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Abstract

Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells
during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body
of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-
independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly
to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode
Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only
ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes
programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late
pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3,
CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions
independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four
caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from
cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by
neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully
resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and
are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote
apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway
involving CED-3 activation.
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Introduction

The elimination of unnecessary or dangerous cells is funda-

mental to development, tissue homeostasis and disease mitigation

in multicellular organisms. The primary mechanism of cell

elimination is apoptosis, a form of cell suicide that was originally

defined by evolutionarily conserved morphological characteristics

that include chromatin condensation, shrinkage of the cytoplasmic

volume and membrane blebbing [1] and by biochemical features

like phosphatidylserine exposure and DNA fragmentation [2,3].

Apoptosis serves as a highly controlled mechanism for the removal

and degradation of damaged or unnecessary cells, and blocking

apoptosis can lead to catastrophic forms of cell death, such as

necrosis, which can cause dangerous inflammatory responses [4].

The discovery of the CED-3 caspase as a cell-autonomous

executioner of programmed cell death in the nematode Caenor-

habditis elegans led to the paradigm that the caspase family of

cysteine proteases drives apoptosis through the cleavage of

substrate proteins at specific peptide sequences [5,6]. Indeed,

caspases have evolutionarily conserved roles in apoptosis through-

out metazoa [7].

Despite the compelling causal link between caspases and

apoptosis, a growing body of evidence indicates that apoptosis

can occur in the absence of caspases [4]. For example, mouse cells

lacking Apaf-1, an activator of the apical caspase Caspase-9, which

in turn activates effector caspases, can undergo apoptosis in

response to pro-apoptotic stimuli [8]. In the presence of caspase

inhibitors, TNF (tumor necrosis factor) can induce a form of cell

death termed necroptosis, which exhibits characteristics of both

necrosis and apoptosis [4,9]. The mitochondrial flavoprotein AIF

(apoptosis-inducing factor) is thought to promote apoptotic cell

death in mammals even in the presence of caspase inhibitors [10].

Furthermore, cell death with aspects of apoptotic morphology

occurs in non-metazoans, including unicellular eukaryotes and
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prokaryotes, that lack clear caspase homologs [11,12]. Thus, it is

possible that apoptosis, as defined morphologically and biochem-

ically, can occur in the absence of caspases.

A standard approach to assaying the caspase-dependence of

apoptotic stimuli in tissue cell culture is through the pharmaco-

logical inhibition of caspases. However, it is difficult to prove that

caspase activity is completely blocked in such experiments, and it is

possible for caspase inhibitors to trigger non-apoptotic forms of cell

death [13]. Studies of caspase-independent apoptosis in metazoans

are also complicated by the existence of multiple caspases with

potentially redundant functions in promoting cell death. The

human genome, for example, encodes at least 10 caspase

homologs, seven of which (caspases-2, -3, -6, -7, -8, -9 and -10)

have demonstrated roles in apoptosis [14]. The genome of

Drosophila melanogaster encodes seven caspase homologs (dcp-1,

dronc, drice, dredd, decay, damm and strica) [7], several of which are

essential for organismal viability. The C. elegans genome encodes

three caspase homologs (csp-1, csp-2 and csp-3) in addition to ced-3

[15]. Therefore, the use of mutant animals or cell lines deleted for

one or two caspases might not eliminate all caspases expressed

within a specific cell. Furthermore, since caspases have different

substrate specificities [16], the use of a chemical substrate-

competitive caspase inhibitor might not completely block all

caspase activity. Ideally, experiments that test whether apoptosis

can occur in the absence of caspases should be performed using

mutant animals or cells that are genetically deleted of all caspase

homologs. In this regard, C. elegans is an excellent animal for

studies of caspase-independent programmed cell death, because:

(1) there are several examples of ced-3-independent programmed

cell death in C. elegans [17–19]; (2) mutants of ced-3, csp-1, csp-2 and

csp-3 are viable [18–23]; and, (3) it is relatively easy to generate

multiply mutant C. elegans strains.

The ced-3 caspase gene is required for most programmed cell

deaths that occur during C. elegans development [5,20]. However, a

small number of cells die in animals carrying null mutations of ced-

3. The male-specific linker cell, which facilitates the connection of

the vas deferens to the cloaca and then dies, undergoes a non-

apoptotic cell death that bears morphological features (e.g.,

nuclear membrane crenellation) not seen with other C. elegans

programmed cell deaths and that occurs in ced-3 mutants as well as

in animals doubly mutant for ced-3 and csp-1, csp-2 or csp-3

[18,20,24]. We recently showed that a subset of cells fated to die in

the C. elegans embryo are eliminated from ced-3 mutants via a

caspase-independent shedding mechanism [19]. Interestingly, the

shed cells appear apoptotic, exhibiting chromatin condensation,

TUNEL-reactive DNA degradation and phosphatidylserine expo-

sure despite the absence of all four caspases. Unlike other

apoptotic programmed cell deaths of C. elegans, the shed cells do

not undergo phagocytosis by engulfing cells; instead, they are

extruded from the developing embryo. By contrast, a small

number of apoptotic cell corpses are visible in the heads of ced-3

larvae [17]. Like other programmed cell deaths of C. elegans, these

ced-3-independent cell corpses have a refractile appearance when

viewed with Nomarski optics and are not extruded from the

animal, suggesting that a ced-3-independent cell-killing activity

contributes to these typical programmed cell deaths. The other

caspase homologs, csp-1, csp-2 and csp-3, are obvious candidates for

driving this ced-3-independent cell-killing activity. However, it has

recently been reported that csp-2 and csp-3 inhibit apoptosis in the

germline and soma, respectively [22,23].

To date, the C. elegans caspase homolog csp-1 has no known

function in vivo, including in apoptosis. An isoform of CSP-1 can

cleave and possibly activate the CED-3 pro-protein in vitro [15]. We

tested whether csp-1 can promote or inhibit programmed cell death

and whether it is regulated by the canonical programmed cell death

pathway that activates ced-3. We found that csp-1 encodes a pro-

apoptotic caspase activity that promotes programmed cell death

independently of the CED-3 caspase, CED-4 (the Apaf-1 homolog

that activates CED-3), and CED-9 (a Bcl-2 family protein that

negatively regulates CED-3 activation via inhibition of CED-4).

Furthermore, we tested whether csp-1, csp-2 and csp-3 contribute to

the ced-3-independent cell-killing activity that generates cell corpses

in the heads of ced-3 mutant larvae and found that these apoptotic

cell deaths can occur in the complete absence of caspases. Thus,

during C. elegans development programmed cell death followed by

cell-corpse engulfment is achieved through three redundant

pathways: (1) a ced-3-dependent pathway; (2) a csp-1-dependent

pathway, which is not regulated by the canonical apoptosis pathway

that controls ced-3; and, (3) a caspase-independent pathway.

Results

csp-1 promotes the deaths of a subset of somatic cells
fated to die

The C. elegans genes csp-1, csp-2 and csp-3 are paralogs of the pro-

apoptotic ced-3 caspase gene [15], which is required for most

programmed cell deaths in the worm [5,20]. Given the conserved

role of caspases in apoptosis, we tested csp-1, csp-2 and csp-3 for

roles – both pro- and anti-apoptotic – in programmed cell death.

We used mutations of csp-1 (n4967 and n5133) and csp-2 (n4871)

that completely remove the genomic sequences encoding their

respective predicted caspase active sites (SACRG in the CSP-1

protein, and VCCRG in the CSP-2 protein) and therefore

eliminate any potential caspase activity encoded by these genes

(ref. [19]; Figure 1A). csp-3 lacks a caspase active site (ref. [15,22];

Figure 1A); we used the csp-3 deletion mutation n4872, which is

likely a null allele [19].

