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XI, Villejuif, France and 7INSERM UMR 1009, Institut Gustave Roussy,
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TET proteins convert 5-methylcytosine to 5-hydroxymethyl-

cytosine, an emerging dynamic epigenetic state of DNA that

can influence transcription. Evidence has linked TET1 func-

tion to epigenetic repression complexes, yet mechanistic

information, especially for the TET2 and TET3 proteins,

remains limited. Here, we show a direct interaction of TET2

and TET3 with O-GlcNAc transferase (OGT). OGT does not

appear to influence hmC activity, rather TET2 and TET3

promote OGT activity. TET2/3–OGT co-localize on chromatin

at active promoters enriched for H3K4me3 and reduction of

either TET2/3 or OGT activity results in a direct decrease in

H3K4me3 and concomitant decreased transcription. Further,

we show that Host Cell Factor 1 (HCF1), a component of the

H3K4 methyltransferase SET1/COMPASS complex, is a spe-

cific GlcNAcylation target of TET2/3–OGT, and modification

of HCF1 is important for the integrity of SET1/COMPASS.

Additionally, we find both TET proteins and OGT activity

promote binding of the SET1/COMPASS H3K4 methyltrans-

ferase, SETD1A, to chromatin. Finally, studies in Tet2 knock-

out mouse bone marrow tissue extend and support the data

as decreases are observed of global GlcNAcylation and also of

H3K4me3, notably at several key regulators of haematopoi-

esis. Together, our results unveil a step-wise model, involving

TET–OGT interactions, promotion of GlcNAcylation, and in-

fluence on H3K4me3 via SET1/COMPASS, highlighting a

novel means by which TETs may induce transcriptional

activation.
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Introduction

Epigenetic marking of the genome and regulation of chroma-

tin are central to establishing tissue-specific gene expression

programs, and hence to several biological processes (Bonasio

et al, 2010). Until recently, the only known epigenetic mark

on DNA was 5-methylcytosine (mC), established and

propagated by DNA methyltransferases, and generally

associated with gene repression (Suzuki and Bird, 2008;

Cedar and Bergman, 2009; Ndlovu et al, 2011). The

discovery of cystosine 5-hydroxymethylation (hmC), and of

the Ten-Eleven Translocation family of enzymes (TET1,

TET2, and TET3) that catalyse the conversion of mC to

hmC has sparked great interest in uncovering the roles

played by this mark and these proteins (Kriaucionis and

Heintz, 2009; Tahiliani et al, 2009; Ito et al, 2010). Genome-

wide profiling of the distribution of Tet1 and hmC in mouse

ES cells has shown that both are important in regulation of

pluripotency and cellular differentiation (Ficz et al, 2011;

Pastor et al, 2011; Williams et al, 2011; Wu et al, 2011).

Other data have linked TET1 to epigenetic repression

complexes, notably SIN3A and PRC2 (Williams et al, 2011;

Wu et al, 2011). Regarding TET2 and TET3, mouse Tet2 has

been implicated in haematopoiesis and human TET2

mutations have been found in various leukaemias

(Langemeijer et al, 2009), while studies in mouse germ

cells have shown the importance of Tet3 in epigenetic

reprogramming (Gu et al, 2011). However the mode of

action, particularly of the TET2 and TET3 family members,

is still poorly understood.

Results

TET2 and TET3 associate with the O-GlcNAc transferase

OGT

To aid in this understanding and further explore binding

partners of these proteins, we performed an unbiased pro-

teomic approach using HaloTag technology as previously

described (Los et al, 2008; Daniels et al, 2012). To this end,

we expressed the full-length TET1, TET2, and TET3 proteins

as HaloTag (HT) fusions in HEK293T cells, covalently

captured them on an HT affinity resin, eluted the interacting

proteins, and purified these for mass spectrometry (LC/MS/

MS) and spectral counting analysis (Materials and methods;

Supplementary Figure 1). Figure 1A shows the silver stain gel

for each complex isolation and the enrichment of numerous

bands for each as compared to the HT alone control. Mass

spectrometry of each revealed notably several transcriptional
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and epigenetic interacting proteins identified in biological

replicates and enriched over the HT alone control, including

the known TET1–SIN3A interaction and the absence of this

with TET2 (Williams et al, 2011; Figure 1B). All TET proteins

showed interaction with O-GlcNAc transferase, OGT,

(Figure 1B), though TET2 and TET3 showed demonstrably

higher enrichment. Given this, we focused all following

experiments with the TET2 and TET3 family members. Two

approaches were used to confirm the interaction between

TET2 or TET3 and OGT: (i) western blotting with anti-OGT

antibody, applied to samples of eluate from the above-men-

tioned HT-pulldown experiments (Figure 1C), and (ii) co-

immunoprecipitations (Co-IPs) showing capture of both

TET2 and TET3 from extracts of untransfected cells upon

immunoprecipitation with an anti-OGT antibody, confirming

the interaction of endogenous TET2 and TET3 with OGT

Protein fusion: 

