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Abstract

Background: In light of multinational efforts to reduce helminthiasis, we evaluated whether there exist high-risk
subpopulations for helminth infection. Such individuals are not only at risk of morbidity, but may be important parasite
reservoirs and appropriate targets for disease control interventions.

Methods/Principal Findings: We followed two longitudinal cohorts in Sichuan, China to determine whether there exist
persistent human reservoirs for the water-borne helminth, Schistosoma japonicum, in areas where treatment is ongoing.
Participants were tested for S. japonicum infection at enrollment and two follow-up points. All infections were promptly
treated with praziquantel. We estimated the ratio of the observed to expected proportion of the population with two
consecutive infections at follow-up. The expected proportion was estimated using a prevalence-based model and, as highly
exposed individuals may be most likely to be repeatedly infected, a second model that accounted for exposure using a data
adaptive, machine learning algorithm. Using the prevalence-based model, there were 1.5 and 5.8 times more individuals
with two consecutive infections than expected in cohorts 1 and 2, respectively (p,0.001 in both cohorts). When we
accounted for exposure, the ratio was 1.3 (p = 0.013) and 2.1 (p,0.001) in cohorts 1 and 2, respectively.

Conclusions/Significance: We found clustering of infections within a limited number of hosts that was not fully explained
by host exposure. This suggests some hosts may be particularly susceptible to S. japonicum infection, or that uncured
infections persist despite treatment. We propose an explanatory model that suggests that as cercarial exposure declines, so
too does the size of the vulnerable subpopulation. In low-prevalence settings, interventions targeting individuals with a
history of S. japonicum infection may efficiently advance disease control efforts.
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Introduction

Recent multinational efforts to control and eliminate helmin-

thiasis have the potential to dramatically reduce morbidity among

the rural poor [1,2]. Approximately one billion people are infected

with one or more helminthes and the health impacts of these

infections, including impaired growth, cognitive development and

work capacity are substantial and poverty reinforcing [3–5].

Population-level interventions are the recommended strategy in

areas where infection prevalence and morbidity are high [6], but

as infections decline, how should limited disease control resources

be allocated in order to sustain disease control achievements?

We are interested in whether there exist high-risk subpopula-

tions for helminth infection, as such individuals may not only be

particularly vulnerable to morbidity, they may also play a key role

in sustaining transmission in regions where control efforts have

reduced but not eliminated helminthiasis [7]. In many infectious

disease transmission systems, a few individuals are responsible for a

disproportionate number of future infections: control efforts

targeting such superspreaders can efficiently reduce disease

transmission compared to randomly allocated or population-based

control efforts [8,9]. In the case of helminthiasis, helminthes

typically are aggregated in a population such that at any point in

time, a few individuals harbor a large number of worms and

therefore may be responsible for a large number of future

infections [9]. If the same individuals are repeatedly infected, this

suggests the presence of high-risk groups for helminthiasis – groups

that may serve as persistent parasite reservoirs in the presence of

on-going treatment and control efforts. Prior research suggests

such high-risks groups may exist: for example, past infection with

the water-borne helminth, Schistosoma sp. is a positive predictor of

subsequent infection [10–13].

What mechanisms might promote the aggregation of infections

in a few individuals? The cross-sectional clustering of helminthes

in a population has largely been attributed to differential pathogen

exposure – highly exposed individuals are most likely to harbor
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greater pathogen loads [9,14]. If we assume an individual’s

exposure is relatively constant over time, we expect the same,

highly exposed individuals will be repeatedly infected over time.

Host susceptibility to infection may also favor repeated infections

in a particular subpopulation. Host genetics play a role in

susceptibility to soil-transmitted helminthiases and schistosomiasis,

likely via variations in genes regulating immune function,

including, in the case of Schistosoma sp., Th2 response [15–18]. In

contrast to exposure and host-susceptibility, exposure-dependent

immunity should protect highly infected individuals at a given time

point from subsequent infection, resulting in a disaggregation of

infections across the population over time. Age-dependent

immunity should concentrate infections in vulnerable age groups,

leading to time-limited membership in high-infection subpopula-

tions.

We examined longitudinal patterns of infection with the water-

borne helminth, S. japonicum, in two cohorts in order to assess the

aggregation of infections in the same individuals over time and, if

present, the extent to which aggregation can be attributed to

exposure vs. host-susceptibility.

Methods

We followed two cohorts of rural residents in Sichuan, China

drawn from hilly regions where schistosomiasis is associated with

irrigated agriculture. Cohort 1 is composed of 424 individuals from

10 villages located in Xichang County, in southwest Sichuan,

monitored from 2000 to 2006, a region where S. japonicum infection

prevalence and intensity has historically been high. Cohort 2 is

composed of 400 individuals from 27 villages in 2 counties in Sichuan

province where schistosomiasis reemerged following reduction of

human infection prevalence below 1%, a benchmark for schistoso-

miasis transmission control [19]. Individuals in the second cohort

were monitored from 2007 to 2010. In each cohort, we tested all

participants for S. japonicum infection at enrollment, treated all

infections and conducted detailed exposure assessments. Participants

were tested for incident infection at two follow-up points.