Recently, it was reported that mutations in csp-2 and csp-3 cause

ectopic cell deaths in the germline and soma, respectively, and

hence that csp-2 and csp-3 inhibit apoptosis [22,23]. We therefore

tested whether csp-1 mutants have ectopic cell deaths indicative of

a loss of anti-apoptotic function. Using Nomarski optics and a

Author Summary

Caspases are cysteine proteases that in many cases drive
apoptosis, an evolutionarily conserved and highly stereo-
typed form of cellular suicide with functions in animal
development and tissue maintenance. The dysregulation
of apoptosis can contribute to diseases as diverse as
cancer, autoimmunity, and neurodegeneration. Caspases
are often thought to be required for, or even to define,
apoptosis. Although there is evidence that apoptosis can
occur in the absence of caspase activity, caspase-indepen-
dence can be difficult to prove, as most animals have
multiple caspases. The nematode Caenorhabditis elegans
has four caspases, CED-3, CSP-1, CSP-2, and CSP-3. CED-3
has a well-established role in apoptosis, but less is known
about the functions of the CSP caspases. In this study, we
show that CSP-1 promotes apoptosis in the developing C.
elegans embryo and that CSP-1 is regulated differently
than its homolog CED-3. Furthermore, we show that
apoptosis and the engulfment of dying cells can occur in
mutants lacking all four caspases, proving that neither
apoptosis nor cell-corpse engulfment require caspase
function and that caspase-independent activities can
contribute to apoptosis of some cells during animal
development.

ced-3-Independent Programmed Cell Death
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Pmec-3::gfp transgene that expresses GFP in the six touch neurons

(AVM, two ALM, PVM and two PLM neurons) in addition to the

FLP and PVD neurons, we examined csp-1 mutants for missing

cells that normally survive. We observed that csp-1(n4967) mutants

contained a full complement of touch neurons and pharyngeal

cells (Table S1). We also noted that csp-1(n4967) failed to cause

ectopic cell deaths in sensitized animals carrying the loss-of-

function mutation n2812 in the anti-apoptotic gene ced-9, a

homolog of human BCL2 (Table S1; data not shown). These

results indicate that csp-1 does not have an obvious anti-apoptotic

function in the soma. Consistent with a previous report that csp-2

does not affect somatic cells [23], a mutation in csp-2 did not cause

ectopic cell deaths in the somatic cells we examined (Table S1).

However, we failed to observe the ectopic cell deaths in csp-3

mutants previously reported [22]. Ectopic somatic cell deaths have

also been noted in animals with loss-of-function mutations in ced-9

[25] or tat-1 [26,27], which encodes an aminophospholipid

translocase required for the asymmetric distribution of phospha-

tidylserine on the inner leaflet of the plasma membrane. As

expected, we found that ced-9 mutant larvae were missing

pharyngeal cells and many touch neurons: more than 80% of

PLM neurons were not present in ced-9(n2812) larvae (Table S1).

However, we failed to detect the previously reported ectopic cell-

death defect of tat-1 mutants (ref. [26,27]; Table S1); we used the

same deletion alleles for csp-3 and tat-1 and assayed the same cells

that had been characterized in the previous studies.

To determine whether the C. elegans caspase homologs csp-1, csp-2

or csp-3 promote programmed cell death in the soma, we examined

animals carrying csp deletion mutations for extra cells that failed to

undergo programmed cell death in the anterior pharynx. As many as

16 extra cells can be counted in the anterior pharynges of mutants

with strong defects in programmed cell death, e.g., ced-3(n3692) (ref.

[28]; Table 1). Single mutations in csp-1, csp-2 or csp-3 failed to cause

detectable defects in programmed cell death (Table 1; data not

shown). However, we observed that mutations in csp-1 (but not csp-2

or csp-3) caused the survival of pharyngeal cells in sensitized strains

carrying a weak mutation in the caspase gene ced-3 (Table 1). The

partial loss-of-function ced-3 mutations n2427 and n2436 cause slight

and intermediate defects in apoptosis, respectively (ref [17]; Table 1;

data not shown). The n4967 and n5133 mutations, both of which

delete the putative active site of CSP-1 (Figure 1A), enhanced the cell-

death defects of ced-3(n2427) and ced-3(n2436) mutants, increasing the

number of extra cells in their anterior pharynges on average by 1.4

and 2.4 cells, respectively (Table 1). These results are consistent with

our RNAi experiments in which csp-1B dsRNA (which likely

inactivated all csp-1 transcripts) was injected into the gonads of rrf-

3(pk1426); ced-3(n2436) animals and caused an enhanced cell-death

defect in their progeny (Figure 1C); we used the rrf-3 mutation to

increase sensitivity to RNAi [29]. The cell-death defect conferred by

the csp-1(n4967) mutation was rescued by extrachromosomal arrays

carrying a 9 kb genomic csp-1 fragment that included the entire csp-1

coding region, 1.5 kb of genomic sequence 59 of the csp-1A

translational start codon and 3.5 kb of genomic sequence 39 of the

csp-1A/B translational stop codon (Figure 1B; Table S2). These results

demonstrate that csp-1 encodes a detectable cell-killing activity that

contributes to programmed cell death in C. elegans. Mutation of csp-2

and/or csp-3 neither enhanced nor suppressed the cell-death defects

of strains mutant for csp-1 and/or ced-3 (Table 1; Table S3),

suggesting that csp-1 and ced-3 are the only C. elegans caspase genes

with functions in somatic programmed cell deaths.

The development of the anterior part of the C. elegans pharynx

involves 16 programmed cell deaths, all of which appear to be

Figure 1. The B and/or C isoforms of csp-1 promote programmed cell death. (A) Representations of the intron-exon organization of the
three known csp-1 mRNA isoforms (A, B and C). Red bars indicate the csp-1 deletion alleles used in this study; arrowheads indicate the SACRG
sequence that encodes the caspase active-site. The graphic was generated using the Intron-Exon Graphic Maker (N. Bhatla; www.wormweb.org). (B)
Extrachromosomal arrays carrying a wild-type genomic fragment of the csp-1 locus or a mutant version that expresses only the B or C isoforms can
rescue the csp-1(n4967) mutant phenotype. The csp-1 PD-only transgene contains two nonsense mutations that encode early stop codons affecting
the B and C mRNA isoforms; the csp-1A-only transgene contains a mutation that changes the B/C start codon to an alanine codon; and the csp-1B/C-
only transgene contains two nonsense mutations that encode early stop codons affecting the A isoform. The csp-1 transgenes were injected into csp-
1(n4967); ced-3(n2436) animals, and the resulting independent lines were assayed for csp-1 rescuing activity by counting the number of extra undead
cells in the anterior pharynx. The transgenes and their constructions are described in detail in Materials and Methods, and the complete data for each
transgenic line are provided in Table S2. (C) RNAi knockdown of csp-1 phenocopies the csp-1 mutations. dsRNAs targeting the csp-1 pro-domain or
the csp-1B isoform were in vitro transcribed and injected into the gonads of RNAi-sensitive rrf-3(pk1426); ced-3(n2436) adult hermaphrodites. Progeny
of the injected adults were assayed for extra undead cells in the anterior pharynx. PD, prodomain.
doi:10.1371/journal.pgen.1003341.g001

ced-3-Independent Programmed Cell Death

PLOS Genetics | www.plosgenetics.org 3 March 2013 | Volume 9 | Issue 3 | e1003341



sensitive to ced-3 [17,28,30]. To test whether specific pharyngeal

programmed cell deaths required csp-1, we used GFP reporters to

visualize the survival of cells fated to die, specifically the sister cells

of the M4 and NSM neurons. csp-1 was partially required in ced-

3(n2427) or ced-3(n2436) sensitized strains for the death of the M4

sister cell (Table S4); by contrast, mutation of csp-1 did not affect

the cell deaths of the sister cells of the NSM neurons (data not

shown). Likewise, csp-1 did not appear to function in the

postembryonic programmed cell deaths of the ventral cord or

postdeirid sensilla (Table S4). We conclude that csp-1 promotes cell

death in a subset of cells fated to die during C. elegans development.