TET1 Ctrl
#1 #2 #1 #2

OGT 16 21 0 0
SIN3A 14 5 0 2

Interactors

HT-TET1 partners purification (spectral counts) 

TET2 Ctrl
#1 #2 #1 #2

OGT 179 157 0 0
YWHAH 13 13 0 0
YWHAG 15 13 0 0
YWHAQ 11 11 0 0
BRG1 13 14 0 2

SMARCC2 12 10 0 0

Interactors

HT-TET2 partners purification (spectral counts) 

TET3 Ctrl
#1 #2 #1 #2

OGT 354 337 0 0
CUL1 29 9 0 0

IKBKAP 7 14 0 0
SIN3A 27 14 0 5
MCM3 5 9 0 0

POLR2B 7 6 0 2
POLR2C 8 6 0 0

Interactors

HT-TET3 partners purification (spectral counts) 
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Figure 1 TET2 and TET3 associate with the O-GlcNAc transferase OGTand promote GlcNAcylation. (A) Silver stain gel of HaloTag-TET protein
complex isolations and HaloTag alone control (Ctrl). Protein pulldowns were performed from HEK293T cells overexpressing the indicated HT
constructs (see Materials and methods and Supplementary Figure 1 for details). As not all of the indicated complex isolations were performed
at the same time, two separate silver stain gels were run, as shown in this panel. (B) Table of transcriptional or chromatin protein interactors
found in the various HaloTag-TET isolations. Spectral counts for each interacting protein are shown for biological replicates. TET1, but not
TET2, as previously reported (Williams et al, 2011; Wu et al, 2011), shows interaction with SIN3A. OGT interacts with all TET proteins, though
it is most highly abundant with TET2 and TET3. (C) Detection of OGT by western blotting from HT-TET2 and HT-TET3 pulldowns from (A).
The indicated pulldowns were probed with an anti-OGT antibody to detect the presence of OGT. OGT and beta-Actin shown as input loading
controls. (D) TET2 and TET3 co-immunoprecipitate (CoIP) with endogenous OGT from untransfected HEK293T cells. Cell extracts were
immunoprecipitated with anti-OGTor rabbit IgG and probed with antibodies against the indicated proteins. An IP control of OGTalone is shown
to demonstrate specific capture and enrichment of OGT. Inputs loading controls are shown for all. Note that in this experiment very weak
expression of TET2 relative to TET3 is observed. (E) The global level of hmC does not change after cell treatment with Alloxan or PUGNAc. Dot
blot quantification of global hmC after the indicated treatments. The hmC content is normalized with respect to the input DNA and to mock-
treated cells, where the ratio is set at 1.00. Error bars indicate s.d. of three independent experiments. As controls, western blots using anti-O-
GlcNAc antibody show the expected decrease in GlcNAcylation with Alloxan and increase with PUGNAc. HDAC1 input loading controls are also
shown. Vertical line indicates juxtaposition of lanes non-adjacent within the same blot, exposed for the same time. (F) Global decrease in
GlcNAcylation is observed in TET2/3 knockdowns. Left: TET2 kd or TET3 kd show decreased GlcNAc activity. Nuclear extracts were prepared
from HEK293T cells expressing RNAi Ctrl, RNAi TET2, or RNAi TET3, and UDP-[3H]GlcNAc incorporation was measured. The amount
incorporated into the control cells was set at 1. Error bars indicate s.d. of three independent experiments (*Po0.05). Right: Nuclear extracts
were prepared from HEK293T cells expressing RNAi Ctrl or RNAi TET2/3 and global GlcNAcylation was visualized with an antibody against
O-GlcNAc. HDAC1 input loading control is also shown.
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(Figure 1D). Input loading controls of OGTare shown for each

(Figures 1C and D). A variant of TET2 lacking the catalytic

domain (TET2DCD) did not show interaction with OGT

(Figures 1A and C; Supplementary Figure 2), indicating that

the catalytic domain is important for the OGT interaction and

demonstrating the specificity of the HT pulldown and mass

spectrometry analysis. Supporting this, FLAG Co-IP experi-

ments performed with FLAG-TET2 and -TET3 CD alone

showed interaction with transfected or endogenous OGT

(Supplementary Figure 3). Furthermore, to evaluate whether

the interaction is direct, an in vitro protein isolation was

performed using E. coli expressed and purified full-length

OGT incubated with E. coli expressed HT-TET2CD or HT

alone control covalently bound to resin. As shown in

Supplementary Figure 3, OGT was specifically enriched on

resin containing the TET2CD as compared to the control.