Cohort 1
In fall 2000, we conducted S. japonicum exposure and infection

surveys in 20 villages in Xichang County [20]. All residents were

invited to participate in S. japonicum infection surveys (individuals

age 4–60 were targeted, but infection testing was open to people of

any age). A 25% random sample of residents, stratified by village

and occupation, was interviewed about water contact behaviors at

the same time as the infection surveys. Individuals were asked to

report the frequency and duration of contact with surface water

sources while conducting the following activities: washing clothes

or vegetables, washing agricultural tools, washing hands and feet,

playing or swimming, irrigation ditch operation or maintenance,

rice planting, rice harvesting, and fishing; for each month from

April to October (Supporting Information S1 in Text S1).

Infection surveys were repeated in 2002 and 2006 in ten villages

with high infection prevalence in 2000 (range 12.9 to 72.3%). This

cohort includes all individuals from the 10 follow-up villages who

completed the water contact interview and were tested for

infection all three years. Infection status and intensity at

enrollment did not differ between cohort members that were lost

to follow-up and those with complete data, but those who were lost

to follow-up reported less water contact and were younger, on

average. Details of cohort selection and retention are provided in

Figure S1 and Table S1 in Text S1.

Cohort 2
In fall 2007, a cross sectional survey was conducted in 53

villages in three counties where S. japonicum reemerged following

attainment of national transmission control criteria [21]. All

residents age 6 to 65 were invited to participate in S. japonicum

infection surveys. In May 2008, a magnitude 7.9 earthquake in

Sichuan severely impacted one of the three selected counties,

forcing us to limit follow-up studies to the two other counties. For

efficiency, water contact behaviors were assessed using a stratified

random sample of individuals based on 2007 infection status. All

individuals who tested positive for S. japonicum in 2007, and, for

each infected person, five people randomly drawn from the same

village who tested negative for S. japonicum in 2007, were selected

for participation in a survey of water contact behaviors. Interviews

about water contact patterns were conducted monthly, from June

to October 2008. At each interview, participants were asked to

report the frequency and duration of water contact activities in the

past two weeks including washing laundry, washing vegetables,

washing agricultural tools, washing hands or feet, playing or

swimming, ditch cleaning and repair, rice planting, rice harvest-

ing, fishing, and collecting water for drinking or cooking. During

the first interview, participants were also asked to report water

contact behaviors during the May rice planting season, as, due to

earthquake relief efforts, no interviews were conducted in May.

Nobody reported water contact while collecting water for drinking

and cooking, and this behavior was excluded from analyses. For

comparability with cohort 1, washing laundry and washing

vegetables were combined into a single water contact measure.

Participants were tested for S. japonicum infection again in 2008 and

2010.This cohort includes all individuals who were tested for

infection all three years and completed the water contact

interview. As was the case for cohort 1, baseline infection status

and intensity did not differ between cohort 2 members that were

lost to follow-up and those with complete data, but those who were

lost to follow-up reported less water contact, were more likely to be

male and were younger, on average. Details of cohort selection

and retention are provided in Figure S2 and Table S1 in Text S1.

As some members of cohort 2 did not complete all monthly

water contact interviews, missing water contact measures were

Author Summary

Approximately 1 billion people are infected with one or
more helminthes – a class of parasites that can impair
physical, mental and economic development. We are
interested in whether there exist groups who are
repeatedly infected with helminthes over time in areas
where treatment is ongoing. Such individuals may be at
risk of morbidity and may also serve as parasite reservoirs,
making them appropriate targets for disease control
programs. We followed two cohorts in rural Sichuan,
China in order to evaluate whether the same individuals
were repeatedly infected with the water-borne helminth,
Schistosoma japonicum. Each participant was tested for
infection at enrollment and two follow-up points – all
infections were promptly treated. We conducted detailed
interviews to assess exposures to S. japonicum. We found
infections repeatedly occurred in a subgroup of individuals
and this clustering of infections was only partly explained
by differences in exposure. This suggests some individuals
may be particularly susceptible to S. japonicum infection.
Further exploration of the interplay of exposure and
susceptibility suggest that as exposure declines, so too
does the fraction of the population vulnerable to infection.
Helminth control programs that target people with a
history of infection may efficiently reduce helminth
infections and morbidity.

Repeated S. japonicum Infection in Two Cohorts
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imputed using multiple imputation by chained equations [22,23].

