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SUMMARY

In genome-wide association studies, penalization is an important approach for identifying genetic mark-
ers associated with disease. Motivated by the fact that there exists natural grouping structure in single
nucleotide polymorphisms and, more importantly, such groups are correlated, we propose a new penaliza-
tion method for group variable selection which can properly accommodate the correlation between adja-
cent groups. This method is based on a combination of the group Lasso penalty and a quadratic penalty on
the difference of regression coefficients of adjacent groups. The new method is referred to as smoothed
group Lasso (SGL). It encourages group sparsity and smoothes regression coefficients for adjacent groups.
Canonical correlations are applied to the weights between groups in the quadratic difference penalty. We
first derive a GCD algorithm for computing the solution path with linear regression model. The SGL
method is further extended to logistic regression for binary response. With the assistance of the majorize–
minimization algorithm, the SGL penalized logistic regression turns out to be an iteratively penalized
least-square problem. We also suggest conducting principal component analysis to reduce the dimension-
ality within groups. Simulation studies are used to evaluate the finite sample performance. Comparison
with group Lasso shows that SGL is more effective in selecting true positives. Two datasets are analyzed
using the SGL method.
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1. INTRODUCTION

In genome-wide association studies (GWASs), hundreds of thousands of single nucleotide polymorphisms
(SNPs) are genotyped for a large number of individuals, typically ranging from several hundred to several
thousand. Even though several multi-SNP methods have been developed, many or even the majority of
analyses conducted nowadays are still single SNP-based. Single-SNP approaches may not be appropriate
when we investigate a complex polygenic trait, since they fail to take into account the accumulated and/or
joint effects of multiple genetic markers on the trait. In contrast, multivariate analysis, which describes the
joint effects of multiple SNPs in a single model, may be more appropriate.

In GWAS, it is expected that only a subset of SNPs are associated with the response variables. Thus, to
analyze SNP data in a multivariate setting, variable selection is needed along with regularized estimation.
Penalization methods have been adopted for such a purpose. SNPs are naturally ordered along the genome
with respect to their physical positions. They can be highly correlated due to tight linkage and linkage dis-
equilibrium (LD). Therefore, it is sensible to group SNPs based on their physical locations and correlation
patterns among them. Commonly adopted penalization approaches, such as Lasso, smoothly clipped abso-
lute deviation (SCAD), and minimax concave penalization (MCP) (Tibshirani, 1996; Fan and Li, 2001;
Zhang, 2010), assume interchangeable effects and cannot effectively accommodate grouping structure.
The group versions of Lasso, SCAD, and MCP have been developed to analyze data with grouping struc-
ture (Yuan and Lin, 2006; Wang and others, 2007; Huang and others, 2011b).

In addition to the grouping structure, there is also possible strong correlation among adjacent groups.
For the first dataset described in Section 5, we find that even after grouping SNPs based on their physical
locations and correlations, there still exist strong correlations among groups (see supplementary material
available at Biostatistics online, Figure 3, Appendix). Similar correlation has been noted in the literature.
Broët and Richardson (2006) proposed a spatially correlated mixture model to incorporate dependence
between genomic sequences. Gottardo and others (2008) proposed a Bayesian hierarchical model to take
into account the spatial dependence between probes. Huang and others (2011a) showed that a sparse Lapla-
cian shrinkage estimator has superior estimation and selection properties. This approach can accommodate
the correlation among covariates but not the grouping structure.

In this article, our goal is to identify markers associated with response variables, while properly accom-
modating the high-dimensionality, grouping structure, and correlation between groups of GWAS data.
The proposed approach is referred to as smoothed group Lasso (SGL). Its penalty is the sum of the group
Lasso penalty and the quadratic penalty on the difference of regression coefficients of adjacent groups. It
is expected that the group Lasso penalty promotes sparsity and can select groups of SNPs associated with
responses. The second penalty, the quadratic difference penalty, takes into account the natural ordering of
groups and accommodates the correlation between adjacent groups. Here, the correlations between groups
are measured with canonical correlations. We derive a group coordinate descent (GCD) algorithm for com-
puting the SGL estimator. Beyond developing the new penalty, we also investigate several related practical
problems. The first is an extension of the proposed approach to incorporate negative log-likelihood as a
loss function for case–control studies. In practical data analysis, high correlations within groups lead to
high colinearity among variables, which can have adverse effects on selection and estimation. We pro-
pose applying principal component analysis (PCA) within each group to reduce dimensionality and col-
inearity. In addition, we adopt a modified multi-split method to evaluate the statistical significance of
selected groups.

The rest of the article is organized as follows. In Section 2, we introduce the SGL penalty and develop
a GCD algorithm for quadratic loss functions. Tuning parameter selection is also discussed. In Section 3,
we investigate several related practical issues, including accommodating case–control data, reducing
dimensionality within groups using PCA, and evaluating the significance level. Simulation studies are
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conducted in Section 4. We analyze two case–control studies in Section 5. The article concludes with a
discussion in Section 6.