Together, these data demonstrate that TET2 and TET3 inter-

act directly with the OGT glycosyltransferase.

TET2 and TET3 promote OGT-mediated GlcNAcylation

OGT places O-GlcNAc modifications on numerous proteins,

including transcription factors, epigenetic regulators, and

also histones (Hart et al, 2007). GlcNAcylation can activate

or inhibit protein activity and serve as a mark to recruit other

proteins (Slawson and Hart, 2011). As several proteins that

interact with OGT are also regulated by GlcNAcylation

(Hart et al, 2007), we analysed TET2 and TET3 by mass

spectrometry for the presence of O-GlcNAc modifications.

Despite high levels of spectral counts (B400) for both

proteins, GlcNAcylation could not be detected for either

protein (data not shown). Based upon these results, we

predict if TET proteins are GlcNAcylated, they would be at

low levels. As TET and OGT are both enzymes, we next

sought to determine if their respective activities are altered

by each other. To evaluate if the enzymatic activity of OGT

might influence hydroxymethylation by the TETenzymes, we

measured the overall abundance of the hmC mark in dot

blot assay using a specific hmC antibody (Supplementary

Figure 4) in the absence or presence of either Alloxan, an

OGT inhibitor, or PUGNAc, which prevents removal of the

O-GlcNAc modification by inhibiting the enzyme O-linked

N-acetylglucosaminidase (OGA) (Capotosti et al, 2011;

Fujiki et al, 2009). As shown in Figure 1E, no changes in

overall hmC level were observed with these respective treat-

ments (upper panel), while a western blot of lysates revealed

the expected impact on global levels of O-GlcNAc for each

(lower panel). Similarly, overexpression of HT-OGT did not

increase levels of hmC, while overexpression of a TET2CD

alone control did (Supplementary Figure 4). Hence, cytosine

hydroxylation does not appear to require the GlcNAcylating

activity of OGT. We then investigated if GlcNAcylation might

depend on TET2 and/or TET3. To answer this question, we

measured overall OGT activity in lysates of cells where RNAi

was used to knock down TET2 or TET3 (cf. Supplementary

Figure 5 for RNAi efficiency and controls). As shown in

Figure 1F (left panel), we observed lower GlcNAcylation

activity in TET2 or TET3 RNAi than in the control cells.

Following with this, in a TET2 and TET3 double RNAi kd

(referred to as TET2/3 kd) a discernable decrease in

O-GlcNAc modified proteins is seen as revealed by western

blot analysis using an anti-O-GlcNAc antibody (Figure 1F,

right panel; Supplementary Figure 5). To demonstrate that

decreased OGT activity was not due to change in levels of

OGT, analysis of lysates from mock RNAi and TET2/3 kd

cells revealed that protein levels of OGTwere unchanged after

depletion of TET2 and TET3 (Supplementary Figures 5 and 6).

These combined data suggest that TET2/3 positively impacts

the activity of OGT.

TET2, TET3, and OGT show genome-wide

co-localization, notably at CpG islands and at

transcription start sites

We next undertook to map genome-wide binding of TET2,

TET3, and OGT, looking for their possible co-occurrence at

genomic targets. We performed crosslinking and chromatin

isolation from HEK293T cells, expressing HT fusion proteins

(Los et al, 2008; Hartzell et al, 2009) coupled with high-

throughput sequencing (Supplementary Figure 7). Our results

show that TET2, TET3, and OGT all localize primarily to

CpG islands (CGI) and promoter regions (Figure 2A;

Supplementary Figure 8), similar to previously observed

localization for Tet1 in mouse ES cells (Ficz et al, 2011;

Williams et al, 2011; Wu et al, 2011). Co-occurrence analysis

of OGT binding sites revealed statistically significant

overlaps with TET2 (42%) (Figure 2A) and TET3 (55%)

(Supplementary Figure 8; Supplementary Table 2). The

TET2–OGT and TET3–OGT targets are primarily contained

within promoter regions, tightly clustered around transcrip-

tion start sites (TSSs), with intermediate to high CpG content

(ICP and HCP) (Figure 2A; Supplementary Figures 8 and 9;

Supplementary Table 2).