Multiple imputation avoids bias presented by the exclusion of

incomplete cases. Imputation is based on the assumption that data

are missing at random, and that missing data can be explained by

other measured variables [24]. We imputed water contact minutes

by month and activity using all other water contact measures, as

well as age, sex, and village of residence. During the monthly

interviews, participants were also asked to report the number of

days they spent outside of their village and distance traveled in the

past month. As travel may influence water contact patterns, travel

was also included in the set of existing data used to impute missing

values. The duration of water contact was imputed using

predictive mean matching. Because nobody reported water

contact from fishing in October or rice harvesting in June, all

individuals missing these variables were assumed to have zero

water contact for this exposure. Participants with one or more

missing values were more likely to be younger and live in county 1,

but did not otherwise differ substantially from participants with

complete data (Table S2 in Text S1).Ten imputed datasets were

generated. We calculated the mean of each imputed value for use

in the predictive models described below. Before imputation, 5.0%

of the water contact measures were missing: 71 participants (18%)

did not complete all monthly interviews and 13 participants (3%)

were interviewed each month but did not answer all survey

questions.

All questionnaires in both cohorts were administered in the local

dialect by trained staff at the Institute of Parasitic Diseases (IPD),

Sichuan Center for Disease Control and Prevention and the

county Anti-schistosomiasis Control stations.

S. japonicum infection measures
During each infection survey, participants were asked to submit

three stool samples, one each from three consecutive days. Each

sample was analyzed using the miracidia hatching test: approx-

imately 30 grams of stool was filtered, suspended in aqueous

solution and examined for miracidia according to Chinese

Ministry of Health protocols [25]. In addition, one sample from

each participant was analyzed using the Kato-Katz thick smear

procedure: three slides were prepared using 41.7 mg homogenized

stool per slide and examined for S. japonicum eggs by trained

technicians [26]. Infection intensity, in eggs per gram of stool

(EPG), was calculated as the total number of S. japonicum eggs

divided by the total sample weight. In 2002, only one stool sample

was collected per person in cohort 1, and this sample was analyzed

using both the miracidia hatching test and the Kato-Katz thick

smear procedure. After each infection survey, all individuals

testing positive for S. japonicum were promptly notified and

provided treatment with 40 mg/kg praziquantel by health workers

at the county anti-schistosomiasis control stations.

Ethics
The research protocols and informed consent procedures and

were approved by the Sichuan Institutional Review Board and the

University of California, Berkeley, Committee for the Protection of

Human Subjects. In cohort 1, all participants provided oral

informed consent, documented by IPD staff, before participating

in this study. Oral consent was obtained due to the high

prevalence of illiteracy, and because the survey procedures used

were similar to those used by IPD for schistosomiasis surveillance.

In cohort 2, all participants provided written, informed consent

before participating in this study. Minors provided assent and their

parents or guardians provided written, informed permission for

them to participate in this study.

Statistical analysis
We examined the extent to which S. japonicum infections

repeatedly occur in the same individuals in regions where

schistosomiasis case detection and treatment is ongoing. For each

cohort we defined three time points: baseline (T0), the first follow-

up infection survey (T1) and the second follow-up infection survey

(T2). We estimated the ratio of the observed proportion of the

population with of two consecutive infections at T1 and T2 (ODI), to

the predicted proportion of the population with two consecutive

infections at T1 and T2 (PDI).

The simplest model of PDI is based solely on the probability of

infection at T1 and T2, such that PDI~P YT1~1ð Þ|P YT2~1ð Þ
where YTx indicates S. japonicum infection status at time point x.

Because all infections were treated at each time point, the

probability of infection at Tx is the incidence of infection from T(x-

1) to Tx multiplied by the elapsed time between T(x-1) and Tx,

which is equal to the prevalence of infection at Tx. Note that at T0,

we know the prevalence, but not the time elapsed since last

treatment, which may vary by individual, and therefore can only

estimate the probability of infection at T1 and T2. Our estimates of

infection probability assume all infections, defined as the presence

of adult S. japonicum worm pairs, are detected and successfully

treated at each time point. Using this prediction model, if

ODI=PDIw1, this suggests that there exists a subset of individuals

that are repeatedly infected with S. japonicum.