2. SMOOTHED GROUP LASSO

2.1 Data and model setting

We first consider quadratic loss functions, which naturally arise from linear regression with continuous
responses. Extension to binary trait with logistic regression is discussed in Section 3.

Suppose that the data consist of n subjects. Let yi be the continuous response variable for subject i . The
genotype at an SNP is scored as 0, 1, or 2 depending on the number of copies of a reference allele in a
subject. The SNPs are divided into J groups, each with size d j , j = 1, . . . , J , according to their physical
locations and correlation patterns. Our approach for grouping SNPs is discussed in Section 5. Let xi j be
the d j × 1 covariates vector corresponding to the j th group of SNPs for the i th subject. Denote β j by
the d j × 1 vector of regression coefficients for xi j . It measures the effects of predictors in the j th group.
Let β = (β ′1, . . . , β ′J )′. Assume the linear regression model yi = β0 +∑J

j=1 x ′i jβ j + εi , where β0 is the
intercept and εi is the random error. With centered response variables and standardized covariates, we
have β0 = 0. Consider the quadratic loss function

�(β)= 1

2n
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where Y = (y1, . . . , yn)
′, X j is an n × d j matrix corresponding to the j th group, and ‖ · ‖ denotes the l2

norm.

2.2 Penalized estimation

The goals of SGL are 2-fold. The first is to select groups of SNPs associated with response. The second
is to smooth regression coefficients between adjacent groups with strong correlations. To achieve the first
goal, we use the group Lasso penalty

ρ(‖β j‖� j ;
√

d jλ1)= λ1

√
d j‖β j‖� j , (2.1)

where ‖β j‖� j = (β ′j� jβ j )
1/2, � j = X ′j X j/n is the empirical covariance matrix for the j th group, and

λ1 > 0 is a data-dependent tuning parameter. In (2.1), the rescaling factor
√

d j ensures that small groups are
not overwhelmed by large groups in selection. The group Lasso penalty has been investigated in multiple
studies. See, for example, Kim and others (2006) and Meier and others (2008).

To achieve the second goal, we propose a new penalty that can incorporate correlations between adjacent
groups. Specifically, consider

λ2

2

J−1∑
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,

where λ2 is a data-dependent tuning parameter, the weight ζ j is a measure of correlation between the j th
and ( j + 1)th groups, and d =max{d j : j = 1, . . . , J } is the largest group size. Here d is used to scale the
squared difference of the two norms so that λ2 can be on the same scale as λ1. In this study, we set ζ j as the
canonical correlation between the two groups. More details on this measure are provided in Appendix. This
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penalty has been motivated by the following considerations. When ζ j = 0, the two groups are unrelated,
and there should be no relationship between the regression coefficients. Hence the penalty reduces to zero.
When ζ j gets larger, the two groups are more highly correlated and hence the corresponding regression
coefficients should be “more similar”. A penalty on the difference of norms may shrink the difference. Note
that we only penalize the difference between adjacent groups. Such groups are physically next to each other
and hence are more likely to have similar regression coefficients if they are highly correlated. In addition,
our empirical investigation shows that groups far away from each other tend to have ζ ∼ 0. Introducing a
large number of penalties with ζ ∼ 0 may increase the computational cost and reduce stability. Even though
it is possible to extend the proposed penalty and consider all pairs of groups, we focus on the adjacent pairs
because of the above considerations.

In summary, the SGL penalty function is

Pλ1,λ2(β)=
J∑

j=1

λ1

√
d j‖β j‖� j +

λ2

2
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)2

.

Given a loss function �(β), the SGL estimate β̂ is defined as the minimizer of

Ln(β, λ1, λ2)= �(β)+ Pλ1,λ2(β).

2.3 GCD algorithm

The GCD algorithm is a natural extension of the coordinate descent algorithm (Wu and Lange, 2007;
Friedman and others, 2010). It optimizes a target function with respect to a single group parameter at
a time and iteratively cycles through all group parameters until convergence. It is particularly suitable for
problems such as the current one which has a simple closed-form solution for a single group but lacks one
for multiple groups.

First, for each group, we orthogonalize the design matrix so that the empirical covariance matrix is
equal to identity. We can write � j = R′j R j for a d j × d j upper triangular matrix R j with positive diagonal

entries via the Cholesky decomposition. Let X̃ j = X j R−1
j and b j = R jβ j . With the transformation, the

objective function is

Ln(b, λ1, λ2)= 1
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where b= (b′1, . . . , b′J )′. Note that n−1 X̃ j X̃ j = R−1′
j (n−1 X ′j X j )R−1

j . Thus using the ‖ · ‖� j norm amounts
to standardizing the design matrices. Therefore, without loss of generality, we assume that X j ’s are
orthonormalized with n−1 X ′j X j = Id j .