TET2, TET3, and OGT genomic targets are enriched for

GlcNAcylation, but not for 5hmC or 5mC

We then examined the DNA methylation, DNA hydroxy-

methylation, and protein GlcNAcylation status of selected

TET2/3–OGT target sequences. As shown in Figure 2B

(upper and middle panels), methylated DNA and hydroxy-

methylated DNA immunoprecipitations (MeDIP and hMeDIP)

followed by quantitative PCR (qPCR) analysis revealed

essentially no enrichment of 5mC or 5hmC, respectively, at

these targets in either immunoprecipitate. Significant enrich-

ment of O-GlcNAc was found for TET2/3–OGT targets using

chromatin immunoprecipitation (ChIP)-qPCR against

O-GlcNAc (Figure 2B, lower panel), indicating OGT activity

at these chromatin sites. Together, these data show co-occur-

rence of TET2, TET3, and OGT, which in a subset analysed,

lack DNA methylation and hydroxymethylation, but display

protein GlcNAcylation.

TET2, TET3, and OGT co-localize with and influence

H3K4 trimethylation at active promoters in human cells

The clustering of TET2/3–OGT primarily at TSSs and HCP

promoters (cf. Figure 2A) led us next to examine the genomic

overlap at promoters with H3K4 trimethylation (H3K4me3),

an expected mark at these sites which is also correlated with

transcriptional activity. As depicted in Figures 2C and D,

ChIP-Seq with an antibody against H3K4me3 confirmed an

expected high overlap (98%) of TET2/3–OGT targets with the

H3K4me3 mark. We then wondered whether TET proteins

might be involved in regulating H3K4me3, and therefore

repeated ChIP-Seq experiment in cells containing a TET2

RNAi kd. We observed a significant reduction of H3K4me3
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Figure 2 TET2/3–OGT show genomic co-localization around TSSs and impact on H3K4me3 and transcriptional activation. (A) Left: Venn
diagrams indicating significant overlap of TET2 and OGT bound regions (left part; P-valueo10�10) identified after HaloCHIP-Seq in HEK293T
cells expressing HT-TET2, or HT-OGT. Right: TET2–OGT targets are primarily found at TSSs and CpG-rich sequences. Similar profiles were also
observed for TET3–OGT (Supplementary Figure 8). (B) An analysed subset of TET2–TET3–OGT targets show a lack of DNA methylation and
hydroxymethylation, yet display GlcNAcylation. qPCR analysis of TET2–TET3–OGT binding and non-binding regions after MeDIP (top),
hMeDIP (middle), or ChIP with an anti-O-GlcNAc antibody (bottom).‘% Input’ represents real-time qPCR values normalized with respect to the
input chromatin. Known methylated and hydroxymethylated regions are shown as positive controls in MeDIP and hMeDIP panels. (C) TET2/3–
OGT targets in HEK293T cells are enriched for H3K4me3 as depicted in a Venn diagram; P-valueo10�10. (D) Examples of HaloCHIP-Seq OGT,
TET2, TET3, and ChIP-Seq H3K4me3 profiles (UCSC tracks). (E) Decreased levels of H3K4me3 in TET2 kd cells. Upper-left: decrease in the
normalized number of H3K4me3 reads in TET2/3–OGT-binding regions in TET2 kd cells versus control RNAi-treated cells. Upper-right: pie
chart showing the percentage of TET2–TET3–OGT binding regions with a statistically significant reduction of the normalized number of
H3K4me3 reads for TET2 kd versus control RNAi-treated cells. Lower-part: examples of H3K4me3 ChIP-Seq profiles (UCSC tracks) in TET2–
TET3–OGT-binding regions for the RNAi control versus TET2 kd sample. (F) Western blot showing global decrease in H3K4me3 in a TET2/3
double kd cells. Lysates from mock HEK293T RNAi kd or TET2/3 kd cells were probed for H3K4me3 using an anti-H3K4 antibody in western
blot. Tubulin is shown as a loading control. (G) OGTactivity is important for H3K4me3. Cell extracts were prepared from HEK293Tcells treated
with or without the OGT inhibitor Alloxan, and then western blots for H3K4me3 were performed. HDAC1 and H3 are shown as loading controls
and a western blot against O-GlcNAc was used to monitor specific GlcNAcylation inhibition by Alloxan. Vertical lines indicate juxtaposition of
lanes non-adjacent within the same blot, exposed for the same time. (H) Decreases in transcription are observed in both TET2/3 knockdowns
and an OGT knockdown. The indicated target genes (which showed decrease in H3K4me3 after TET2 kd; cf. E) and negative controls (unbound
TET2/3–OGT–H3K4me3 targets), were analysed by RT–qPCR in HEK293T cells subjected to the various listed RNAi treatments. Independent
experiments were performed in duplicates.
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at over 78% of the TET2/3–OGT genomic targets (Figure 2E).

