The human gut is inhabited by trillions of
bacterial cells, and some bacterial species have a profound influence on human health and disease. One
goal of the study is to investigate the relationship between diet and microbiome composition and to identify
a short list of potential nutrients and their associated bacteria in the human gut. For this study, both gut
microbiome 16S data and nutrient intake data were available for 99 healthy subjects. Fecal samples were
obtained from these 99 subjects and bacterial DNA was extracted using a standard protocol. After mul-
tiplexed 454 pyrosequencing, about 900 000 high quality, partial (∼ 370 bp) 16S rRNA gene sequences
were generated. These sequences were analyzed using the Qiime pipeline (Caporaso and others, 2010),
where the sequences were clustered at 97% sequence identity into OTUs and assigned a taxonomic iden-
tity by comparing to the Ribosomal Database Project reference 16S rRNA database (Wang and others,
2007). We consolidated these species-level OTUs into 119 genera (genus-level OTUs) and used the repre-
sentative sequence from the most abundant species-level OTU as the genus level representative sequence
for distance calculation and for construction of the phylogenetic tree. In our analysis, we further excluded
the uncommon genera that occurred in less than 1

4 of the samples; so we only considered p= 40 rela-
tively common genera (Figure 2). These 99 subjects also completed a carefully designed food frequency
questionnaire (FFQ). Based on the FFQ, the daily intake for q = 214 nutrients were calculated for each
subject by nutritionists. Because nutrient intake is clearly dependent on the overall energy consumption, we
regressed the nutrient intake on the total energy consumption and took residuals as the normalized nutrient
intake. Our final data set can be summarized as the OTU abundance matrix X99×40 and the nutrient intake
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Fig. 2. Analysis of gut microbiome data. Top: heatmap that shows the correlations between the selected genera and
nutrients. The number in parenthesis of each variable is the estimated loading coefficient. Red and blue colors indi-
cate positive and negative correlations, respectively. Bottom: Phylogenetic tree of the 40 genera used in the analysis.
The genera selected by ssCCA are marked with red circles. The bars on the right side indicate the average relative
abundances of these genera on log 10 scale.
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matrix Y99×214. Since the sampling depths are very different for different samples, we normalize the counts
into proportions and standardize the columns to have mean 0 and variance 1.

The goal of our analysis is to investigate the overall association between gut bacteria abundance and
nutrient intake. We used the method presented in (2.1) to construct the adjacency matrix A, and the
distances between any two OTUs were calculated using the “K80” model (R “ape” package, “dist.dna”
function). Five-fold two-stage CV was performed to search the optimal tuning parameters on a grid
of 20× 20× 20, and the range of the tuning parameters was set to explore all possible models: from
the most dense to the most sparse model. We applied ssCCA to the data set and identified 24 nutri-
ents and 14 genera whose linear combinations gave a cross-validated correlation of 0.42 between gut
bacterial abundance and nutrients. Figure 2 shows the heatmap of pairwise correlations between these
selected nutrients and OTUs, where the estimated loading coefficients are given in parentheses. The
signs of the estimated loading coefficients correspond very well to the pairwise correlations. The nutri-
ents related to fats are clustered together, while the other nutrients show association in the opposite
direction.

The selected microbiome-associated nutrients are biologically interpretable. More than half of the
selected nutrients are related to fat. It has been experimentally shown that fats can change the gut
microbiome composition independent of obesity in a mouse study (Hildebrandt and others, 2009). There
are also four selected nutrients related to choline, and it was found by a recent human microbiome
study that the composition of the gastrointestinal microbiome changed with the choline levels of diets
(Spencer and others, 2011). The selected nutrients are also consistent with the candidate nutrients we
identified using a distance-based testing procedure (Wu and others, 2011). This procedure utilized the
overall UniFrac distances (Lozupone and Knight, 2005) between microbiomes of any two subjects com-
puted using both the OTU abundances and the phylogenetic relationship among them. Twenty out of 24
nutrients selected by ssCCA were in the nutrients selected by the distance-based individual testing method
at the false discovery rate of 25%.

The pattern of selected OTUs is also interesting. The selected OTUs are marked with red circles in
the phylogenetic tree of Figure 2. We see that the closely related OTUs tend to be selected together; for
example, the genus Parabacteroides and Marinilabilia, Butyrivibrio and Coprococcus, and Anaerostipes
and Lachnospiraceae Incertae Sedis are all close relatives on the tree. ssCCA tends to select closely related
OTUs together by making the coefficients of neighbors similar through imposing a phylogenetic tree-
constrained smoothness penalty. This feature of ssCCA can also be viewed as borrowing information from
nearby OTUs; that is, if several neighbors all exhibit similar weak association, ssCCA amplifies the signal
strength and selects them together. On the other hand, if some OTU exhibits low-level association but all
its neighbors show the opposite evidence, ssCCA will not select that OTU.

By a comparison, an sCCA that does not account for the phylogenetic relationship among the OTUs
selects only one OTU, the FirmucuteLachnospira, which was also selected by ssCCA, but a total of 122
nutrients. The interpretation of the result is not as clear as that from ssCCA. The resulting combinations
gave a cross-validated correlation of 0.39, smaller than that obtained from ssCCA.

7. CONCLUSION AND DISCUSSION

We have extended the sCCA to incorporate the graphical structure among the variables in CCA. When the
number of variables exceeds the number of samples, using prior structure information to guide variable
selection is important. The prior knowledge could lead to a solution that is biologically more interpretable.
The structured sCCA utilizes the phylogenetic information to select the bacterial OTUs that are associated
with covariates. The power of the ssCCA method has been demonstrated in the simulation studies, and its
performance is unanimously better than sCCA in all the simulated scenarios when there are structures in
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the data. Even when the prior information is not completely accurate, our method still performs comparably
to sCCA due to selection of the tuning parameter by CV.

One limitation of the ssCCA formulation is that it assumes a linear relationship among the variables,
which may not always hold for OTU compositional/abundance data. Our analysis of the gut microbiome
data did not indicate too much deviation from the linearity between OTU abundance and nutrient intake.
One interesting future research direction is to develop structure-constrained non-linear measures of asso-
ciation and sparse non-linear CCA.

ACKNOWLEDGMENTS

We thank two reviewers for their helpful comments. Conflict of Interest: None declared.

FUNDING

This research was supported by the National Institutes of Health (CA127334, GM097505, and DK083981).

REFERENCES

CAPORASO, J. G., KUCZYNSKI, J., STOMBAUGH, J., BITTINGER, K., BUSHMAN, F. D., COSTELLO, E. K., FIERER, N.,
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