Given the group parameter vectors βk (k |= j) fixed at their current estimates β̃
(s)
k , we seek to mini-

mize the objective function Ln(β, λ1, λ2) with respect to the j th group parameter β j . Here only the terms
involving β j in Ln(β, λ1, λ2) matter. Some algebraic derivations show that this problem is equivalent to
minimizing R(β j ), defined as

R(β j )=C(β̃)+ 1
2 a jβ

′
jβ j − b′jβ j + c j‖β j‖, j = 1, . . . , J, (2.2)
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where

a j = 1+ λ2d
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(ζ j−1 + ζ j ), b j = n−1 X ′j r + β̃
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and C(β̃) is a constant free of β j . It can be shown that the minimizer of R(β j ) in (2.2) is

β̃ j = 1

a j

(
1− c j

‖b j‖
)
+

b j . (2.3)

This explicit solution facilitates the implementation of the GCD algorithm described below.

Let β̃
(0) = (β̃

(0)
1 , . . . , β̃

(0)
J )′ be the initial value. A convenient choice for the initial value is zero

(component-wise). With fixed λ1 and λ2, the GCD algorithm proceeds as follows:

(1) set s = 0. Initialize the vector of residuals r = Y −∑J
j=1 X j β̃

(0)
j ;

(2) for j = 1, . . . , J ,

(a) calculate a j , b j and c j in expression (2.2);
(b) update β̃

(s+1)
j = (1/a j )(1− c j/‖b j‖)+b j using expression (2.3);

(a) [(c)] update r← r − X j (β̃
(s+1)
j − β̃

(s)
j );

(3) update s← s + 1;
(4) repeat Steps 2 and 3 until convergence.

Of note, in the above algorithm, we take the convention that ζ0 = ζJ = 0.
In Step 2b, the SGL takes a form similar to a group soft-thresholding operator for the Lasso. The

difference lies in the support of c j . With group Lasso, c j = λ1
√

d j and is always positive. With SGL, c j

can be negative or positive depending on the choice of λ2 and the weight ζ . Under the simplified scenario
with only one group, the group Lasso and SGL estimates are the same. With multiple groups, consider,
for example, the j th group. If its adjacent groups are selected with non-zero regression coefficients, then
c j−1 and c j+1 from adjacent groups get smaller. Group j is then more likely to be selected. The solution
path for a simulated dataset with correlation structure the same as Example 1 is provided in Figure 1 for
group Lasso and SGL with η= 0.1, η= 0.2 and η= 0.5, where η= λ1/(λ1 + λ2).

Convergence of this algorithm follows from (Tseng, 2001, Theorem 4.1(c)). The objective function of
SGL can be written as f (β)= f0(β)+∑J

j=1 f j (β j ) where

f0(β)= 1

2n

∥∥∥∥∥∥Y −
J∑

j=1

X jβ j

∥∥∥∥∥∥
2

+ λ2

2

J−1∑
j=1

ζ j d

(
‖β j‖√

d j
− ‖β j+1‖√

d j+1

)2

,

and f j (β j )= λ1
√

d j‖β j‖. Since f is regular in the sense of Tseng (2001) and
∑J

j=1 f j (β j ) is separable
(group-wise), the GCD solutions converge to a coordinate-wise minimum point of f , which is also a
stationary point.

2.4 Selection of tuning parameters

Various methods can be applied for tuning selection, including akaike information criterion, bayesian infor-
mation criterion, cross-validation and generalized cross-validation. However, they are all based upon the
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Fig. 1. Solution path for a simulated dataset with correlation structure the same as Example 1 for (a) group Lasso, and
SGL with (b) η= 0.5, (c) η= 0.2, and (d) η= 0.1, where η= λ1/λ and λ= λ1 + λ2. Solid lines are paths of non-zero
groups and dashed lines are paths of irrelevant groups.

prediction error. In GWASs, disease markers may not be in the set of SNP markers, resulting in a non-true
model for SNP data. Hence, the methods mentioned above may be inappropriate in GWASs.

We adopt the approach proposed in Wu and others (2009), which sets a predetermined number of
selected SNPs based on the unique nature of a GWAS. We implement a similar approach to search for
the tuning parameter that yields a predetermined number of selected SNPs. For this purpose, λ1 and λ2

are reparameterized as τ = λ1 + λ2 and η= λ1/τ . The value of η is fixed beforehand. We use a bisec-
tion approach to find the τ value such that r(τ ), the number of selected markers, is equal to s. Let
τmax be the smallest value for which all estimated coefficients are 0. From the update steps 2a and 2b,
τmax =max j ‖n−1 X ′j Y‖/(η

√
d j ). We select ε (usually =0.01 in numerical studies) and let τmin = ετmax.