A similar impact on global reduction of H3K4me3 is observed

in western blot analysis of TET2/3 knockdown cellular

lysates (Figure 2F). As reduction in H3K4me3 could occur

through a variety of mechanisms, we then sought to deter-

mine if there was a connection to OGT activity. Supporting
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this hypothesis and similar to the above data with TET2/3 kd

(Figure 2F), cells treated with the OGT inhibitor, Alloxan,

show also a decrease in global H3K4me3 as compared to

controls (Figure 2G). Thus, TET2/3–OGT targets are enriched

for H3K4me3, which is regulated by both the TET proteins

and OGT activity.

To correlate these data to gene activity, we found by ChIP-

Seq a marked co-occupancy of TET2/3–OGT–H3K4me3 tar-

gets with RNA polymerase II (RNA Pol II) and by RNA

Sequencing (RNA-Seq) analyses a significant and positive

correlation with high expression levels (Supplementary

Figure 10). To determine if there are effects on transcriptional

levels after loss of TET and/or OGT, we then analysed by

RT–qPCR a subset of TET2/3–OGT targets specifically

decreased in H3K4me3 after TET kd, as identified in

Figure 2E. As shown in Figure 2H, moderate, but reproduci-

ble and specific decreases in expression of targets after TET2/

3 kd match patterns to those observed in OGT RNAi kd.

Together, these data suggest that TET2/3–OGT–H3K4me3

targets are highly transcribed regions and for the subset

studied, show concomitant transcriptional activation by

both TET proteins and OGT.

TET2 and TET3 associate with HCF1, an OGT-modified

target and component of the H3K4 methyltransferase

complex SET1/COMPASS

We next wished to extend our observed TET2/3–OGT inter-

action and identify potential specific downstream protein

targets that may connect to H3K4me3 regulation. With this

in mind, we noticed in our initial proteomic analysis for TET2

and TET3 that besides OGT (cf. Figure 1B), Host Cell Factor 1

(HCF1) was also identified and similarly to OGT, was

decreased in the TET2DCD isolation (Figure 3A). HCF1 was

of interest as not only is it a known GlcNAcylation target of

OGT (Capotosti et al, 2011), but also a component of the

histone H3K4 methyltransferase complex, SET1/COMPASS

(Wysocka et al, 2003; Lee et al, 2010). ChIP-Seq

experiments for endogenous HCF1 showed overlap of HCF1

target genes with those of Halo-TET2, TET3, OGT, and

H3K4me3 (Supplementary Figure 11A). We then desired to

further the mechanistic understanding of the TET2- or TET3-

OGT–HCF1 interactions with relationship to H3K4me3, and

therefore examined the interactions of OGTusing a similar HT

proteomics approach including mass spectrometry analysis.

Interacting partners of HT-OGT included the previously iden-

tified HCF1 protein (Capotosti et al, 2011), the TET2 and TET3

proteins (confirming the TET–OGT interaction), and interest-

ingly, all components of SET1/COMPASS (Figure 3B). To

determine if the interactions were dependent on OGTactivity,

we repeated the above experiments in the presence of the

OGT inhibitor Alloxan. Such treatment resulted not only in

the expected decrease in OGT–HCF1 interaction (Capotosti

et al, 2011), but also in significant loss of capture of

the SET1/COMPASS components, including the H3K4

methyltransferase SETD1A (Figure 3C). Normalized spectral

abundance factors (NSAFs) showed the same trend

(Supplementary Figure 11B), therefore validating the direct

comparison of respective loss of spectral counts for each

protein within the samples. Mass spectrometry analysis of

HCF1 peptides from HT-OGT protein isolations with or with-

out Alloxan treatment showed high levels of GlcNAcylation

in untreated cells and reduction after Alloxan treatment

(Supplementary Figure 12A), matching previously published

results (Capotosti et al, 2011).