A more complex model of PDI accounts for exposure, as

individuals who are repeatedly infected may be those who are

most highly exposed to S. japonicum cercariae. In this case, we

estimate PDI~P YT1~1DWð Þ|P YT2~1DWð Þ where W is S.

japonicum cercarial exposure. Using this exposure-based prediction

model, if ODI=PDIw1, this suggests that S. japonicum infections

repeatedly occur in a subset of individuals in the population for

reasons not attributable to the exposure variables in the statistical

model. S. japonicum cercarial exposure is determined by human

behaviors that put people in contact with potentially contaminated

water sources (primarily irrigation ditches and ponds), and by

cercarial concentrations at the site of contact. We accounted for

human behavior using questionnaire derived estimates of month-

and activity-specific water contact duration. Cercarial concentra-

tion can vary over space and time due to the non-uniform

distribution of the intermediate snail host and because cercarial

shedding is affected by temperature, diurnal patterns and reservoir

host species [27–29]. Currently, practical, field deployable

methods for measuring cercarial concentrations are lacking. A

mouse bioassay exists, in which sentinel mice are dermally exposed

to surface water, then sacrificed and examined for S. japonicum

worms, approximately 45 days post-exposure (allowing time for

the parasite to mature inside the host). The mouse bioassay is not

only resource intensive but, in low-prevalence settings, has limited

sensitivity and, while new molecular methods offer promise, they

have yet to be widely deployed [30,31]. We used several proxies

for cercarial concentration in our infection prediction models. We

included village infection prevalence at T0, based on the

assumption that villages with more infected individuals at

enrollment have the potential for greater cercarial concentrations.

In cohort 2, we also included county in the infection prediction

model, as control measures which may impact cercarial concen-

tration such as application of moluscicides are administered at the

county level (all participants in cohort 1 are from a single county).

To account for temporal variation in cercarial concentration, we

included the year of infection testing. Additionally, we included

age and sex to account for potential differences in the location of

water contact (concentration) and the reporting of water contact

activities (behavior) by age and sex.

Repeated S. japonicum Infection in Two Cohorts
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The first step in estimating PDI requires a model that predicts

infection status at a given time point based on exposure:

P YTx~1DWð Þ. However, given the large number of predictor

variables and the potentially complex, nonlinear relationships

between exposure and infection, any single arbitrary parametric

model one might choose will lead to an unknown degree of bias in

the estimate of P YTx~1DWð Þ and, ultimately, PDI [32]. To

minimize this problem we used a machine-learning algorithm,

known as the Super learner as implemented in R [33]. In essence,

this procedure estimates P YTx~1DWð Þ based on a convex

combination of a number of different modeling algorithms (some

simple parametric models, some highly data adaptive, generically

called learners). In this case, the learners include random forests

[34], k-nearest neighbor classification [35], elastic net regression

[35], generalized linear models, stepwise regression and general-

ized boosted regression [36]. Cross-validation is used to determine

the optimal combination of learners, that is the combination that

maximizes the cross-validated fit. It has been shown that the Super

learner estimate is asymptotically equivalent to the estimator that

would come closest to the truth if the truth were known (called the

Oracle selector), even if a very large number of competing models

were used. In addition, in the unlikely case that the true model is a

simple parametric model, then Super learner achieves nearly the

same performance as a simple parametric estimation procedure (a

parametric Oracle). From a practical point of view, Super learner

replaces the usual ad hoc exploration of the adequacy and fit of

various candidate models with a machine-based procedure that

produces a robust, replicable, and theoretically defensible estimate.

We excluded from the set of exposure variables water contact

variables for which ,20% of the population reported any water

contact. Models were fit separately for each cohort. An individual’s

infection probability was calculated for each year (T1 and T2) using

the selected model, and the probability of two consecutive

infections was calculated as the product of the infection

probabilities at T1 and T2.

All estimates of observed and predicted infections were weighted

to account for the stratified sampling used to assess water contact

behavior. Each individual in the cohort was assigned a weight

equal to the inverse probability of being sampled. Inference was

estimated by calculating the probability of the observed number of

consecutively infected individuals in the reweighted population (k).

We assumed k follows a binomial distribution B n,PDIð Þ where n is

equal to the number of individuals in the reweighted population

and PDI is the probability of two consecutive S. japonicum infections

in an individual.

Statistical analyses were conducted using Stata12.0 and R

2.14.1 software.

Results

The demographic characteristics of the two cohorts, reported

water contact behaviors and the distribution of S. japonicum

infections at enrollment are presented in Table 1. In the 10 villages

from which cohort 1 was drawn, mean S. japonicum infection

prevalence among all 1,801 residents surveyed was 46.9% (12.9 to

72.3% by village) and intensity, 46.0 EPG (1.1 to 107.9 EPG by

village) at enrollment (T0). In the 27 villages from which cohort 2

was drawn, mean infection prevalence among all 1,608 individuals

surveyed was 10.6% (1.5 to 42.9% by village) and intensity 2.6

EPG (0 to 10.6 EPG by village). Note that in 3 villages, infections

were detected by the miracidia hatching test only, no eggs were

detected by the Kato-Katz method, resulting in mean village

infection intensities of 0 EPG. In both cohorts, adults were

generally farmers with limited formal schooling. The percent of

people reporting water contact, and the average duration of water

contact varied by month, activity and cohort.