The csp-1B and/or C isoforms are required for the cell-
killing activity of csp-1

The csp-1 locus produces three known mRNA isoforms [15], all

of which include the sequence that encodes the presumptive

caspase active site (Figure 1A). The csp-1A transcript contains a

long prodomain not present in the other transcripts, and it uses an

alternative start site that is 3 kb 59 to the start site of the csp-1B and

csp-1C isoforms. To determine which isoforms are required for the

cell-killing activity of csp-1, we peformed experiments in which the

csp-1 rescuing transgene was mutated to express: (1) the A isoform

only, (2) the B and C isoforms only, or (3) a truncated version of

csp-1A including only the prodomain (PD). Extrachromosomal

arrays engineered to express only csp-1-PD or the csp-1A isoform

failed to rescue the cell-death defect of csp-1(n4967) mutants

(Figure 1B; Table S2). By contrast, a csp-1 transgene lacking the

csp-1A translation start codon and predicted to express only the csp-

1B and csp-1C transcripts rescued the csp-1(n4967) defect in

programmed cell death (Figure 1B; Table S2). Consistent with

these results, transgenes expressing the csp-1B cDNA, but not the

csp-1A cDNA, under the control of the mec-7 promoter efficiently

killed touch neurons (Figure 2A–2B; Table 2; data not shown); we

also expresed the csp-1C cDNA under the control of the mec-7

promoter and failed to observe killing of the touch neurons (data

Table 1. The caspase homolog csp-1 promotes programmed cell death in the C. elegans anterior pharynx.

genotype extra cells per anterior pharynx ± SD n p value

The deletion of csp-1, csp-2 or csp-3 alone does not cause a defect in programmed cell death.

wild-type1 0.160.3 14 -

ced-3(n3692)1 11.361.1 14 ,0.00001

csp-1(n4967) 0.360.4 16 n.s.

csp-1(n5133) 0.160.2 19 n.s.

csp-1(tm917) 0.160.3 16 n.s.

csp-2(n4871)1 0.260.4 12 n.s.

csp-3(n4872)1 0.360.6 21 n.s.

Deletion of csp-1, but not csp-2 or csp-3, enhances the defects in programmed cell death caused by partial loss-of-function alleles of ced-3 and ced-4.

ced-3(n2427)1 1.761.2 22 -

csp-1(n4967); ced-3(n2427)2 3.061.3 38 0.0001

csp-1(n5133); ced-3(n2427) 3.261.5 21 0.0008

csp-1(tm917); ced-3(n2427)2 2.661.3 46 0.006

csp-2(n4871) ced-3(n2427)1 1.060.8 20 n.s.

csp-3(n4872); ced-3(n2427)3 1.561.2 16 n.s.

csp-3; csp-2 ced-3(n2427)1 1.961.5 18 -

csp-3; csp-1(n4967); csp-2 ced-3(n2427) 3.261.2 17 0.008

ced-3(n2436)1 6.261.4 37 -

csp-1(n4967); ced-3(n2436) 8.661.6 29 ,0.00001

csp-1(n5133); ced-3(n2436) 8.761.5 19 ,0.00001

csp-1(tm917); ced-3(n2436)2 7.461.6 52 ,0.00001

csp-2(n4871) ced-3(n2436)1 5.461.0 16 n.s.

csp-3(n4872); ced-3(n2436)1 5.661.5 15 n.s.

csp-3; csp-2 ced-3(n2436)1 4.961.7 16 -

csp-3; csp-1(n4967); csp-2 ced-3(n2436) 8.261.4 16 ,0.00001

ced-4(n3158)1 5.062.6 29 -

csp-1(n4967); ced-4(n3158)1 6.562.7 32 0.03

1Homozygous for the integrated transgene nIs106[Plin-11::gfp].
2Includes animals that were either homozygous for unc-75(+) or unc-75(e950).
3Homozygous for dpy-20(e1282ts).
For the statistical comparisons between ced-3(n2427) or ced-3(n2436) and double mutants with each csp allele, p values were considered significant if less than 0.01 to
correct for multiple comparisons.
doi:10.1371/journal.pgen.1003341.t001
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not shown). Ectopic expression of csp-1B from the ser-2d and flp-15

promoters killed the OLL and I2 neurons, respectively (ref. [31];

N. Bhatla and H.R. Horvitz, unpublished results). However, we

noted that tm917, a csp-1 allele that deletes coding regions of only the

csp-1A transcript, enhanced significantly (albeit weakly) the cell-

death defects of ced-3(n2427) and ced-3(n2436) mutants, increasing

the number of extra cells in their anterior pharynges by 0.9 and 1.2

cells, respectively (Table 1). dsRNA targetting the csp-1A prodomain

(csp-1-PD) caused a similar slight enhancement of the cell-death

defect of ced-3(n2436) mutants (Figure 1C), suggesting that, in

addition to the more robust cell-killing activity of the csp-1B

transcript, csp-1A might have a weak cell-killing function.

csp-1B encodes a pro-apoptotic caspase
The proteolytic activity of caspases requires an active-site

cysteine. Previously, it was shown that the CSP-1B protein can

proteolytically process CED-3 in vitro and that this enzymatic

activity required the active-site (SACRG) cysteine of CSP-1B,

C138 [15]. We tested in vivo whether C138 was necessary by

assaying the touch neuron-killing activity of mutant Pmec-7::csp-1B

transgenes in which C138 was changed to a serine. We observed

that the ectopic cell deaths were entirely dependent on the caspase

active site (Table 2). Thus, csp-1B promotes cell death via caspase

activity. The cell deaths induced by a Pmec-7::csp-1B transgene

resulted in cell corpses with apoptotic characteristics (Figure 2C–

2D). When observed with Nomarski optics, the csp-1B-induced cell

deaths exhibited a refractile button-like appearance (Figure 2C)

similar to that of developmental programmed cell deaths.

Transmission electron micrographs of the cell corpses showed

some contraction of the cytoplasmic volume and considerable

condensation of the nuclear chromatin (Figure 2D), which are

general characteristics of apoptotic cells, including those generated

by ced-3 cell-killing transgenes (ref. [32]; data not shown). We

conclude that csp-1B encodes a functional caspase that promotes

programmed cell deaths with apoptotic morphology.

csp-1B cell-killing activity is independent of ced-9 and
ced-4

CED-3, like most caspases, is expressed as an inactive zymogen

with an inhibitory N-terminal prodomain. Trans-auto-proteolysis

Figure 2. csp-1B overexpression induces ectopic cell deaths. (A) Fluorescence image of a transgenic nIs290[Pmec-3::gfp] larva expressing GFP
from the mec-3 promoter in the touch neurons (AVM, ALMs, PVM and PLMs, yellow arrows). mec-3 is also expressed in the FLP and PVD neurons
(white arrowheads). (B) Fluorescence image of a transgenic nIs309[Pmec-7::csp-1B, Pmec-3::gfp] larva expressing CSP-1B from the mec-7 promoter (which
is expressed in the AVM, ALM, PVM and PLM neurons) and GFP from the mec-3 promoter. Note the absence of touch neurons. (C) Nomarski
differential interference contrast (DIC) image of a refractile PLM cell corpse (arrow) in a ced-1(e1735); ced-4(n1162); nIs309 L1 larva. (D) Transmission
electron microscopic image of the cell corpse in (C). ‘‘n’’, nucleus of the cell corpse; scale bar, 0.5 microns.
doi:10.1371/journal.pgen.1003341.g002

Table 2. Ectopic expression of csp-1B from the mec-7
promoter can kill touch neurons, and this killing activity
requires the conserved cysteine in the putative caspase active
site.

% survival

genotype* n AVM ALML/R PVM PLML/R

wild-type [nIs290] 59 100 100 100 100

Pmec-7::csp-1B Line #1 [nIs307] 52 71 61 40 13

Pmec-7::csp-1B Line #2 [nIs308] 41 49 32 27 16

Pmec-7::csp-1B Line #3 [nIs309] 60 2 1 3 0

Pmec-7::csp-1B(C138S) Line #1
[nIs368]

23 100 100 100 98

Pmec-7::csp-1B(C138S) Line #2
[nIs369]

23 100 100 100 87

Pmec-7::csp-1B(C138S) Line #3
[nIs370]

25 100 100 100 100

n, number of animals assayed; for each animal, six touch neurons (AVM, ALML, ALMR,
PVM, PLML and PLMR) were scored for survival using the Pmec-3::gfp reporter transgene.
*Each strain contained the transgene Pmec-3::gfp, which expressed GFP in the
FLP, AVM, ALM, PVM, PVD and PLM neurons.
doi:10.1371/journal.pgen.1003341.t002
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of the CED-3 pro-protein at two aspartate residues removes the

pro-domain and yields two subunits that form the active caspase

[33]. CED-3 auto-activation is dependent on its prodomain and is

facilitated by the association of two CED-3 pro-proteins within an

octameric complex formed with the Apaf-1 homolog CED-4 [34–

36]. Under normal cellular conditions, CED-4 is sequestered by

CED-9 at mitochondria through a direct protein-protein interac-

tion [37–39]. In response to upstream pro-apoptotic signals and

the consequent expression of the BH3-domain-only protein EGL-

1, which binds to and inhibits CED-9 [40], CED-4 is released

from CED-9 and translocates to the nuclear periphery [37,41],

where it facilitates CED-3 activation [38]. Thus, the activation of

CED-3 is controlled by an apoptosis pathway involving a BH3-

domain-only protein, a member of the Bcl-2 family of apoptosis

regulators, and a homolog of the apoptosome complex protein

Apaf-1. The basic elements of this apoptosis pathway are

evolutionarily conserved in mammals and are responsible for the

activation of caspases in response to cell-intrinsic apoptotic stimuli

[7].