TET2/3 promotes GlcNAcylation of HCF1, and both TET

and OGT activity favour the integrity of SET1/

COMPASS and SETD1A binding to chromatin

As these data suggested that GlcNAcylation of HCF1 might be

important for its interaction with SET1/COMPASS, we then

performed an HT-SETD1A pulldown to study the SET1/

COMPASS complex. Mass spectrometry analysis of the inter-

acting proteins revealed all the known members of the

complex, as well as OGT (Figure 3D). Additional analysis of

the HCF1 peptides from this experiment revealed extensive

O-GlcNAc modifications, indicating that HCF1 is heavily

modified when associated with SETD1A (Figure 3E, left

panel ‘RNAi Ctrl’). We next examined whether the TET

proteins might influence SET1/COMPASS complex formation

and/or specific GlcNAcylation of HCF1. In order to do this,

we performed HT-SETD1A isolations in cells harbouring the

TET2/3 double kd, which were shown to decrease global

H3K4me3 (cf. Figure 2F). As shown in Figure 3D (and

Supplementary Figure 11B as NSAF values with the same

trends), we observed a significant loss of SET1/COMPASS

components and OGT in the TET2/3 RNAi kd cells, coincid-

ing with a significant decrease in GlcNAcylation of HCF1 as

determined by mass spectrometry (Figure 3E; Supplementary

Methods). To show further the direct effect of TET proteins

specifically on SET1/COMPASS complex formation, proteo-

mics experiments were additionally performed with HT-

WDR82, the only other specific component of SET1/

COMPASS besides SETD1A. These data revealed the same

disruption of capture of SET1/COMPASS components in cells

harbouring a TET2/3 knockdown as compared to mock

(Supplementary Figure 12B). These results indicate that

TET2/3 proteins, and OGT GlcNAcylation of HCF1 are im-

portant for the integrity of the SET1/COMPASS complex,

suggesting a means by which H3K4me3 may be regulated.

To further this understanding, bioluminescence resonance

energy transfer (BRET) experiments were carried out in living

cells to monitor the interaction of SETD1A with chromatin. In

short, SETD1A was designed as an energy donor, expressed

as a fusion to NanoLuc luciferase, and Histone H3.3 as an

energy acceptor, expressed and fluorescently labelled as a

fusion to HT (Figure 3F). As shown in Figure 3F, treatment of

cells with an OGT inhibitor, Alloxan, (left panel) or analysis

in TET2/3 RNAi knockdown cells (right panel) result in

specific reduction of BRET signal, indicating decrease in

interaction between SETD1A and Histone H3.3 after these

respective treatments. Together, these data support that

TET2/3 proteins and OGT activity are important not only

for the integrity of the H3K4 methyltransferase SET1/

COMPASS complex, but also binding of the methyltransferase

component, SETD1A, to chromatin.

Tet2 knockout mouse tissue shows that Tet2 is needed

for global GlcNAcylation and H3K4me3 at target

promoters

We then endeavoured to extend our findings to mouse bone

marrow tissue, a model where Tet2 has been implicated in

haematopoiesis and Tet2 mutations have been identified and

linked to myeloid neoplasms (Langemeijer et al, 2009;

Moran-Crusio et al, 2011; Quivoron et al, 2011). For this, we
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started by performing ChIP-Seq for Tet2, H3K4me3, and

O-GlcNAc. First, ChIP-Seq analysis with an anti-Tet2

antibody in bone marrow tissue revealed genome-wide

binding profile of endogenous Tet2 mostly at CpG-rich

regions and TSSs (Supplementary Figure 13). This binding

profile is similar to the genomic distribution observed for HT-

TET2 in HEK293T cell lines (see Supplementary Figures 9B

and 14). Next, we examined the genome-wide overlap be-

tween O-GlcNAc and H3K4me3 with Tet2. As shown in

Figure 4A and Supplementary Table 3, a significant degree

of overlap was observed between Tet2 and both O-GlcNac

and H3K4me3 modifications, again predominately at CpG-

rich promoters. Further, ChIP-Seq for RNA Pol II as well as

RNA-Seq in mouse bone marrow indicated that the Tet2/O-

GlcNAc/H3K4me3 co-bound targets were enriched at many

active genes (Figure 4B). To determine the specific depen-
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dency of GlcNAcylation and H3K4me3 upon the Tet proteins

in mouse bone marrow, experiments were then performed in

a Tet2 knockout mouse (Moran-Crusio et al, 2011).

