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The structures of protein complexes are increasingly pre-
dicted via protein–protein docking (PPD) using ambiguous
interaction data to help guide the docking. These data
often are incomplete and contain errors and therefore
could lead to incorrect docking predictions. In this study,
we performed a series of PPD simulations to examine the
effects of incompletely and incorrectly assigned interface
residues on the success rate of PPD predictions. The
results for a widely used PPD benchmark dataset ob-
tained using a new interface information-driven PPD
(IPPD) method developed in this work showed that the
success rate for an acceptable top-ranked model varied,
depending on the information content used, from as high
as 95% when contact relationships (though not contact
distances) were known for all residues to 78% when only
the interface/non-interface state of the residues was
known. However, the success rates decreased rapidly to
�40% when the interface/non-interface state of 20% of
the residues was assigned incorrectly, and to less than
5% for a 40% incorrect assignment. Comparisons with
results obtained by re-ranking a global search and with
those reported for other data-guided PPD methods
showed that, in general, IPPD performed better than
re-ranking when the information used was more com-
plete and more accurate, but worse when it was not, and
that when using bioinformatics-predicted information
on interface residues, IPPD and other data-guided PPD
methods performed poorly, at a level similar to simula-
tions with a 40% incorrect assignment. These results
provide guidelines for using information about interface
residues to improve PPD predictions and reveal a bot-
tleneck for such improvement imposed by the low ac-
curacy of current bioinformatic interface residue
predictions. Molecular & Cellular Proteomics 12:
10.1074/mcp.M112.020198, 679–686, 2013.

Proteins work in close association with other proteins to
mediate the intricate functions of a cell. The atomic resolution
of the structure of a protein complex can therefore help one
understand a protein’s function in detail. Protein–protein

docking (PPD),1 a computational approach that complements
experimental structure determinations, has attracted increas-
ing research interest (1, 2), in part because it remains chal-
lenging to determine most structures of protein complexes via
experimental techniques (3).

To improve the performance of PPD predictions, experi-
mentally derived data (e.g. distances) and information (e.g. the
identity of interface residues) have been used either as a filter
allowing less plausible docking solutions to be disregarded
(4–9) or as a constraint to guide the docking process (10, 11).
Various types of data and information have been used to aid
PPD (12); these range from distances between, or the relative
orientation of, the two interacting proteins to simple identifi-
cation of the amino acid residues directly involved in the
binding of the two proteins (13). Despite considerable success,
the caveat for all these data-guided PPD predictions is that the
data or information used must be correct in order to avoid
spurious results caused by misguiding (12). It is therefore per-
tinent and important to evaluate the effects of errors in the
incorporated data or information on the quality of PPD
solutions.

We have recently shown that the use of just a few dis-
tance constraints can improve the success rates of PPD
such that they rival, or are even better than, those of a global
search ranked using a sophisticated energy function, and
that errors in the distance data significantly decrease the
success rates of prediction (11). However, because dis-
tance data for interacting proteins are usually hard to ob-
tain, other types of data or information, even if “ambiguous”
(10), are increasingly used in PPD predictions (12, 14). In
this study, we investigated the effects of incompletely and
incorrectly assigned interface/non-interface residues, a ma-
jor source of the so-called ambiguous data, on information-
guided PPD predictions.