Consistent with the role of ced-9 in negatively regulating ced-3

activation, it was previously shown that null mutations of ced-9

enhance the touch neuron-killing activities of Pmec-7::ced-3 transgenes

[32]. (These experiments were performed using a ced-3(null)

background to suppress the ced-3-dependent inviability of ced-9(null)

animals.) Furthermore, this enhancement is dependent on ced-4

[32], indicating that the absence of CED-9 activates endogenous

CED-4 within the touch neurons and that CED-4 activation

elevates CED-3 activity. Unlike the CED-3 zymogen, CSP-1B lacks

a long prodomain, suggesting that it might be activated via an

alternative mechanism (i.e., independently of CED-4 and CED-9).

To determine whether these canonical apoptosis regulators control

CSP-1B activation, we introduced the ced-9(n2812) mutation into

ced-3(n3692) strains carrying Pmec-7::csp-1B transgenes and assessed

the effect of this ced-9 null mutation on PLM survival. In contrast to

its effects on Pmec-7::ced-3–mediated PLM killing, ced-9(n2812) failed

to enhance PLM killing in Pmec-7::csp-1B strains with a ced-3(n3692)

mutant background (Figure 3A). Instead, ced-9(n2812) partially

suppressed csp-1B-mediated PLM death (Figure 3A). CED-9 has a

poorly understood pro-apoptotic activity in addition to its anti-

apoptotic role in CED-4 inhibition [42], and it is possible that this

ced-9 pro-apoptotic activity contributed to the deaths of cells

expressing ectopic CSP-1B. Nevertheless, our results indicate that

csp-1B-mediated cell killing, unlike ced-3-mediated cell killing, is not

negatively regulated by ced-9 and suggest that CSP-1B is activated

independently of CED-9.

We also observed that the expression of a Pmec-7::csp-1A

transgene in ced-3(null) mutant strains failed to cause PLM cell

death, even in a ced-9(null) background (Figure S1). These results

suggest that the CSP-1A isoform (which contains a long

prodomain similar to that of CED-3) does not promote

programmed cell death, even in the absence of the anti-apoptotic

protein CED-9. A role for csp-1A in cell death cannot be excluded

entirely, as it is possible that endogenous CSP-1A requires a co-

factor not present in the touch neurons to mediate cell killing.

Since CSP-1B can proteolytically cleave CED-3 in vitro [15], we

tested whether the csp-1B cell-killing activing requires the

endogenous ced-3 and ced-4 genes. The ced-3(n3692) and ced-

4(n1162) mutations weakly suppressed csp-1B-mediated PLM

death (Figure 3B), and it is possible that the endogenous csp-1

can in part promote programmed cell death through ced-3.

Nonetheless, most csp-1B cell-killing activity was independent of

ced-4 and ced-3 (Figure 3B). Loss of endogenous csp-1 failed to

suppress PLM death in strains carrying Pmec-7::ced-3 or Pmec-7::ced-4

transgenes (Figure 3C–3D). Together, our results are consistent

with a model in which csp-1B promotes programmed cell death at

least mostly independently of and in parallel to the canonical

apoptosis pathway (Figure 3E).

csp-1 expression in the maternal germline contributes to
embryonic programmed cell death

To determine which C. elegans cells express csp-1, we directly

visualized endogenous csp-1 transcripts via fluorescence in situ

hybridization (FISH) experiments using Cy5- and ALEXA-

labelled probes complementary to the csp-1B transcript (i.e.,

targeted to all csp-1 transcripts) or to the csp-1A prodomain (specific

to the csp-1A trancript). To our surprise, csp-1 mRNA was not

detectable in the somatic cells of wild-type or egl-1(n1084 n3082)

mutant embryos, larvae or adult hermaphrodites (data not shown).

By contrast, csp-1 transcripts were present in the germlines of L4-

stage larval and adult hermaphrodites (Figure 4A–4B). This

expression was restricted to the late pachytene stage of meiosis I in

both L4 larval gonads (in pachytene nuclei adjacent to differen-

tiating sperm) and adult gonads (in pachytene nuclei adjacent to

the bend of the gonad arm) (Figure 4A–4B). Both csp-1A and csp-

1B/C transcripts were expressed in the adult pachytene germ cells,

as indicated by the presence of FISH foci recognized by the csp-1A

prodomain probes and foci recognized primarily by the csp-1B

probes and only weakly by the csp-1A probes (Figure 4C).

Stochastic and ionizing radiation (IR)-induced germline cell

deaths occur during the late pachytene stage of oocyte develop-

ment in adult gonads [43,44]. However, csp-1 (unlike ced-3) was not

required for either stochastic or IR-induced germline apoptosis,

even in ced-3(n2436) strains sensitized for defects in germ-cell death

(Figure 4D). In these experiments, apoptotic germ cells were

identified using a transgene that expresses a functional GFP::CED-

1 fusion protein that envelopes dying cells engulfed by the gonadal

sheath [45,46]. We also failed to detect differences in either

stochastic or IR-induced germline cell death between csp-1

mutants and wild-type animals in experiments in which apoptotic

germ cells were quantified by acridine orange staining or by direct

observation of their refractile morphology using Nomarski optics

(data not shown). We also noted that the level of csp-1 transcript

expression in the germline (as determined by FISH) was not

affected by either ionizing radiation or by mutation of egl-1 or ced-3

(data not shown).

Since we detected csp-1 expression in the adult germline but not

in somatic cells of the embryo, we tested whether maternally

supplied csp-1 transcript was necessary for the zygotic function of

csp-1 in programmed cell death. Indeed, in sensitized genetic

backgrounds (ced-3(n2427) and ced-3(n2436)), csp-1(+) progeny of

csp-1(n4967) hermaphrodites (M2Z+ animals) had more undead

pharyngeal cells than the csp-1(+) progeny of csp-1(+) hermaph-

rodites (M+Z+ animals) or the csp-1(n4967) progeny of csp-1(+)

hermaphrodites (M+Z2 animals) (Table 3). Thus, csp-1 expressed

in the maternal germline is necessary for the csp-1 pro-apoptotic

activity in embryonic programmed cell deaths. Given that we

could not detect csp-1 expression in either embryos or larvae, it is

therefore not surprising that the postembryonic programmed cell

deaths of the ventral cord and postdeirid sensilla were unaffected

by mutation of csp-1 (Table S4).

Programmed cell deaths occur in animals completely
lacking all caspase genes

Most programmed cell deaths in C. elegans require ced-3 [20].

However, some cells die in mutants completely lacking ced-3. We

previously reported that a subset of cells fated to die can be

eliminated from ced-3 mutant embryos via a cell-shedding
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mechansm [19]. In that study, we noted that cell shedding from

ced-3 mutants occurs independently of csp-1, csp-2 and csp-3:

quadruple mutants lacking all four caspases also generate shed

cells, indicating that cell elimination by this mechanism is

completely caspase-independent [19]. Like most programmed cell

deaths, the cells generated by caspase-independent extrusion are

apoptotic in appearance. However, unlike caspase-dependent cell

corpses, shed cells do not undergo phagocytosis by engulfing cells.