Supporting the data that loss of human TET2/3 results in

decreased OGTactivity and global GlcNAcylation (Figure 1F),

we observe in the Tet2 knockout mouse, a correlating de-

crease in global levels of O-GlcNAc (Figure 4C) as determined

by a western blot using an anti-O-GlcNAc antibody. ChIP-Seq

for H3K4me3 in the Tet2 knockout mouse bone marrow

tissue, reveals a significant reduction in H3K4me3

(Figure 4D) (mirroring also the decrease observed in TET2

knockdown HEK293T cells; Figure 2E). Strikingly, it is note-
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worthy that among targets which showed decrease in

H3K4me3 in a Tet2 knockout mouse, we found several key

regulators of haematopoiesis, including the Cebpa, Tal1,

Runx1, and several Mll genes (Figure 4E). Taken together,

in this biologically relevant Tet system, we find genomic

co-localization of Tet2, O-GlcNAc, and H3K4me3 on tran-

scriptional active genes and most importantly, show an

essential implication of Tet2 for both OGT activity and

H3K4me3, notably on genomic targets regulating haemato-

poiesis.

Discussion

Here, we present data showing an unrecognized link between

DNA modifying enzymes, TETs, a master cellular sensor

protein, OGT, and a histone modifying complex, SET1/

COMPASS. These new findings combined with our initial

goal to further understanding of TET2 and TET3 proteins,

have allowed us to propose a cohesive and hierarchical

model of interactions and to determine the cascade of their

respective activities leading to H3K4me3 and transcriptional

activation (Figure 5). The first sequence of events is the

formation of TET2 or TET3–OGT interaction, which promotes

GlcNAcylation by OGT on numerous proteins, including

HCF1. HCF1 has been shown to be required for recruitment

of SET1/COMPASS and H3K4me3 (Narayanan et al, 2007;

Tyagi and Herr, 2009; Liu et al, 2010) and our data further

elucidate its role as we show a GlcNAcylated HCF1 is

important for the integrity of the SET1/COMPASS complex.

Lastly, both TET proteins and OGT activity favour binding of

SETD1A to chromatin, an event necessary for histone

H3K4me3 and subsequent transcriptional activation.

As TET proteins have the potential to control DNA methy-

lation fidelity by removing spurious or undesirable DNA

methylation (Liu et al, 2010; Williams et al, 2011), the

above model is likely not the only means these proteins

utilize to influence H3K4me3. We hypothesize that TET

proteins, in general, function as active guardians in

promotion of transcriptional activation, which is supported

by our data and previously published data of TET1 genomic

localization primarily at regions high in H3K4me3 (Williams

et al, 2011; Wu et al, 2011). In addition to their ability to

reduce DNA methylation, the TET proteins might serve as

scaffolding proteins beyond interaction with OGT as

evidenced by the finding of several other interactors, and

then recruit proteins required to establish a high-H3K4me3

chromatin environment. The TET–OGT interaction for

example may be more broadly utilized to direct several

epigenetic complexes to target sites or promote active tran-

scription by GlcNAcylating not only HCF1, but also local

histones or transcription factors at specific genomic localiza-

tions. Furthermore, similar to the dual function of TET1 in

transcriptional regulation (Williams et al, 2011; Wu et al,

2011) our data suggest that TET3 might also provide a

platform for repressive epigenetic complexes as it was

shown also to interact with SIN3A. The TET proteins are

thus more versatile and multifaceted than initially

anticipated, performing important non-catalytic functions in

addition to their known role of hydroxymethylation.

In addition to suggesting a broader role for the TET

proteins, our study revealing a direct physical link between

OGT and TET2/3 proteins provides new insight into the

regulation and function of OGT in the cell. Although its

connection with epigenetic regulatory events is by no

means clear, new data are quickly emerging. In Drosophila,

for example, OGT is reported to play a role in Polycomb

function (Gambetta et al, 2009), and in human cells,

O-GlcNAc modification on histone H2B is required for

subsequent K120 monoubiquitination (Fujiki et al, 2011).

The interaction evidenced here between TET2/3 and OGT

may shed light on the link between the OGT

glycosyltransferase and epigenetics and may add to the role

of OGT observed in the regulation of MLL5 (Fujiki et al,

2009). Our study reveals an unforeseen genome-wide

crosstalk between OGT and TET2/3 and a novel mode of

regulation of OGT-directed O-GlcNAcylation. The precise

mechanism of how TET impacts OGT activity is unclear and

several possibilities exist (e.g., by other proteins associated

with TET–OGT or by post-translational modifications). Our

data allow however for a model wherein TET2 and TET3

might function as fine-tuning GlcNAcylation effectors, not

only on epigenetic complexes such as SET1/COMPASS, but

also other transcriptional regulation targets whose function is

modulated by this modification.