As illustrated in Fig. 1, the information content of interface/
non-interface residues can be rich enough to reveal the iden-
tity of every pair of residues in contact, but not their contact
distances, or so poor as to reveal the interface/non-interface
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state of these residues but not their pairing relationship, for
one or both of the two interacting proteins. To determine how
these different levels of residue information content can
help PPD predictions and the extent to which the use of
incorrectly assigned residues degrades prediction success
rates, we have developed a new interface information-
driven PPD method (IPPD) and carried out a series of PPD
simulations on a well-tested benchmark dataset. The results
showed that when the information content was rich, excel-
lent predictions (success rates for producing an acceptable
top-ranked model � 70%) could be made via IPPD or by
re-ranking a global search’s solutions using the same inter-
face information, and that, encouragingly, the success of
predictions remained respectable (top-ranked success
rates � 15%) when the content was poor. However, when
enough of the interface residues were incorrectly assigned,
as would be the case when using interface residues pre-
dicted by a state-of-the-art bioinformatics method such as
CPORT (15), few models ranked first by IPPD or other PPD
methods, including HADDOCK (10), a popular ambiguous
data-driven PPD method, came close to being acceptable.
These results suggest that we can greatly increase the
power of PPD predictions for practical applications only if
the accuracy of current bioinformatics methods for predict-
ing the interface residues of protein complexes can be
significantly improved.

EXPERIMENTAL PROCEDURES

The steps and parameters used to develop IPPD and perform
docking simulations and evaluations closely followed those we
reported for a previous study of distance-constrained docking
(DPPD) (11). The main differences were the type of data used as
constraints (i.e. residue information in IPPD versus distance in
DPPD), the expansion of the benchmark dataset of bound/unbound
complex structures from 84 (PPD benchmark 2.0 (16)) in the previ-
ous study to 124 (PPD benchmark 3.0 (17)) in the present study,
and, for re-ranking, the use of a more updated set of ZDOCK’s
global search (the top 54,000 solutions using a 6° rotational sam-
pling produced by ZDOCK 3.0 (18) instead of ZDOCK 2.0 (19)).
These ZDOCK solutions, along with the benchmark structures,
were downloaded from the ZDOCK website. As in DPPD (11),
ZDOCK re-ranking was included not only to provide a comparison
for the performance of IPPD but also to assess the effect of using
varying levels of residue information content with respect to both
completeness and correctness on different PPD approaches. As
before, the interface root mean square deviation (IRMSD) on inter-
face residues, as defined in CAPRI meetings (12, 20–22), was used
to determine docking success rates.

The IPPD Method—Like DPPD (11), IPPD finds the best docking
solution using the Snyman–Fatti multi-start global minimization al-
gorithm with dynamic search trajectories (23). As described below,
the difference between the methods is that in IPPD, an energy
function penalizing violations to designated residue information
(interface/non-interface state and/or residue pairing relationship) is
used instead of one penalizing violations to specific distances, as in
DPPD.

Let m and n be, respectively, the number of residues in the receptor
(the larger protein in the complex) A � (A1, . . ., Am) and in the ligand

(the smaller protein) B � (B1, . . ., Bn). The effective energy function
used by IPPD to discriminate between different docking solutions is

Eeff � �
i � 1

m

ai�1 � S�diBmin� � VAi�
2 � �

j � 1

n

bj�1 � S�djAmin� � VBj�
2

� �
i � 1

m �
j � 1

n

cij�1 � S�dij,min� � Mij�
2 � CE (Eq. 1)

where CE is a clash term used to prevent the overlapping of atoms, as
defined previously (11); as in the previous DPPD study (11), this was
ignored in ZDOCK re-ranking because atom clashes have already
been taken into account in ZDOCK (18, 19). ai (or bj) is either 1 or 0,
depending on whether or not residue Ai (or Bj) is involved in the
calculation; cij is 1 or 0, depending on whether or not pairing relation-
ships are used; contact vector element VAi for protein A (or VBj for
protein B) is either 1 or 0, depending on whether residue Ai (or Bj) is
designated as an interface residue or a non-interface residue; contact
matrix element Mij is 1 if pairing between residue Ai and residue Bj is
designated to occur and 0 if it is not (Fig. 1); diBmin (or djAmin) is the
minimum distance between any heavy (i.e. non-hydrogen) atom of
residue Ai (or Bj) and every heavy atom of protein B (or A); and dij,min

is the shortest distance between heavy atoms in residue Ai and
residue Bj that form a pair. To provide constraints from experimentally
determined complex structures, a surface residue with a non-zero
accessible surface area, as calculated by the Surface program (24),
was classed as an interface residue if it had at least one heavy atom
within 5 Å of any heavy atom in the other protein in the bound
complex and as a non-interface residue if it did not. Finally, S(x) is the
s-shaped (sigmoidal) function derived from Bohr et al. (25),