Infection prevalence and intensity at follow-up was low in both

cohorts (Table 2). Notably, many individuals who tested positive

for S. japonicum had no detectable eggs through the Kato-Katz

examination: these individuals were positive via the miracidia

hatching test only. In cohort 1, 30% and 27% of the individuals

that tested positive for S. japonicum infection at T1 and T2,

respectively, had no detectable S. japonicum eggs on Kato-Katz

examination. In cohort 2, 55% and 65% of infected individuals at

T1 and T2, respectively, had no detectable S. japonicum eggs on

Kato-Katz examination.

There were 21 and 20 individuals infected with S. japonicum at

both T1 and T2 in cohorts 1 and 2, respectively (Table 3).

Consecutive S. japonicum infections at follow-up were 3 and 7 times

more common among those who were infected with S. japonicum at

T0 than those who were uninfected at T0 in cohorts 1 and 2,

respectively. Individuals that were infected at T1 and T2 were not

demographically distinct from the cohorts as a whole. The age

distributions of individuals with two consecutive infections to those

with one or no infections at follow-up are similar (Figure 1).

Among those with infections at T1 and T2, mean age at enrollment

was 30.1 (range 5–56) and 48.2 (18–63) in cohorts 1 and 2,

respectively. In cohort 1, 11 of the 21 twice-infected individuals at

follow-up were female and in cohort 2, 8 of 20 were female.

The observed fraction of the population with two consecutive S.

japonicum infections was 1.48 times greater than expected in cohort

1, and 5.82 times greater than expected in cohort 2 (Table 4). This

concentration of repeated S. japonicum infections in the same

individuals is very unlikely due to chance (p = 0.00051 and

p = 6.6610212 in cohorts 1 and 2, respectively). When we

accounted for S. japonicum cercarial exposure, the ratios declined

to 1.30 and 2.06 in cohorts 1 and 2, respectively. The excess of

individuals with repeated S. japonicum infection, even when

accounting for exposure, is highly unlikely due to chance in

cohort 2 (p = 0.00056) and unlikely due to chance in cohort 1

(p = 0.013).

Discussion

In two cohorts from two geographically distinct environments,

S. japonicum infections repeatedly occurred in the same individuals

over time, following treatment with praziquantel. This clustering

of infections occurred even when accounting for exposure, and

clustering was particularly strong in cohort 2, a population with

low overall infection prevalence and intensity. These findings

suggest there exists a subset of individuals within the general

population that is particularly vulnerable to S. japonicum infection.

Alternatively, this subset of individuals may have uncured

infections due to non-compliance or treatment failure. This has

important implications for disease surveillance: individuals with a

history of S. japonicum infection may serve as appropriate targets for

infection monitoring and treatment in low-prevalence environ-

ments. In addition, our findings provide evidence for host

susceptibility to helminth infections – suggesting some individuals

may be more vulnerable to infection given equivalent exposures.

It is possible that individuals who are repeatedly infected with

helminthes are simply the most highly exposed individuals in the

population. Cercarial exposure is a well-documented determinant

of S. japonicum infection [37–40]. We found that the ratio of

observed to expected prevalence of consecutive infections exceed-

ed unity using an exposure-blind prediction model. This ratio was

lower when we included exposure in the prediction models, but

still exceeded unity. This suggests some individuals may be

Repeated S. japonicum Infection in Two Cohorts
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repeatedly infected due to their high cercarial exposure, but

exposure does not fully explain this phenomenon. S. japonicum

exposure is challenging to assess due to the difficulties in

quantifying daily human behaviors and the absence of practical

methods for directly measuring cercarial concentration, and our

prediction models are limited by our ability to accurately measure

cercarial exposure. However, the imperfections of our exposure

measures are likely offset by the use of an aggressive, data adaptive

algorithm to predict S. japonicum infection using over 25 exposure

variables. Over-fitting is possible when using such methods, which,

in this case, would have a conservative impact on our estimates,

pushing observed to expected ratios closer to unity. Therefore,

exposure alone is unlikely to explain the observed concentration of

repeated schistosomiasis infections in a subset of the population.

More likely, individuals who are repeatedly infected with

helminthes may be those who have a sufficiently elevated

combination of susceptibility and exposure. We explored the

clustering of infections within certain individuals from a mecha-

nistic perspective by postulating that an individual’s worm burden,

w, accumulated from exposures subsequent to successful prazi-

quantel treatment, can be described at the end of one or more

infection seasons as a result of that individual’s cumulative

Table 2. S. japonicum infection prevalence and intensity at
follow-up.