Initially, we set τl = τmin and τu = τmax. If r(τu) < s < r(τl), then we employ bisection. This involves test-
ing the midpoint τm = 1

2 (τl + τu). If r(τm) < s, replace τu by τm . If r(τm) > s, replace τl by τm . If r(τm)= s,
the calculation is terminated. In either of the first two cases, we bisect again and continue the loop until
r(τm)= s.
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3. PRACTICAL CONSIDERATIONS

3.1 Accommodating case–control data with logistic regression

Consider a case–control study with n subjects. For the i th subject, let yi ∈ {0, 1} denote the response
variable and xi = (x ′i1, . . . , x ′i J )

′. The logistic regression model assumes that p(xi )= Pr(yi = 1|xi )=
1/(1+ exp(−(β0 +∑J

j=1 x ′i jβ j ))). The SGL estimate is defined as

(β̂0, β̂)= arg min
(β0,β)∈Rp+1

[�(β0,β)+ Pλ1,λ2(β)]. (3.1)

The negative log-likelihood function in expression (3.1) is

�(β0,β)=−1

n

n∑
i=1

⎡
⎣yi ·

⎛
⎝β0 +

J∑
j=1

x ′i jβ j

⎞
⎠− log(1+ e(β0+∑ J

j=1 x ′i j β j ))

⎤
⎦ . (3.2)

When implementing the GCD algorithm, there is no simple, closed-form solution for penalized esti-
mation with a single group. To tackle this problem, we propose using an majorize–minimization (MM)
approach (Ortega and Rheinboldt, 2000). Note that negative log-likelihood (3.2) is a convex function. With
the MM approach, we majorize the negative log-likelihood by

�Q(β0,β|β̃0, β̃)= 1

8n

n∑
i=1

(zi − β0 − xi
′β)2 + C(β̃0, β̃),

where

zi = β̃0 + xi
Tβ̃ + yi − p̃(xi )

p̃(xi )(1− p̃(xi ))
and p̃(xi )= 1

1+ e−(β̃0+xT
i β̃)

are evaluated at the current estimate (β̃0, β̃), and the last term is free of (β0,β).
With fixed (λ1, λ2), our computational algorithm consists of a sequence of nested loops:
Outer loop: Update the majorized quadratic function lQ using the current estimates (β̃0, β̃).
Inner loop: Run the GCD algorithm developed for the penalized least-squares problem and solve for

argmin(β0,β)∈Rp+1{�Q(β0,β|β̃0, β̃)+ Pλ1,λ2(β)}.
In the penalized group least-squares problem (Section 2.3), we do not estimate β0. In logistic regression,

we can estimate it after estimating all other β j s for each majorized function as β̂0 =∑n
i (zi − xi

′β̂)/n. In
addition, τmax is not explicitly defined as in linear models. We evaluate the quadratic approximation for
the negative log-likelihood at all coefficients β j , j = 1, . . . , J, equal to zero. Then τmax can be calculated
in a similar way.

3.2 Reducing within-group colinearity and dimensionality

Because SNPs are densely located in many regions, there may exist high correlations within a group of
SNPs due to high linkage disequilibrium. This may cause an instability problem in Cholesky decomposi-
tion when some eigenvalues of the correlation matrices are too small. In our group selection, we are more
interested in the group effects as opposed to specific covariates within groups. To reduce the dimensional-
ity within groups and to tackle the colinearity problem, when there is evidence of a lack of stability, we first
conduct PCA within groups. Specifically, we choose the number of PCs such that 90% of the total varia-
tion is explained. Then PCs, as opposed to the original covariates, are used for downstream analysis. Our
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empirical study suggests that this simple step may ensure that the smallest eigenvalues of the covariance
matrices are not too small and that the Cholesky decomposition is stable.

3.3 Significance level for selected SNPs

With penalization methods, the “importance" of a covariate is determined by whether its regression coef-
ficient is non-zero. In GWAS, the p-value may also be of interest.

We adopt a multi-split method that was first proposed by Meinshausen and others (2009). With linear
regression, we use the F-test for each group to evaluate whether there are elements in this group with
significant effects. With logistic regression, we use the likelihood ratio statistic. This procedure will put
us in a position to produce p-values at the group level. It is simulation-based and automatically adjusts for
multiple comparisons.

The multi-split method proceeds as follows: (1) Randomly split data into two disjoint sets of equal
size: Din and Dout. In case–control studies, we split the samples in a way that maintains the case–control
ratio; (2) Fit data in Din with SGL. Denote the set of selected groups by S. (3) Compute P̃j , the p-value
for group j , as follows: (a) if group j is in set S, set P̃j equal to the p-value from the F-test in the
regular linear regression where group j is the only group. In case–control studies, the likelihood ratio
test is evaluated at this step. (b) if group j is not in set S, set P̃j = 1. (4) Define the adjusted p-value
as Pj =min{P̃j |S|, 1}, j = 1, . . . , J , where |S| is the size of set S. This procedure is repeated B times
for each group. Let P (b)

j denote the adjusted p-value for group j in the bth iteration. For π ∈ (0, 1), let qπ

be the π -quartile of {P (b)
j /π; b= 1, . . . , B}. Define Q̃ j (π)=min{1, qπ }. Meinshausen and others (2009)

showed that Q̃ j (π) is an asymptotically correct p-value, adjusted for multiplicity. They also proposed an
adaptive version that selects a suitable value of quartile based on data

Q j =min

{
1, (1− log π0) inf

π∈(π0,1)
Q̃ j (π)

}
,

where π0 is chosen to be 0.05. It is shown that Q j , j = 1, . . . , J , can be used for both family-wise error
rate and false discovery rate (FDR) control.