S�x� �
1

1 � exp[�s�x � h�]2
(Eq. 2)

where h is the distance threshold used to define interface residues,
and the constant s is the slope of the tangent of the function S(x) at
x � h (see supplemental Fig. S1). The values in the contact vector are
binary (1 or 0; Fig. 1), which confers limited differential states for the
energy function to be optimized easily. The purpose of the S(x)
function is to transform binary values to a range of real values to allow
a better performance of optimization (25). In this work, h was set as
5.0 Å, and s as 0.5, as these values seemed to yield the best per-
formance in preliminary tests.

In essence, the effective energy function works as follows: for a
docking pose generated during the docking process, if the computed
state of a residue as an interface/non-interface residue or of a pair of
residues in terms of meeting the defined pairing relationship is in
agreement with the designation (constraint), the result is a contribu-
tion of a value between 0 and 0.5 to the energy function, and if not (i.e.
a violation of the constraint), it is a value between 0.5 and 1.0, with the
exact value of the contribution depending on the magnitude of the
shortest distance (see supplemental Fig. S1).

As one might expect, optimization was harder for IPPD than for
DPPD because the former is constrained to the much more ambigu-
ous residue information data. For example, in simulations using un-
bound structures, only 26% of IPPD runs reached the 0.99 confi-
dence level of Bayesian statistics, compared with �90% of DPPD
runs (11). Those that did not reach the desired high confidence level
usually exhausted the optimization limit of 5000 iterations. However,
raising the number of optimization iterations to twice this limit did not
produce a better, or even a distinctive, docking solution for all the
complexes tested (data not shown), indicating that the failure to find
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a successful docking solution for the unsuccessfully predicted cases
was not a result of the use of insufficient optimization iterations.

Graphic Processing Unit Computation—The very large number of
distance computations required in order to compute the energy using
Equation 1 would result in a very high cost in terms of computing time.
To decrease the computational burden, we implemented the docking
simulations on a general purpose graphic processing unit, a type of
parallel computing architecture in which many processing units exe-
cute the same instruction on different data elements (26) that is
particularly suitable for calculating atomic coordinates and distances,
as in this study. Graphic processing unit computing has been applied
to a number of bioinformatics studies in recent years, including se-
quence alignment (27, 28), systems biology studies of interaction
network analysis (29), and structural bioinformatics studies that re-
quire the use of desolvation estimates (30) and molecular dynamics
simulations (31). In general, compared with state-of-the-art conven-
tional processors, 10 to 30 times more acceleration can be achieved
with a graphic processing unit, depending on the type of algorithm
executed. In some favorable situations, 300 times more acceleration
in sequence alignment (28) and 700 times more acceleration in mo-
lecular dynamics simulations (31) have been reported. In our study,
the average time for an IPPD run of unbound structures using two
contact vectors (Fig. 1) was 2550 s on a Xeon E5620 central pro-
cessing unit (2.4 GHz) machine with a C2050 graphic processing unit
card (448 cores and 144 GB/s memory bandwidth), which is about 30
times faster than using a central processing unit only. The time

required varied significantly depending on the size of the protein
complex.

RESULTS

Performance of IPPD and ZDOCK Re-ranking Using Differ-
ent Levels of Information Content—We examined the per-
formance of IPPD and that of a re-ranking of ZDOCK’s global
search using Equation 1, with three levels of information con-
tent derived from the contact matrix in Fig. 1. Because exper-
imentally determined bound complex structures were used to
derive the matrix, the information used to constrain/re-rank
the docking was without errors, but it was still ambiguous
because the residue–residue pairing relationships (for contact
vectors) and the specific distances between residues in the
contact matrix were unknown.