The death of the male linker cell, which also occurs independently

of ced-3, is non-apoptotic and requires the heterochronic protein

LIN-29, its binding partner MAB-10 [47], and the polyglutamine

repeat protein PQN-41 (ref. [18,24]; Table S5). Previously it was

shown that this cell death occurs in double-mutant males in which

ced-3 and an additional csp gene (csp-1, csp-2 or csp-3) were

inactivated [18]. We have now examined males lacking all four

caspases and observed that the linker cell died in 100% of csp-3;

Figure 3. csp-1B cell-killing activity is not regulated by the canonical programmed cell death pathway. (A–D) The percentages of PLM
cells that survive in strains carrying Pmec-7::ced-3, Pmec-7::csp-1B or Pmec-7::ced-4 transgenes. (A) ced-9 protects against ced-3- but not csp-1B-cell-killing
transgenes. (B) The cell-killing activity of csp-1B transgenes is mostly independent of ced-3 and ced-4. The cell-killing activities of (C) ced-3 and (D) ced-
4 transgenes do not require csp-1. PLM survival was scored based on the presence of GFP expressed from the mec-3 promoter. Asterisks indicate
p,0.05 in a Fisher’s exact test. All strains in (A) contained ced-3(n3692). (E) A model depicting the genetic pathways regulating the caspase genes csp-
1 and ced-3 (see text).
doi:10.1371/journal.pgen.1003341.g003
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csp-1; csp-2 ced-3 mutants (Table S5). The csp-3; csp-1; csp-2 ced-3

quadruple mutants were viable and fertile. Thus, both zygotic and

maternal caspase contributions were eliminated. Our results

therefore confirm that this cell death is indeed completely

caspase-independent.

In addition, cell corpses are visible in the heads of larvae carrying

null alleles of ced-3 (ref. [17]; Table 4). All programmed cell deaths in

the developing heads of wild-type animals occur embryonically and

are engulfed and degraded prior to hatching (ref. [30,48]; Table 4).

To detect ced-3-independent programmed cell deaths in larval

heads, we used mutations (e.g., ced-1(e1735), ced-6(n2095) or ced-

7(n1996)) that cause defects in cell-corpse engulfment and result in

the persistence of many embryonic cell corpses into larval stages (ref.

[49,50]; Table 4). Like most wild-type cell corpses, the ced-3-

independent cell corpses were refractile in appearance as observed

with Nomarski optics and were not extruded from the animal (data

not shown). We also observed that larvae mutant for ced-4 or egl-1

contained similar cell corpses, demonstrating that their generation

does not require the canonical pro-apoptotic pathway that mediates

most programmed cell deaths (Table 4).

We tested whether the small number of cell corpses visible in ced-3

larval heads are generated by the other C. elegans caspase genes and

found that all double, triple and quadruple caspase mutants that we

examined contained a small number of refractile corpses (Table 4).

For example, 39% of csp-3; csp-1; ced-6; csp-2 ced-3 mutant animals

contained at least one refractile cell corpse (Table 4), indicating that

Figure 4. csp-1 is expressed in late pachytene cells of the L4 and adult hermaphrodite germline. Fluorescence in situ hybridization
images of gonad arms of (A) an L4 hermaphrodite and (B) an adult hermaphrodite hybridized with Cy5-labelled probes complementary to csp-1B. The
Cy5-labelled probes are visible as green puncta; the gonads are outlined in white. A schematic representation is shown above each micrograph. (C)
Fluorescence in situ hybridization images of an adult hermaphrodite gonad hybridized with ALEXA594-labelled probes (red puncta) complementary
to the region of csp-1A that encodes the prodomain (csp-1A) and Cy5-labelled csp-1B probes (green puncta) that hybridize to all csp-1 transcript
isoforms (total csp-1). White arrowheads indicate csp-1A-specific puncta; orange arrows indicate csp-1B-specific puncta, which are recognized strongly
by the total csp-1 probes but only weakly by the csp-1A-specific probes. (D) The number of CED-1::GFP-positive apoptotic cells in the gonads of
caspase mutants exposed to 0 Gy and 120 Gy of ionizing radiation at the L4 larval stage. The strains were scored at 24 hrs and 48 hrs post L4-stage.
Error bars indicate standard deviations.
doi:10.1371/journal.pgen.1003341.g004
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these programmed cell deaths occur in animals lacking all C. elegans

caspases. We observed caspase-independent cell corpses in different

regions of the larval head, including positions internal and external to

the pharynx, which suggests that multiple cell lineages – at low

frequencies – generated caspase-independent cell corpses. Surprising-

ly, we discovered that engulfment-competent ced-3 and csp-3; csp-1; csp-

2 ced-3 mutants also contained refractile cell corpses (Table 4). The

number of cell corpses per ced-3 or csp-1; csp-2 ced-3 larva increased

until 12 to 24 hours post hatching (see below; data not shown),

indicating that at least some of the cell deaths occurred after

embryogenesis. Given that all programmed cell deaths in the head

normally occur embryonically and that cell corpses are never observed

in the heads of wild-type larvae, we concluded that timing of cell

deaths in these ced-3 mutants was delayed. Thus, caspase-independent

cell corpses can undergo an inefficient programmed cell death with

slow kinetics in the absence of CED-3 activity, indicating that these

cells likely die via CED-3-mediated apoptosis in wild-type animals.

Caspase-independent cell corpses exhibit apoptotic
morphology

Despite the strong causal link between caspase activation and

apoptosis, recent studies have demonstrated that many morpho-

logical and biochemical changes associated with apoptosis can

occur in the absence of caspases [4,19,21]. For example, in C.

elegans the shed cells of csp-3; csp-1; csp-2 ced-3 quadruple mutants

exhibit phosphatidylserine exposure, expression of the pro-

Table 3. csp-1 is maternally required for programmed cell deaths that occur embryonically in the presumptive anterior pharynx.

zygotic genotype maternal genotype
extra cells per ant.
pharynx ± SD n p value

ced-3(n2427)a ced-3(n2427) 1.060.9 20 -

csp-1(n4967)/+; ced-3(n2427)b csp-1(n4967); ced-3(n2427) 3.261.2 20 ,0.0001

csp-1(n4967)/+; ced-3(n2427)a ced-3(n2427) 1.761.0 20 0.018

ced-3(n2436)a ced-3(n2436) 6.261.2 18 -

csp-1(n4967)/+; ced-3(n2436)b csp-1(n4967); ced-3(n2436) 8.061.8 18 0.002

csp-1(n4967)/+; ced-3(n2436)a ced-3(n2436) 6.361.3 18 n.s.

aHeterozygous for unc-30(e191)/+.
bHeterozygous for unc-75(e950)/+.
doi:10.1371/journal.pgen.1003341.t003

Table 4. Cell deaths occur in the absence of all C. elegans caspase genes.

genotype n % with $1 corpse corpses per head ± SD

ced-1(e1735) 23 100 21.365.3

ced-1; ced-3(n3692) 49 27 0.360.5

ced-1; ced-4(n1162) 25 36 0.460.6

ced-1; egl-1(n1084 n3082) 26 50 0.660.7

ced-1; csp-1(n4967) 29 100 23.464.7

ced-1; csp-2(n4871) 24 100 20.765.6

ced-1; csp-1(n4967); ced-3(n3692) 30 27 0.360.5

ced-1; csp-1(n4967); csp-2(n4871) ced-3(n3692) 24 21 0.260.4

ced-7(n1996) 21 100 30.164.4

ced-7; ced-3(n3692) 22 23 0.360.6

csp-1(n4967); ced-7 19 100 30.364.3

csp-1(n4967); ced-7; ced-3(n3692) 19 37 0.460.5

csp-3(n4872); csp-1(n4967); ced-7; csp-2(n4871) ced-3(n3692) 32 34 0.460.6

ced-6(n2095) 24 100 19.864.3

csp-3(n4872); csp-1(n4967); ced-6; csp-2(n4871) ced-3(n3692) 36 39 0.460.6

wild-type 28 0 0.060.0

ced-3(n3692) 43 14 0.160.4

ced-3(n2452) 27 41 0.460.5

csp-3(n4872); csp-1(n4967); csp-2(n4871) ced-3(n3692) 25 16 0.260.4

csp-3(n4872); csp-1(n4967); csp-2(n4871) ced-3(n2452) 34 26 0.360.4

The number of refractile cell corpses per head was counted in L1 larvae within one hour of hatching.
doi:10.1371/journal.pgen.1003341.t004
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apoptotic BH3-only gene egl-1, and chromatin condensation

[19]. To determine whether these apoptotic attributes are

evident in caspase-independent programmed cell deaths that do

not involve extrusion of the dying cell from the embryo, we

characterized the cell corpses visible in caspase-deleted larvae

(Figure 5 and Figure 6). In most of these experiments, we used

strains with the wild-type csp-3 allele, because (1) csp-3 lacks a

caspase active-site [15]; (2) although previous studies reported

that csp-3 has an anti-apoptotic function in somatic cells [22],

we were unable to replicate those findings (Table S1); and, (3)

the presence or absence of a csp-3 mutation had no effect on the

frequency or appearance of caspase-independent corpses

(Table 4; Figure 6B; data not shown). Like ced-3-mediated

programmed cell deaths in wild-type animals, the caspase-

independent corpses expressed egl-1, the upstream activator of

the canonical apoptosis pathway (Figure 5A). Also, these cell

corpses displayed phosphatidylserine on their cell surfaces, as

indicated by the phosphatidylserine-binding reporter MFG-

e8::Venus (Figure 5B), and exhibited many of the morphological

hallmarks of apoptosis, including contraction of cytoplasmic

volume and, in some but not all cases, condensation of nuclear

chromatin (Figure 5C).