4. SIMULATION STUDY

We conduct simulation to better gauge the performance of SGL. For comparison, we also consider group
Lasso, which has a statistical framework closest to that of SGL. Four simulation examples are considered.
The first three are linear models with normal residuals. The fourth one has binary responses. SNPs in
the first two models are generated with a two-stage procedure (Wu and others, 2009). First, we draw the
predictor vector xi from a p-dimensional multivariate normal distribution. Then, with the assumption
that SNPs have equal allele frequencies, the genotype of the i th SNP is set to be 0, 1, or 2 according to
whether xi j <−c,−c < xi j < c, or xi j > c. The cutoff point −c is the first quartile of a standard normal
distribution. For the third and fourth examples, the genotype data are excerpted from a rheumatoid arthritis
(RA) study (Section 5). In all examples, we set n = 400 and p= 5000.

EXAMPLE 1 There are 1253 groups for 5000 SNPs. For phenotypic irrelevant groups i and j , cov(xi , x j )=
0.6|i− j | and cov(xi , xi )= 1. For phenotypic relevant groups k and l, cov(xk, xl)= 0.8 if k and l
are in the same group, cov(xk, xl)= 0.6 if k and l are not in the same group, and cov(xk, xk)= 1.
There are no correlations between irrelevant and relevant groups. The size for all irrelevant groups
is 4. The non-zero groups have regression coefficients as follows: β25 = β28 = (0.1, 0.1, 0.1, 0.1)′,
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β26 = 1, β27 = (−1, 1,−1)′, β1002 =−β1006 = (0.2, 0.2, 0.2, 0.2)′, β1003 =−0.8, β1004 = (−0.8,−0.8)′,
and β1005 =−0.8. The response variable Y is generated from a linear regression model with N (0, 1.52)

residuals.

EXAMPLE 2 We use the same regression coefficients and grouping structure as with Example 1. An auto-
regressive correlation structure is adopted. For SNP i and j , cov(xi , x j )= 0.7|i− j |.

EXAMPLE 3 To make the LD structure as realistic as possible, genotypes are obtained from the RA study
provided by the Genetic Analysis Workshop (GAW) 16. For individual i , its phenotype yi is generated from
a linear regression model. The regression coefficients have elements all equal to zero except that (β ′705, . . . ,

β ′707)= (0.05, 0.1,−0.05, 0.1, 0.5,−0.05,−0.5, 0.05,−0.5, 0.05,−0.3, 0.1) and (β ′709, . . . , β
′
714)=

(0.05,−0.3, 0.1, 0.15,−0.05, 0.15, 0.2,−0.6, 0.05, 0.15,−0.35, 0.05, 0.5, 0.1,−0.2, 0.05, 0.25,−0.1,

0.05). SNPs are grouped if the value of absolute lag-1 autocorrelation is larger than a certain value, which
is 0.2 in Examples 3 and 4. The number of groups is 1432.

EXAMPLE 4 The genotype data and regression coefficients are the same as with Example 3. The linear
predictors are generated in the same way as with Example 3. The binary response variables are generated
from Bernoulli distributions with Pr(yi = 1|xi )= 1/(1+ e−(β0+x ′i β)).

We analyze Examples 1–4 using SGL and group Lasso. PCA is used to reduce within-group colinearity.
We are aware of other group selection methods. We focus on comparison with group Lasso because of its
similarity with SGL, which may help us better understand the effects of the smooth penalty. Summary
statistics based on 100 replicates are shown in Table 1. Simulation suggests that SGL is computation-
ally affordable, with analysis of one replicate taking about 5 min on a desktop PC. For each replicate in
all four examples, we prefix the number of selected groups equal to 15 and use the method described in
Section 2.4 for tuning parameter selection. With a total of 9 true positive (TP) groups, selecting 15 groups
can ensure that a large number of TPs are selected. As shown in Table 1, we have experimented with
different η values and found that η= 0.3 is an appropriate choice with linear regression and η= 0.1 is
appropriate with logistic regression. Note that, when η= 1, SGL becomes group Lasso. To assess robust-
ness, we assign wrong block sizes in all four examples. In Examples 1 and 2, the correct block sizes for
(β25, . . . , β28, β1002, . . . , β1006) are (4, 1, 3, 4, 4, 1, 2, 1, 4), with the incorrect assignment being (3, 2, 4,
3, 2, 3, 3, 2, 2). In Examples 3 and 4, the correct block sizes for (β705, . . . , β707, β709, . . . , β714) are (4,
6, 2, 4, 3, 1, 3, 2, 6), with the incorrect assignment being (5, 5, 3, 3, 2, 2, 2, 4, 5). Result under incorrect
group assignment is presented in Table 3. (see supplementary material available at Biostatistics online,
Appendix). In addition, we also evaluate performance with s = 10, under both correct and incorrect group
assignments. Results are presented in Tables 4 and 5 (see supplementary material available at Biostatistics
online, Appendix), respectively.