Cohort 1* Cohort 2{

T1 T2 T1 T2

S. japoincum infection prevalence{ 33.1 10.3 7.7 7.8

Mean S. japonicum infection intensity{ 8.7 3.1 4.3 1.3

*Cohort 1 is composed of people from 10 villages where schistosomiasis is
endemic. Participants were tested for S. japonicum infection in 2000 (T0), 2002
(T1) and 2006 (T2).
{Cohort 2 is composed of people from 27 villages in two counties where
schistosomiasis reemerged following reduction of S. japonicum infection
prevalence below 1%. Participants were tested for S. japonicum infection in
2007 (T0), 2008 (T1) and 2010 (T2).
{Infection prevalence and intensity were estimated for the source population,
accounting for the stratified sampling used in enrolling cohort participants.
Each individual in the cohort was assigned a weight equal to the inverse
probability of being sampled.
doi:10.1371/journal.pntd.0002098.t002

Table 1. Description of the two cohorts at enrollment (T0).

Cohort 1* Cohort 2{

Year of enrollment (T0) 2000 2007

S. japonicum infection prevalence in cohort villages at enrollment{ 46.9 10.6

Mean infection intensity in EPG in cohort villages at enrollment (SE){ 46.0 (4.7) 2.6 (0.6)

% Female 51.9 57.3

Mean age at enrollment (SE) 31.3 (0.7) 45.6 (0.7)

% of adults reporting farming as their occupation 92.9 98.7

% of adults that have at least a middle school education 39.3 22.0

Mean water contact hours by month (% reporting any water contact)**

April 28.4 (79.7) –

May 5.4 (80.9) 44.8 (82.2)

June 7.7 (82.3) 11.4 (72.5)

July 4.8 (83.5) 4.6 (59.0)

August 4.9 (83.0) 3.8 (53.0)

September 5.4 (78.5) 18.6 (57.7)

October 2.9 (69.3) 2.1 (40.5)

Mean water contact hours by activity (% reporting any water contact)

Washing vegetables or laundry 5.7 (23.6) 11.6 (60.3)

Irrigation ditch operation or maintenance 1.9 (54.7) 7.7 (40.5)

Fishing 0.4 (3.1) 0.4 (4.0)

Washing hands or feet 11.6 (63.0) 3.7 (87.0)

Harvesting rice 1.6 (4.2) 16.6 (43.0)

Planting rice 32.2 (70.3) 42.3 (66.5)

Swimming or playing 5.0 (16.5) 0.2 (9.5)

Washing agricultural tools 1.1 (29.0) 2.8 (72.3)

*Cohort 1 is composed of 424 residents from 10 villages in Xichang County, Sichuan, China where schistosomiasis was endemic, monitored from 2000 to 2006.
{Cohort 2 is composed of 400 residents from 27 villages in two counties in Sichuan, China where schistosomiasis reemerged following reduction of S. japonicum
infection prevalence below 1%, monitored from 2007 to 2010.
{Prevalence and infection intensity estimates include all participants in village-wide infection surveys conducted at cohort enrollment: 1,801 individuals in 10 villages in
cohort 1, 1,608 individuals in 27 villages in cohort 2.
**Participants were asked about water contact behaviors from the start of the rice planting season. In Xichang County (from which cohort 1 participants were drawn)
rice planting begins in April, whereas in the two reemerging counties (from which cohort 2 participants were drawn) rice planting begins in May.
doi:10.1371/journal.pntd.0002098.t001
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exposure to cercariae, E, and the subsequent penetration and

development of a fraction of these cercarial hits, a, into adult

parasites. That is, w = aE where E is composed of two elements,

water contact, S, and cercarial concentration, C. The parameter a,

reflecting host susceptibility, is assumed to be a stable property of

each individual in the village population and the distribution of C

is assumed to be a village property shared by all inhabitants. The

water contact measurements described above and cercarial

bioassay data collected in conjunction with the prior studies of

cohort 1 [27,37]suggest that the population distribution of E is

strongly right skewed as is generally observed to be the case for

distributions of w.

Assuming that the distributions of exposure and susceptibility in

a population are independent, their joint distribution is depicted in

Figure 2. The marginal distribution of exposures, f(E), is for

illustrative purposes shown as a negative exponential distribution

since multiple cercarial hits are thought to be necessary to lead to a

single adult worm. Also for illustration, the marginal distribution of

susceptibility, h(a), is shown as symmetric. The line wT = aE is the

threshold of infections that are epidemiologically visible which we

define here as the minimum worm burden necessary to produce

eggs at the lower limit of detection by a combination of the

miracidia hatching test and the Kato-Katz method. The fraction

of the population susceptible to infection at or above this threshold

is that lying to the right of the line a = a*. That is, the probability

of an exposure leading to a diagnosis of infection for an individual

with an a less than a* is essentially zero given the maximum

cercarial exposure in this hypothetical environment. The shaded

area depicts the set of exposure-susceptibility combinations that

produce detectable infections.

Specification of the two marginal distributions allows the

calculation of the distribution of their product, that is, the

distribution of worm burden in the population. However, the point

here is that, at least in this generic example, the proportion of the

population at risk for infection is less than the entire population.