Figure 5. The cell corpses of caspase-deleted mutants are cytologically and morphologically apoptotic. (A) Nomarski DIC and
fluorescence images of a cell corpse within the head of a ced-1(e1735); csp-1(n4967); csp-2(n4871) ced-3(n3692) L1 larva carrying the integrated
transgene nIs342[Pegl-1::gfp], a transcriptional reporter that expresses GFP under the control of the BH3 domain-only encoding gene egl-1. (B)
Nomarski DIC and fluorescence images of a cell corpse within the head of a ced-1(e1735); csp-1(n4967); csp-2(n4871) ced-3(n3692) L1 larva carrying the
extrachromosomal array nEx1646[Pdyn-1::mfg-e8::Venus], a fusion protein that binds to cell-surface exposed phosphatidylserine. (C) Representative
transmission electron micrographs of cell corpses from ced-1(e1735); csp-1(n4967); csp-2(n4871) ced-3(n3692) larvae 24 hrs post hatching. ‘‘n’’, nuclei of
the cell corpses; scale bars, 0.5 microns. Note the difference in chromatin condensation between the two cell corpses.
doi:10.1371/journal.pgen.1003341.g005

Figure 6. Caspase-independent cell corpses are engulfed and degraded. (A) Nomarski DIC and fluorescence images of a cell corpse from a
ced-1(e1735); csp-1(n4967); csp-2(n4871) ced-3(n3692) L1 larva carrying the integrated transgene nIs400[Pced-1::ced-1DC::gfp], which expresses a non-
rescuing CED-1DC::GFP fusion protein. CED-1 is a transmembrane receptor that is expressed on engulfing cells, binds to apoptotic cell corpses, and is
required for phagocytosis [46]. (B) Nomarski DIC and fluorescence images of a cell corpse from a csp-3(n4872); csp-1(n4967); csp-2(n4871) ced-3(n3692)
L1 larva stained with acridine orange (AO), which fluoresces in engulfed cell corpses undergoing degradation in endosomal compartments. (C) The
fraction of csp-1(n4967); csp-2(n4871) ced-3(n3692) and ced-1(e1735); csp-1(n4967); csp-2(n4871) ced-3(n3692) with 0, 1, 2 or .2 cell corpses at different
time points post hatching. Asterisks indicate p,0.05 in a Mann-Whitney test comparing the two genotypes at a given time point.
doi:10.1371/journal.pgen.1003341.g006

ced-3-Independent Programmed Cell Death

PLOS Genetics | www.plosgenetics.org 10 March 2013 | Volume 9 | Issue 3 | e1003341



Additionally, we noted that the caspase-independent cell corpses

frequently stained with acridine orange (Figure 6A), suggesting

that these corpses are engulfed, internalized and degraded via

endosomal pathways, as are canonical programmed cell deaths

[30,48,49,51]. Indeed, we found that the caspase-independent

corpses were recognized by CED-1 (Figure 6B), a receptor

expressed on engulfing cells required for the efficient phagocytosis

of cell corpses [46,49,50]. The recognition of caspase-independent

cell corpses by CED-1 appeared to be functionally important, as

ced-1; csp-1; csp-2 ced-3 larvae contained more corpses than csp-1;

csp-2 ced-3 larvae (Figure 6C). Given that ced-1 and other genes that

function in cell-corpse engulfment promote programmed cell

death [52,53], it is unlikely that the ced-1(e1735) loss-of-function

mutation caused additional cell deaths in the caspase-deleted

mutants. Instead, the extra cell corpses in ced-1 mutant larvae likely

reflected an engulfment defect, consistent with the comparatively

rapid degradation and disappearance of most caspase-independent

corpses in ced-1(+) larvae within the 36-hour period after hatching

(Figure 6C). We conclude that caspases are not required for

programmed cell deaths to be recognized by the engulfment

machinery, internalized and degraded. In short, many aspects of

apoptosis, including phagocytosis – the ultimate fate of apoptotic

cells – can occur without caspases. We conclude that a parallel,

caspase-independent pathway contributes to programmed cell

death in C. elegans and can execute most cellular changes associated

with apoptosis.

Discussion

Our experiments revealed unexpected complexities in the

execution of apoptosis in C. elegans. While the CED-3 caspase is

clearly the primary effector of programmed cell death, we

demonstrated the existence of additional caspase-dependent and

caspase-independent contributions to developmental apoptosis.

Specifically, we observed that maternally-expressed caspase gene

csp-1 (but not csp-2 or csp-3) promotes the deaths of a subset of cells

programmed to die during C. elegans embryogenesis (Figure 1 and

Figure 4; Table 1 and Table 3). Furthermore, ectopic expression of

the csp-1B isoform of csp-1 is sufficient to cell-autonomously kill

cells that normally survive. These ectopic apoptotic cell deaths

require the active site cysteine (C138) of CSP-1B, indicating that a

caspase-like proteolytic function is responsible for its cell-killing

activity (Table 2). The C. elegans genome therefore expresses at

least two pro-apoptotic caspases, CED-3 and CSP-1B, to mediate

programmed cell deaths. Nevertheless, the additional caspase

activity conferred by csp-1 cannot account for ced-3-independent

programmed cell deaths that have been observed in C. elegans. For

example, the non-apoptotic death of the male linker cell and the

extrusion of shed cells were already known to be caspase-

independent [18,19]. Here we demonstrate that cells in caspase-

deleted animals can undergo an apoptosis-like programmed cell

death followed by engulfment, indicating that the complete

apoptotic program can occur in the absence of caspases. Thus,

in addition to CED-3 and CSP-1B, there are caspase-independent

cell-killing activities that contribute to programmed cell deaths.

CSP-1B is regulated by a mechanism distinct from that of
CED-3

The caspases CED-3 and CSP-1B appear to be regulated

differently. The auto-activation of CED-3 is facilitated by the

Apaf-1 homolog CED-4 in a protein-protein interaction that

requires the CED-3 prodomain [34–36]. In the absence of a pro-

apoptotic signal, CED-9 sequesters CED-4 [37], thereby prevent-

ing its association with the inactive CED-3 proprotein. The CSP-

1B proprotein lacks a long prodomain, suggesting that it is not

activated through an association with the CED-4 octamer in cells

undergoing apoptosis. Consistent with this expectation, we

observed that the cell-killing activity of csp-1B transgenes, unlike

that of ced-3 transgenes, was not negatively regulated by ced-9

(Figure 3). Furthermore, based on our genetic experiments

(Figure 3) and the in vitro studies of Shaham [15], it does not

appear that CSP-1B is activated by CED-3. We therefore propose

that CSP-1B is regulated by a mechanism different from the

canonical programmed cell death pathway that activates CED-3

and that CSP-1B likely promotes cell killing in parallel to CED-3

(Figure 3E).

There are no known or candidate regulators of csp-1. It is

possible that csp-1 is controlled entirely at the transcriptional level

and that csp-1 contributes a minor, sub-lethal pro-apoptotic

activity to all cells within the C. elegans embryo. Indeed, only

using sensitized backgrounds with partial defects in programmed

cell death did we detect the pro-apoptotic function of csp-1.

Nevertheless, we expect that it will be possible to identify

regulators and effectors of csp-1 through genetic screens for

mutants that modify the cell-killing activity of csp-1B transgenes.