Table 1 suggests that SGL is capable of selecting the majority of TPs. We do observe a few false posi-
tives, which is reasonable considering the extremely high dimensionality and noisy nature of data. Under
all simulated scenarios, SGL outperforms group Lasso by identifying more TPs and/or less false posi-
tives. We also conduct receiver operating characteristics (ROC) analysis by varying the number of selected
groups, and compare SGL with different η values, group LASSO and single-SNP analysis. Results are pre-
sented in Figures 4–7 (see supplementary material available at Biostatistics online, Appendix). It is easy
to see that SGL outperforms alternatives with ROC curves dominatingly “higher”. The ROC plots also
suggest choosing η= 0.3 for examples 1–3 and η= 0.1 for example 4. Comparing with Table 1, Table 3
(see supplementary material available at Biostatistics online, Appendix) shows that the incorrect assign-
ment of block sizes does not have much effect on performance, although the number of TPs decreases.
Table 4 (see supplementary material available at Biostatistics online, Appendix) shows that with a smaller
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Table 1. Mean (standard deviation) of TP number of groups, FDR, and false negative rate (FNR)

for simulated data, s = 15. Note that the optimal η for linear models (Examples 1–3) is 0.3 and
the optimal η for the logistic regression model (Example 4) is 0.1. When η= 1, SGL becomes

group Lasso.

Example 1 Example 2
η TP FDR FNR TP FDR FNR

0.1 8.96 (0.20) 0.40 (0.01) 0.004 (0.02) 8.66 (0.52) 0.42 (0.03) 0.04 (0.06)
0.2 8.68 (0.51) 0.42 (0.03) 0.04 (0.06) 8.44 (0.54) 0.44 (0.04) 0.06 (0.06)
0.3 8.30 (0.54) 0.45 (0.04) 0.08 (0.06) 7.98 (0.59) 0.47 (0.04) 0.11 (0.07)
0.4 7.86 (0.73) 0.48 (0.05) 0.13 (0.08) 7.86 (0.64) 0.48 (0.04) 0.13 (0.07)
0.5 7.54 (0.68) 0.50 (0.05) 0.16 (0.08) 7.58 (0.64) 0.49 (0.04) 0.16 (0.07)
0.6 7.48 (0.61) 0.50 (0.04) 0.17 (0.07) 7.54 (0.65) 0.50 (0.04) 0.16 (0.07)
0.7 7.02 (0.87) 0.53 (0.06) 0.22 (0.10) 7.32 (0.82) 0.51 (0.05) 0.19 (0.09)
0.8 7.08 (0.70) 0.53 (0.05) 0.21 (0.08) 7.22 (0.65) 0.52 (0.04) 0.20 (0.07)
0.9 6.60 (0.78) 0.56 (0.05) 0.27 (0.09) 6.98 (0.80) 0.53 (0.05) 0.22 (0.09)
1 6.28 (0.64) 0.58 (0.04) 0.30 (0.07) 6.68 (0.89) 0.55 (0.06) 0.26 (0.10)

Example 3 Example 4
0.1 7.94 (0.89) 0.47 (0.06) 0.12 (0.10) 6.28 (1.44) 0.58 (0.10) 0.30 (0.16)
0.2 7.74 (0.92) 0.48 (0.06) 0.14 (0.10) 5.82 (1.21) 0.61 (0.08) 0.35 (0.13)
0.3 7.32 (0.84) 0.51 (0.06) 0.19 (0.09) 5.46 (1.28) 0.64 (0.09) 0.39 (0.14)
0.4 7.30 (0.76) 0.51 (0.05) 0.19 (0.08) 5.50 (1.34) 0.63 (0.09) 0.39 (0.15)
0.5 7.22 (0.76) 0.52 (0.05) 0.20 (0.08) 5.24 (1.12) 0.65 (0.07) 0.42 (0.12)
0.6 7.02 (0.80) 0.53 (0.05) 0.22 (0.09) 4.98 (1.17) 0.67 (0.08) 0.45 (0.13)
0.7 6.82 (0.80) 0.55 (0.05) 0.24 (0.09) 4.34 (1.21) 0.71 (0.08) 0.52 (0.13)
0.8 6.28 (0.86) 0.58 (0.06) 0.30 (0.10) 4.06 (1.04) 0.73 (0.07) 0.55 (0.12)
0.9 5.76 (0.77) 0.62 (0.05) 0.36 (0.09) 3.60 (0.97) 0.76 (0.06) 0.60 (0.11)
1 4.80 (0.78) 0.68 (0.05) 0.47 (0.09) 2.46 (1.03) 0.84 (0.07) 0.73 (0.11)