In conclusion, our results reveal a relationship between

TET2/3 and OGT with their direct interaction and influence

on the H3K4 SET1/COMPASS complex shedding new light on

the modes of action of TET proteins, impact upon chromatin

biology, regulation of OGT activity, and the epigenetic me-

chanisms in which they participate.

Materials and methods

HT mammalian pulldown assay
HEK293T cells (12�106 cells) were plated in a 150-mm dish and
grown to 70–80% confluency (B18 h). The cells were then trans-
fected with 30mg of plasmid DNA using FuGENE HD Transfection
Reagent (Promega) for 24 h, according to manufacturer’s protocol.
Cells expressing HT-fusion proteins or HT-Ctrl were incubated in
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Figure 5 Model connecting DNA modifying enzymes, TETs, a
master cellular sensor protein, OGT, and a histone modifying
complex, SET1/COMPASS. Based on our findings, a hierarchical
model of the involved proteins, with the cascade of their respective
activities, can be envisaged as followed: (1) The first sequence of
events in the cascade is the formation of TET2/3–OGT interaction,
which promotes OGT GlcNAcylation on numerous proteins, includ-
ing HCF1; (2) In a TET-dependent manner, a GlcNAcylated HCF1 is
important for the formation of the SET1/COMPASS; (3) In the last
step, both TET proteins and OGTactivity favour binding of SETD1A
to chromatin, an event necessary for histone H3K4me3 and
subsequent transcriptional activation.
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mammalian lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl,
1% Triton X-100, and 0.1% sodium deoxycholate) supplemented
with Protease Inhibitor cocktail (Promega) and RQ1 RNase-Free
DNase (Promega) for 10 min on ice. Lysate was then homogenized
with a syringe and centrifuged at 14 000 g for 5 min to pellet cellular
debris. Clarified lysate was incubated with HaloLink Resin
(Promega) that had been pre-equilibrated in resin wash buffer
(TBS and 0.05% IGEPAL CA-640; Sigma) for 15 min at 221C with
rotation. Resin was then washed five times with wash buffer after
the initial binding of complexes to the resin and this, to remove non-
specific interactions, and protein interactors were eluted with SDS
elution buffer (50 mM Tris–HCl, pH 7.5, and 1% SDS). This number
of washes reveals minimal non-specific interactions retained in
control samples as determined by silver staining (Figure 1A).
Such approach show quantitatively significantly lower levels of
background as compared to standard Flag purifications using this
affinity purification and washing procedure (Daniels et al, 2012).
Affinity purified complexes were then analysed by nano LC/MS/MS
(MSBioworks) and western blotting.

Chromatin immunoprecipitation
HEK293T or bone marrow cells were crosslinked 10 min at room
temperature with 1% formaldehyde, then the reaction was
quenched by addition of 0.125 M glycine and washed twice with
1� cold PBS. ChIP experiments were performed according to the
Transcription ChIP kit (Diagenode) protocol. Sonication was per-
formed with bioruptor (Diagenode) in cold waterþ ice with the
following settings: 2 cycles of 10 min, sonication strength set on
high, with intervals of 30 s ON/OFF. 2mg of mouse monoclonal
antibody for H3K4me3 (ab1012; Abcam), 6mg of mouse monoclonal
antibody for O-linked N-acetylglucosamine (ab2739; Abcam), 3 mg
of rabbit polyclonal antibody for Tet2 (sc-136926; Santa Cruz), 5 mg
of rabbit polyclonal for HCF1 (A301-399A-1; Bethyl Lab), or the
respective amount of control antibody was incubated with chroma-
tin overnight at 41C. After extensive washing steps, ChIPed DNA
was eluted and de-crosslinked overnight at 651C, then purified
using QIAquick PCR purification kit (Qiagen). 3ml of enriched
fragmented DNA or 3ml of input, supplemented with 0.5mM of
primers and SYBR Green master mix was subjected to 40 cycles
of PCR using LightCycler 480 II (Roche). Percentage of input
recovered after immunoprecipitation was calculated using the DCt

formula: (2� (Ct IP—Ct Input))� 100. Primer sequences are described
in Supplementary Table 1.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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