Do the csp genes have non-apoptotic functions?
Given the minor contribution of csp-1 to programmed cell death

and the lack of a detectable role of csp-2 or csp-3 in apoptosis

(Table 1; Table S1; data not shown), it is tempting to speculate

that the csp genes have non-apoptotic functions in C. elegans. In C.

elegans, ced-3 functions in axon regeneration following laser

axotomy [54]. In mammalian and Drosophila neurons, caspases

have functions in dendritic pruning, axon guidance and the

synaptic changes underlying long-term depression [14]. Caspase

function is also required for the maturation of Drosophila sperm

[55]. Interestingly, we observed robust expression of csp-1 in the

germlines of L4 and adult hermaphrodites, specifically in the late

pachytene nuclei (Figure 4). We also observed temporally and

spatially restricted csp-2 and csp-3 mRNA expression in the late

pachytene nuclei of the L4 larval germline (data not shown),

suggesting that the csp genes might have functions in germ cell

development. However, mutant hermaphrodites and males

carrying all tested combinations of csp-1, csp-2 and csp-3, including

the triple csp mutant were viable, fertile and failed to exhibit

obvious brood-size defects that would suggest abnormalities in

sperm or oocyte differentiation (data not shown).

csp-1B as a tool for the genetic ablation of cells
Genetically encoded cell-killing activities provide an efficient

and convenient method for determining cellular function through

cell ablation. Killer genes such as ced-3 have been used under the

control of various promoters to ablate specific cells [32,45,56,57].

However, the potent cell-killing activity of ced-3 transgenes can

cause organismic inviability, particularly if the promoter expres-

sion is not exclusive to a small number of cells (see below). csp-1B

overexpression using the mec-7 and flp-15 promoters efficiently

killed the touch and I2 neurons, respectively (Figure 2; Table 2; N.

Bhatla and H.R. Horvitz, personal communication). The mec-7

and flp-15 promoters are relatively strong, as they also robustly

induced gfp expression in these cells, such that the neural processes

were visible with a dissecting microscope equipped with fluores-

cence optics. By contrast, the odr-1 promoter did not produce

detectable GFP expression in the neurites of the AWB, AWC and

I1 neurons, and csp-1B under the control of the odr-1 promoter

failed to kill these cells even when injected at plasmid concentra-

tions as high as 100 ng/ml (N. Bhatla and H.R. Horvitz,

unpublished results). Thus, high levels of csp-1B expression might

ced-3-Independent Programmed Cell Death

PLOS Genetics | www.plosgenetics.org 11 March 2013 | Volume 9 | Issue 3 | e1003341



be required to kill most cells, making the use of csp-1B as a cell-

ablation tool appropriate in situations in which the promoter

sequence strongly drives expression in targeted cells and/or weakly

promotes expression in additional cells not intended to be targets.

For example, the Pmec-7::csp-1B constructs, which were injected at a

concentration of 15 ng/ml, produced csp-1B expression outside of

the touch neurons that was detectable by fluorescence in situ

hybridization. However, this level of csp-1B expression was sub-

lethal and did not induce cell death or other cellular defects

outside of the touch neurons (data not shown). By contrast, Pmec-

7::ced-3 constructs were toxic to the animals when injected at

concentrations above 1 ng/ml, suggesting that cells are very

sensitive to ectopic ced-3 and that using ced-3 as a cell ablation

tool is potentially problematic when promoter expression is not

restricted to a small number of targeted cells.

What is the role of ced-3-independent cell-killing
activities that have minor contributions to programmed
cell death?

Although the csp-1 gene contributes a cell-killing activity to

normal programmed cell deaths (Table 1), csp-1 and the other csp

genes are not responsible for the ced-3-independent programmed

cell deaths present in the heads of ced-3 larvae (Table 4). These

deaths, like those of the male linker cell (ref. [18]; Table S5) and

the embryonic shed cells [19], are caspase-independent – a

surprising result in light of our observations that these cell corpses

are morphologically apoptotic (Figure 5) and are engulfed (albeit

with slower kinetics) like normal programmed cell deaths

(Figure 6). Thus, the complete apoptotic program including cell-

corpse internalization can occur in the absence of caspases in C.

elegans, suggesting that the cellular changes accompanying

apoptosis do not require proteolysis by the caspase family of

proteases. Moreover, it is clear that apoptotic programmed cell

deaths are achieved through the integration of independent cell-

killing activities from CED-3, CSP-1B and an unknown caspase-

independent source.

Given the minor cell-killing effects of the CSP-1B and the

caspase-independent pathways, why might cell-killing activities in

addition to that of CED-3 have evolved? It is possible that different

cells, even within the set of C. elegans cells fated to die, are

differentially sensitive to pro-apoptotic signals and that additional

caspase and caspase-independent pathways ensure efficient and

complete cell death under diverse environmental and develop-

mental conditions. Interestingly, the postembryonic programmed

cell deaths of the ventral cord are more sensitive to weak ced-3

mutations than are the embryonic programmed cell deaths in the

presumptive anterior pharynx: ced-3 mutations that have weak

effects in the anterior pharnyx typically have stronger effects in the

ventral cord (ref. [17]; data not shown). We observed a

complementary function for csp-1, which promotes apoptosis in

the anterior pharynx (Table 1) but not in the ventral cord (Table

S4).

In summary, multiple pro-apoptotic caspases function in

programmed cell death in C. elegans, Drosophila and vertebrates.

Furthermore, as we and others have shown, there are additional

caspase-independent contributions to programmed cell deaths in

C. elegans. We identified C. elegans caspase-independent cell deaths

that are essentially identical to wild-type programmed cell deaths

based on their apoptotic appearance and their recognition and

internalization by engulfing cells. We expect that caspase-

independent pro-apoptotic activities are present in other metazo-

ans and that their identification will be of major importance to our

understanding of cell death in the contexts of development and

disease.

Materials and Methods

Strains
All C. elegans strains were cultured as described previously [58]

and maintained at 20uC. We used Bristol N2 as the wild-type

strain, and the mutations used in our experiments are listed below:

LG I. unc-75(e950), ced-1(e1735), csp-3(n4872, tm2260, tm2286),

nIs177[Pceh-28::gfp] [59]

LG II. csp-1(n4967, n5133, tm917), mab-10(n5117), lin-29(n836)

LG III. ced-4(n1162, n3158), ced-6(n2095), ced-7(n1996), ced-

9(n1653, n2812), tat-1(tm1034), nIs308[Pmec-7::csp-1B, Pmec-3::gfp],

nIs400[Pced-1::ced-1DC::gfp] [19]

LG IV. csp-2(n4871), ced-5(n1812), dpy-20(e1282), unc-30(e191),

ced-3(n2427, n2436, n2452, n3692), nIs309[Pmec-7::csp-1B, Pmec-3::gfp]

LG V. egl-1(n1084 n3082), bcIs39[Plim-7::ced-1::gfp] [45], nIs342

[Pegl-1::46NLS::gfp] [59], qIs56[Plag-2::gfp]

LG X. ced-8(n1891), bzIs8[Pmec-4::gfp] [22], nIs106[Plin-11::gfp]

[52]

Unknown linkage. nIs290[Pmec-3::gfp]; nIs307[Pmec-7::csp-1B,

Pmec-3::gfp], nIs368-370[Pmec-7::csp-1B(C138S), Pmec-3::gfp], nIs398

[Pdyn-1::mfg-e8::Venus] [19,60]

Extrachromosomal arrays. nEx1646[Pdyn-1::mfg-e8::Venus]

[19,60], nEx1465-71[csp-1(+) (pDD027)], nEx1604-9[csp-1B/C only

(pDD030)], nEx1614-16[csp-1A only (pDD029)], nEx1617-19[csp-1-

PD (pDD028)]

Plasmids
The Pmec-7::ced-3, Pmec-7::ced-4 [32], Pdyn-1::mfg-e8::Venus [60], Plim-7

::ced-1::gfp [45], Pced-1::ced-1DC::gfp [46], Plin-11::gfp [52], Pegl-1::gfp and

Pceh-28::gfp [59] plasmids were described previously. The csp-1 rescuing

plasmid (pDD027) was constructed using PCR to amplify a 9 kb

fragment of the csp-1 genomic locus with the primers 59-

gtaacgccagggttttcccagtcacgacggtgatccttcggagcttcag and 59- acgagga-

tatccgcattgag. The resulting amplicon was ligated via the TOPO-TA

subcloning protocol into the pCR2.1 vector (Invitrogen). pDD028

(csp-1-PD), pDD029 (csp-1A only), and pDD030 (csp-1B/C only) were

constructed using site-directed PCR mutagenesis. Two early stop

codons in the csp-1B/C isoforms were generated in pDD028 using the

primer 59-ccgagaacggacgcctagtaatcgaaccataaac and its reverse com-

plement. The csp-1B/C start codon was mutated to an alanine codon

in pDD029 using the primer 59-gactctcagagtcgagcgccgagaacggacgcc

and its reverse-complement. Two early stop codons in the csp-1A

isoform were generated in pDD030 using the primer 59cctgaaaacga-

tagaagataattgataatcacaattcgacgatgatttgg and its reverse complement.