s, the number of TPs decreases as expected since the number of groups selected decreases. Table 5 (see
supplementary material available at Biostatistics online, Appendix) shows that, with incorrect block sizes,
the performance is still similar to that with correct block sizes (see supplementary material available at
Biostatistics online, Table 4, Appendix). For a representative dataset simulated under Example 3 with cor-
rect block sizes and s = 15, we show the selected group norms and their corresponding p-values (see
supplementary material available at Biostatistics online, Table 6, Appendix). We see that SGL under linear
regression selects a more clustered set of groups. Furthermore, SGL selects more groups that are TP and
some of their p-values are significant. Note that SGL selects true groups 706, 712, and 714 which are
significant, while group Lasso does not.

5. DATA ANALYSIS

5.1 Analysis of RA data

RA is a long-term condition that leads to inflammation of the joints and surrounding tissues. It is a com-
plex human disorder with a prevalence ranging from around 0.8% in Caucasians to 10% in some native
American groups (Amos and others, 2009). There are solid evidences that multiple genetic risk factors
contribute to the risk of RA. Genetic risk factors underlying RA have been mapped to the HLA region on
6p21 (Newton and others, 2004) and other regions.
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The GAW 16 data are from the North American Rheumatoid Arthritis Consortium. This was the ini-
tial batch of whole genome association data after removing duplicated and contaminated samples. SNP
genotype data were generated using an Illumina 550k platform and available for 868 cases and 1194 con-
trols. After quality control and removing SNPs with low minor allele frequencies, there are 31 670 SNP
measurements on chromosome 6.

In Figure 3 (see supplementary material available at Biostatistics online, Appendix), we provide the
plot of ζ values. It is easy to see that some correlations are very high. Note that there are more groups
having ζ s smaller than 0.6, since the SNPs are grouped if the absolute lag-1 autocorrelations are larger
than 0.6. The proportion of ζ j > 0.6 for 100 non-overlapping groups is also plotted (see supplementary
material available at Biostatistics online, Figure 3, Appendix).

With SNP data, one possible way of grouping SNPs is based on the distance to the closest genes.
However, overlapping of genes happens frequently with SNP data. Thus, sometimes it can be difficult
to identify to which group an SNP belongs. Here we use an alternative way to group SNPs. The lag-
1 Pearson’s correlation coefficients are first calculated for all SNPs. Then we group SNPs using lag-1
correlations: if two adjacent SNPs have absolute correlation larger than 0.6, we put them in the same group.
We choose the threshold to be 0.6 as it leads to a reasonable number of groups, neither too large nor too
small. Different from simulation studies, we do not know the number of true groups beforehand. We choose
the predetermined number of selected groups equal to 100. This choice has been motivated by several
considerations. Figure 2(a) and (b) suggests that 100 should be sufficient to catch the important groups.
On the other hand, it is not too large so that there should not be many false positives. From simulation
studies, we choose η= 0.1 for data analysis. The value of the tuning parameter for SGL with η= 0.1 is
1.783, whereas the value of the tuning parameter for group Lasso is 0.138. As described in Section 3.2,
we apply PCA to reduce the dimensionality within groups. Therefore, a direct plot of point estimates
cannot be produced. We use the group norms to plot against their original positions. The plots for SGL and
group Lasso are provided in Figure 2(a) and (b), respectively. For comparison, we also conduct single-SNP
analysis. Results are provided in Figure 2. The information for SNPs selected by SGL is given in Table 7
(see supplementary material available at Biostatistics online, Appendix). SGL identifies 127 SNPs in 40
genes, and 8 of them are HLA genes. Group Lasso identifies 106 SNPs in 82 genes, and 5 of them are HLA
genes. Single-SNP analysis identifies 326 SNPs in 85 genes, and 12 of them are HLA genes. Information
for SNPs selected by SGL but not single-SNP analysis is presented in Table 8 (see supplementary material
available at Biostatistics online, Appendix). The numbers of overlapping SNPs selected using SGL, group
Lasso, and single-SNP analysis for these data are presented in the first part of Table 2. We note that the
overlapping SNPs between SGL and single-SNP analysis is much more than the ones between group Lasso
and single-SNP analysis, implying indirectly that SGL is superior to group Lasso under high correlation
settings. To evaluate the influence of threshold-forming groups, we choose the threshold to be 0.2 to analyze
the same data. The plots can be found in Figure 8 (see supplementary material available at Biostatistics
online, Appendix) in which we can find similar trends to those in Figure 2.