That is, the number of individuals susceptible to infection, ns, in

this environment is:

ns~nT

ð?
a�

h(a)da

Where nT is the total population size. Hence, if nI is the observed

number of infections, the ratio of prevalence of infection in the

susceptible population to the total population is:

nI=nS

nI=nT

~
nT

nS

~
1Ð?

a� h(a)da

which is always equal to or greater than unity.

Returning to the re-infection issue, suppose the population is

exposed in an unchanging environment, treated annually with

praziquantel at T = 0, T = 1, and T = 2, and infection assessed at

the end of year 1 and year 2. Since the same population is at risk of

infection with the same marginal distribution of exposure in both

years, and this population is less than the entire population, the

observed number of repeated infections will be greater than that

expected based on infections occurring randomly in the entire

population. It follows that the ratio of observed re-infections to the

expected number, if distributed randomly in the entire population,

is simply the square of the foregoing equation:

OBS

EXP
~

1Ð?
a� h(a)da

" #2

Moreover, as the fraction of exposure-susceptibility combinations

that produce infection decreases, a* and this ratio both increase.

Hence, the simple model of the infection process with individual

differences in susceptibility to infection, depicted in

Figure 2,provides a heuristic explanation of the epidemiological

finding that the ratio of observed to expected re-infections

increases as prevalence of infection decreases. Clearly, more

refined analyses are possible that address a more rigorous

definition of a*, take distributional assumptions into account, or

explore the effect of variability in individual water contact. We will

further address these and related determinants of transmission in

the low-risk environment via an individually-based stochastic

model which will be the subject of a future report. In addition, it is

possible to estimate the proportion of susceptibles in a population

via a statistical innovation using a model selection procedure like

SuperLearner in the context of a latent mixture model, where the

susceptibility status is latent – an approach that we will pursue in

the future.

The factors that govern a are not fully characterized for

schistosomiasis or other helminthiases. However, there is substan-

tial evidence that immune function, particularly the ability to

mount antigen-specific IgE response, can confer host resistance to

Table 3. The distribution of S. japonicum infections over time by baseline infection status.

N Infected at T1 (%) Infected at T2 (%) Infected at T1 and T2 (%)

Cohort 1*

Infected at baseline

No 222 56 (25.2) 11 (5.0) 5 (2.3)

Yes 202 83 (41.1) 30 (14.9) 16 (7.9)

Cohort 2{

Infected at baseline

No 315 21 (6.7) 20 (6.3) 7 (2.2)

Yes 85 23 (27.1) 24 (28.2) 13 (15.3)

*Cohort 1 is composed of people from 10 villages in Xichang County where schistosomiasis was endemic. Participants were tested for S. japonicum infection in 2000 (T0),
2002 (T1) and 2006 (T2).
{Cohort 2 is composed of people from 27 villages in two counties where schistosomiasis reemerged following reduction of S. japonicum infection prevalence below 1%.
Participants were tested for S. japonicum infection in 2007 (T0), 2008 (T1) and 2010 (T2).
doi:10.1371/journal.pntd.0002098.t003
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schistosomiasis as well as other helminthiases [10,11,41–43].

Immune response is likely attributable to a combination of past

exposure, treatment and host genetics [16,44–46]. Physical

characteristics such as skin thickness may also play a role in

determining host resistance or susceptibility. As these genetic and

immunological pathways are further elucidated, the definition of a
may be further refined.

Alternatively, it is possible that the individuals who appear to be

repeatedly infected with S. japonicum do not have new infections,

but instead have residual, uncured infections that persist despite

Figure 1. Distribution of incident S. japonicum infections by age in cohorts 1 (top) and 2 (bottom). Incident S. japonicum infections were
measured at two follow-up points (2002 and 2006 in cohort 1, 2008 and 2010 in cohort 2). All participants were tested for S. japonicum at enrollment
(2000 in cohort 1, 2007 in cohort 2) and all infections were promptly treated with praziquantel.
doi:10.1371/journal.pntd.0002098.g001
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treatment. Praziquantel is the primary drug used to treat

schistosomiasis infections, and resistance is an ongoing concern,

particularly in areas where the drug has been used extensively. In

China, praziquantel has been widely administered since the 1990s

through mass and targeted treatment campaigns. Currently, there

is no evidence of population-level resistance to S. japonicum, S.

haematobium or S. mansoni, but praziquantel resistant laboratory

isolates have been identified [47–51]. It is possible that

praziquantel kills some but not all parasites, resulting in an

incomplete cure. Repeated dosing with praziquantel may enhance

treatment efficacy, particularly for individuals with high infection

intensities [52]. While infection intensities in our two cohorts were

generally low, we cannot rule out the possibility that what appear

to be repeated infections are, in fact, infections that were not cured

by praziquantel treatment.