The Pmec-7::csp-1A plasmid (pDD003) was constructed using PCR to

amplify the csp-1A cDNA from pDD006 using the primers 59-

gcggctagcatggtcctgaaaacgatagaag and 59-gcgccatggttacatcgacctt-

gaaaagtgcc, which incorporate the restriction sites NheI and NcoI,

respectively, into the resulting amplicon. The csp-1A amplicon was

digested with NheI and NcoI and then ligated into the vector

pPD52.102. The Pmec-7::csp-1B plasmid (pDD002) was constructed by

using PCR to amplify the csp-1B cDNA from pDD001 using the

primers 59-gcggctagcatgccgagaacggacgccaag and 59-gcgccatggtta-

catcgaccttgaaaagtgcc, which incorporate the restriction sites NheI

and NcoI, respectively. The csp-1B amplicon was digested with NheI

and NcoI and then ligated into the vector pPD52.102, which encodes

the mec-7 promoter. The Pmec-7::csp-1B(C138S) plasmid (pDD005) was

constructed from pDD002 using PCR with the primers 59-

tggatgaactatacaaatagctgcgctccagcgcgttcgt and its reverse comple-

ment. The RNAi plasmid pL4440::csp-1-PD (pDD060) was con-

structed using PCR to amplify the prodomain encoding fragment of

the csp-1A cDNA with the primers 59-gcgagatctatggtcctgaaaacgata-

gaag and 59-cgcctcgagatggcgggtttcagctgggtc, which incorporate the

restriction sites BglII and XhoI, respectively. The resulting csp-1-PD
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amplicon was digested with BglII and XhoI and then ligated into

pL4440. The RNAi plasmid pL4440::csp-1B (pDD061) was con-

structed using PCR to amplify the csp-1B cDNA with the primers 59-

gcgagatctatgccgagaacggacgccaag and 59-cgcctcgagttacatcgacctt-

gaaaagtgcc, which incorporate the restriction sites BglII and XhoI,

respectively. The resulting csp-1B amplicon was digested with BglII

and XhoI and then ligated into pL4440.

RNAi experiments
The in vitro transcription, purification, preparation and micro-

injection of csp-1-PD (pDD060) and csp-1B (pDD061) dsRNA were

performed as described previously [61].

Fluorescence in situ hybridization
The fixation of embryos and larval and adult animals, the

conjugation of Cy5 or ALEXA594 fluorescent probes to in situ oligo

probes, and the hybridization of oligos to fixed samples were

performed as described previously [62]. All images were acquired

using an inverted Nikon TE-2000 compound microscope equipped

for fluorescence microscopy (Prior Scientific). Images were acquired

with a PIXIS camera (Princeton Instruments) controlled by

MetaMorph software (Molecular Devices) and modified for

publication with ImageJ software (NIH). The ‘‘total csp-1’’ set of

probes included 32 distinct 20-nucleotide sequences complemen-

tary to csp-1B (Biosearch Technologies, Inc). This set of oligos was

conjugated to the fluorophore Cy5 (GE Healthcare) and

hybridized to all three csp-1 mRNA isoforms (csp-1A, csp-1B and

csp-1C). The ‘‘csp-1A’’ set of probes included 32 distinct 20-

nucleotide sequences complementary to the region of csp-1A that

encodes the prodomain. This set of oligos was conjugated to the

fluorophore ALEXA594 (Invitrogen) and hybridized specifically

to the csp-1A mRNA isoform. Probe sequences are listed in Table

S6.

Cell-death assays and microscopy
The numbers of undead cells that failed to undergo pro-

grammed cell death in the anterior pharynges and postdeirid

sensilla of L3 larvae were determined by direct observation using

Nomarski optics as described previously [28]. Persistent cell

corpses in larval heads also were quantified by direct observation

using Nomarski optics; for this assay, larvae were staged by the

time of hatching. For other cell-death assays, the ventral cord cells

of young adults, the M4 neuron and its undead sister cell of L3

larvae, the touch neurons of L4 larvae, and the germ cell corpses

of adult hermaphrodite gonads were identified using previously

described GFP reporter transgenes [45,52,59]. For experiments

involving ionizing radiation, L4 larvae were exposed to gamma

irradiation from a Co-60 source. All strains were analyzed using a

Zeiss Axioskop II compound microscope equipped for fluores-

cence microscopy. Images were acquired with an ORCA camera

(Hammamatsu) controlled by OpenLab software (Perkin Elmer)

and modified for publication using ImageJ (NIH).

Transmission electron microscopy
L1-stage larvae were fixed, stained and sectioned for transmis-

sion electron microscopy as described previously [43]. Stained

sections were imaged with a JEM-1200EX II microscope (JEOL)

using an AMT XR41 CCD camera.

Supporting Information

Figure S1 Transgenes that ectopically express csp-1A in the

touch neurons lack cell-killing activity in both the presence and

absence of the apoptosis regulator CED-9. The percentages of

PLM cells that survive in strains carrying Pmec-7::csp-1A transgenes.

All strains contained the ced-3(n3692) mutation, which suppresses

ced-9(n2812) inviability. n.s., p.0.05 in a Fisher’s exact test.

(PDF)

Table S1 The deletion of csp-1, csp-2 or csp-3 does not cause the

deaths of cells that normally survive. (A). The touch neurons

survive in csp mutants. The survival of AVM, ALML/R, PVM and

PLML/R was scored using the transcriptional reporters Pmec-3::gfp

(nIs290)a or Pmec-4::gfp (bzIs8)b. n, animals scored. (B). Mutants

carrying csp deletions have the same number of pharyngeal cells as

wild-type animals. The following pharyngeal cells were scored: the

neurons I1, I2, I3, MC, MI, M3, M4 and NSM; the epithelial cells

e1, e2, and e3; and, the muscle cells m1 and m2. In total, 34 cells

were scored per pharynx. n, animals scored; SD, standard

deviation.

(DOC)

Table S2 The defect in programmed cell death of csp-1(n4967)

animals is rescued by transgenes that contain the endogenous csp-1

promoter and coding regions. Mutations that alter the start of the

B and C splicing isoforms of csp-1 disrupt the rescuing activity of

the csp-1 transgene. The transgenes are described in detail in the

legend of Figure 1 and in Materials and Methods. A Student’s t-

test was used to compare the csp-1(n4967); ced-3(n2436) strains

with csp-1 transgenes to the csp-1(n4967); ced-3(n2436) parental

strain. p values were considered significant if less than 0.01 to

correct for multiple comparisons.

(DOC)

Table S3 The deletion of csp-2 or csp-3 does not modify the

defects in programmed cell death of csp-1 and ced-3 mutants. The

average number of extra, undead cells in the pharynx was

determined for each genotype. n, number of animals scored; SD,

standard deviation. For the statistical comparisons between ced-

3(n2427) or ced-3(n2436) and double mutants with each csp allele, p

values were considered significant if less than 0.02 to correct for

multiple comparisons.

(DOC)

Table S4 csp-1 promotes the programmed cell death of (A) the

M4 sister cell but not those of (B) the VC-like cells in the ventral

cord or of (C) the V5.praap cell in the postdeirid sensillum. The

survival of the M4 sister cell was scored using the integrated

transgene nIs177[Pceh-28::gfp]. The number of extra VC-like cells

was determined using the integrated transgene nIs106[Plin-11::gfp].

The survival of V5Rpaapp was determined via direct observation

using Nomarski optics.

(DOC)

Table S5 The male linker cell dies in animals lacking all four

caspases.

(DOC)

Table S6 Sequences of DNA probes used for fluoresence in situ

hybridization (FISH) experiments. The csp-1A oligos hybridize to

the region of csp-1A that encodes the prodomain and are therefore

specific to the csp-1A isoform. The ‘‘total’’ csp-1 oligos hybridize to

a region present in all known csp-1 mRNA isoforms.

(DOCX)
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