From Figures 2 and 8 (see supplementary material available at Biostatistics online, Appendix), we see
that single-SNP analysis produces estimates with much lower signal to noise ratio. Group Lasso and SGL
are capable of conducting screening and yielding much sparser estimates. Compared with group Lasso,
group estimates from SGL are more clustered in the HLA region that has been found to be associated with
RA. Moreover, there are more significant groups (larger dots) identified by SGL in the HLA region. It is
consistent with the results from simulation.

5.2 GAW 17 data

The GAW 17 data (Almasy and others, 2011) consist of 24 487 SNP markers throughout the genome
for 697 individuals. Genotype data are real sequence data from the 1000 Genomes Project. We analyze
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Fig. 2. Plots of ‖β‖ for SGL and group Lasso with threshold = 0.6 to form groups, and |β| for single-SNP logistic
regression for RA data. In (a) and (b), the smaller dots are estimates with insignificant p-values, and the larger dots
stand for estimates with significant p-values.

unrelated individual data with quantitative trait Q1 in replicate 1. All SNPs are included in analysis. We
coded the seven population groups as dummy variables. The quantitative trait Q1 is first regressed on gen-
der, age, smoking status, SC and group dummy variables in order to remove their confounding effects.
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Table 2. The Number of SNPs and genes identified, and overlap of SNPs among the three methods for
RA data and GAW 17 data

RA data GAW 17 data
Overlap† Overlap†

Method # of SNPs # of Genes G‡ S§ # of SNPs # of Genes G‡ S§

SGL 127 40 39 106 12 10 6 3
Group Lasso 106 82 33 12 10 3
single-SNP analysis 326 85 16 8

The thresholds for RA data and GAW 17 data are 0.6 and 0.01, respectively.
†The number of overlapping SNPs in three methods.
‡Abbreviated form of group Lasso.
§ Abbreviated form of single-SNP analysis.

This procedure helps adjust for population stratification. Then, the residuals from this regression are used
as response.

Since there are only 24 487 SNPs throughout the genome, the correlations among those SNPs are weak.
Thus, we choose the threshold to be 0.01 or 0.05 as it leads to a reasonable number of groups. The selected
SNPs by SGL with η= 0.3 are shown in Table 9 (see supplementary material available at Biostatistics
online, Appendix). Since all SNPs are rare variants, we are unable to evaluate their significance via multi-
split. We see that SNPs C13S522, C13S523, and C13S524 are associated with phenotype. Only three true
SNPs are selected because all SNPs for these data have minor allele frequencies less than 0.05. For GAW
17 data, SGL and group Lasso identify the same number of phenotype-associated SNPs. The numbers of
overlapping SNPs selected using SGL, group Lasso, and single-SNP analysis for these data are presented
in the second part of Table 2. We see that there are six overlapped SNPs between SGL and group Lasso.
The number of overlapped SNPs selected by SGL and single-SNP analysis is three, which is the same as
that between group Lasso and single-SNP analysis.

6. DISCUSSION

Penalization provides an effective way of analyzing the joint effects of multiple SNPs in GWAS. Because
of the natural ordering of SNPs on the genome and possible high linkage disequilibrium among tightly
linked SNPs, SNP data can be highly correlated and hence have the grouping structure. In addition, adja-
cent groups can still be highly correlated, which may give rise to similar association with the phenotype
of interest. Existing penalized marker selection methods do not effectively accommodate all the afore-
mentioned properties of SNP data. In this article, we propose a new penalized marker selection approach.
It uses the group Lasso penalty for group marker selection and a new penalty to smooth the regression
coefficients between adjacent groups. We also investigate several related issues, including computation,
within-group dimension reduction, and evaluation of significance. Our numerical studies show that the
proposed approach has satisfactory performance.

In individual marker and group selections, it has been shown that some penalties can outperform Lasso-
based penalties. It is possible to extend the proposed approach, for example, by replacing group Lasso with
group MCP or group SCAD. Such an extension may incur high computational cost and will not be pursued.
There are multiple ways of defining the difference between groups and hence smoothing. The proposed
way is computationally simple and intuitively reasonable. The proposed approach can accommodate more
subtle structure in SNPs. As a consequence, it inevitably demands new structure and tunings. For example,
there may be multiple ways of constructing groups. We are aware of “more automatic” approaches, for
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example, the hierarchical clustering plus Gap approach. However, such methods may rely on assumptions
that SNP data clearly violate; and some methods cannot fully accommodate the spatial adjacency of SNPs
on chromosome. The adopted tuning parameter selection approach has been developed in published stud-
ies. Our literature review suggests that there is a lack of consensus on tuning parameter selection with
high-dimensional SNP data. A comprehensive investigation on tuning parameter selection is beyond the
scope of the current paper. In our study, we use a predetermined number of groups to be selected. Usually,
this number can be determined based on prior knowledge, limitation of resources for downstream analy-
sis, and possible trial and error. We note that the proposed SGL can be easily coupled with other tuning
parameter selection approaches such as cross-validation. In this paper, we focus on the development of the
new methodology. Further work is needed to investigate the theoretical properties of the SGL method.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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