Uncured S. japonicum infection may also be the result of poor

adherence to drug treatment. As schistosomiasis morbidity

declines, it is possible that so too do the perceived risks of

infection and willingness to take praziquantel. Praziquantel has an

excellent safety record and is appropriate for mass drug

distribution, even in very young populations [53] but the drug

has a bitter taste and can cause transient side effects, including

nausea and dizziness. In a recent survey, 33% of people said such

side effects impacted their ability to work [49]. We have found a

high degree of self-reported treatment adherence (.90%) in

surveys of 236 people drawn from the same villages as cohort 1

(surveyed in 2007) and 686 people drawn from the same villages as

cohort 2 (surveyed in 2008), but other studies have documented

poor compliance with mass-treatment campaigns for helminthiasis

[54,55]. Our findings underscore the importance of continued

monitoring of treatment effectiveness, including both drug

resistance and population perceptions of the risks and benefits of

treatment. Methods capable of distinguishing new from residual

infections could advance our understanding of treatment efficacy

and drug adherence.

Our findings underscore surveillance challenges in areas where

worm burdens are low. While individuals with high worm burdens

have the potential to contribute a large number of future

infections, our prior work suggests that even modest parasite

inputs are sufficient to sustain schistosomiasis transmission [7]. In

China, surveillance and elimination efforts are made more

complex as there are at least 40 competent mammalian host

species for S. japonicum, and bovines are suspected to be key

reservoirs in some areas [56]. Thus the ability to identify humans

and, in the case of S. japonicum, other mammalian hosts with low-

intensity helminth infections may be crucial to efforts to prevent

the reemergence of helminth infections in areas where disease

control efforts have successfully lowered infections and morbidity.

Many of the individuals who tested positive for S. japonicum in our

study had worm burdens below the limit of detection of the Kato-

Katz assay, the schistosomiasis diagnostic method recommended

by the World Health Organization [6]. Immunoassays generally

have high sensitivity, but it can be difficult to distinguish past from

current infections, which is particularly problematic when

attempting to identify residual infections in regions with previously

high infection prevalence and intensity [57,58]. While new

methods offer promise [59], the current lack of practical, highly

sensitive diagnostics is a barrier to the long-term control of

helminthiases [1,60].

As China aims to eliminate schistosomiasis and global efforts are

launched to eliminate a number of helminthiases, the success of

Figure 2. The marginal distributions of exposure and host
susceptibility, together with contours of their joint distribu-
tion. The y-axis shows exposure, E, and the x-axis shows host
susceptibility, a. The line wT = aE describes the threshold of detectable
infections: the minimum worm burden in an individual detectable by
currently available assays. The shaded area depicts those combinations
of a and E producing infection intensities above this lower limit of
detection, wt. The fraction of the population susceptible to infection at
or above this threshold is that lying to the right of the line a = a*.
doi:10.1371/journal.pntd.0002098.g002

Table 4. The observed and predicted proportion of the population with two consecutive S. japonicum infections.

Observed Expected Ratio (Obs./Exp.) p-value{

Cohort 1, simple prediction model* 5.07% 3.41% 1.48 0.00051

Cohort 1, exposure based prediction model{ 5.07% 3.90% 1.30 0.013

Cohort 2, simple prediction model* 3.46% 0.59% 5.82 6.6610212

Cohort 2, exposure-based prediction model{ 3.46% 1.68% 2.06 0.00056

*The expected prevalence of two consecutive infections was estimated based on the prevalence of infections at T1 and T2.
{The expected prevalence of two consecutive infections was estimated accounting for S. japonicum exposure. The infection prediction model included water contact
minutes by month and activity for all measures for which at least 20% of cohort participants reported exposure, age, sex, baseline village infection prevalence, county
and year of infection test. Prediction models were fit separately for each cohort.
{P-values were estimated assuming the number of individuals with two consecutive infections follows a binomial distribution, B n,PDIð Þ where PDI is equal to the
expected prevalence of two consecutive infections and n is equal to the number of individuals in the full population. Thus the p-value is that of a two-sided, one-sample
test assuming the probability of double-infections is equal to PDI.
doi:10.1371/journal.pntd.0002098.t004
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such efforts may hinge, in part, on the ability to identify reservoirs

of infection and reduce the potential of such reservoirs to generate

future infections. Our findings suggest that there exist an

identifiable, high-risk subpopulation for S. japonicum infection.

Due to high exposure, host susceptibility or treatment failure, these

individuals are potential future reservoirs of S. japonicum. Further,

as infection prevalence declines, and with it, cercarial exposure, we

expect the fraction of the population that is susceptible to S.

japonicum infection to decline. Thus, as regions approach disease

control goals, targeted interventions may prove efficient and

effective. In low-prevalence regions, individuals who test positive

for S. japonicum should be tested regularly and provided pharma-

ceutical treatment and transmission-blocking interventions such as

improved household latrines [56,61].
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