The results, shown in Table I, indicate that when the infor-
mation about the contact matrix was correct and complete, (a)
all of the 124 benchmark experimental complex structures
could be reproduced with precision (IRMSD � 2.5 Å) even
without any distance data, (b) almost all of these complexes
could be successfully predicted when only the contact vec-
tors were known (i.e. a residue was either at the interface or
not, but its contact partners were unknown), and (c) about
one-third of the predictions were still good even if only one
vector (i.e. information on one, but not both, of the two inter-
acting proteins) was available.

As might be expected, the performance degraded when
unbound structures were used for docking. The degree of
degradation depended on information content, being slight
(5% to 14%) with use of the full matrix but significant (20–
30%) with the use of only vectors. Degradation was largely a
consequence of docking not accounting for binding-induced
conformational changes, but it also, in small part, was a result
of constraining the unbound structures to data derived from
bound complexes (11).

Table I also shows that, as in our distance-constraint PPD
study (11), re-ranking ZDOCK with the same constraints used
in IPPD yielded similar top-ranked (top1) success rates. The
main difference between IPPD and ZDOCK re-ranking was
that ZDOCK re-ranking had a somewhat worse performance
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FIG. 1. Contact matrix of two interacting proteins, A and B, and
the contact vectors of their residues. In the contact matrix, Mij � 1
or 0, respectively, denotes contact or a lack of contact between
residue i in protein A and residue j in protein B. In the contact vectors,
VAi � 1 or 0, respectively, when residue Ai has, or does not have, at
least one contact with any residue of protein B.

TABLE I
Top-ranked success rates of IPPD and ZDOCK re-ranking using different levels of information for the 124-complex benchmark dataset

Bound structuresa Unbound structuresb

IPPD IPPD ZDOCK re-rankingc

Criterion (IRMSD) �2.5 Å �4.0 Å �2.5 Å �4.0 Å �2.5 Å �4.0 Å
Full contact matrix 100% 100% 86% 95% 69% 85%
Two contact vectors 98% 99% 64% 78% 56% 73%
One contact vectord 34% 35% 9% 15% 22% 25%

a ZDOCK solutions for bound structures not available.
b The best possible success rates for unbound structures (obtained by superimposing them on the bound structures using only interface

residues) were 88% for IRMSD � 2.5 Å and 97% for IRMSD � 4.0 Å.
c The best possible (i.e. top 54,000) success rates for ZDOCK were 78% for IRMSD � 2.5 Å and 94% for IRMSD � 4.0 Å.
d The top-ranked success rates were for 248 cases, because each complex in the 124-complex benchmark dataset was tested twice, using

the contact vector for either the receptor or the ligand.
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than IPPD when the constraints were abundant, but a better
one than IPPD when the constraints were few.

Comparison with Other Methods—In a comparison with
three other methods that reported benchmark results using
information similar to that of contact vectors, IPPD was su-
perior to all three on identical test structures, with the top1
success rates being 80% versus 36% using 3D-Garden (32)
and 53% using HADDOCK (10), and 50% versus 25% using
CFTDOCK2 (33) (Table II); the set of structures used by CFT-
DOCK2 contained a larger percentage of “medium” and “dif-
ficult” structures, making them harder to predict.

It should be noted that each of these PPD methods is
unique in its methodology, and largely because of this the
interface data used in these comparisons were not identical.
In 3D-Garden, docking solutions were generated by superim-
posing triangulated facets, a simplified representation of the
protein surface, at the interface, and interface information was
restricted to a 100-Å2 circular patch centered on a point of
close contact between two interacting proteins (32), whereas
in IPPD, a complete set of specific interface residues (see
“Experimental Procedures”) was used that generally covered
an irregular shape of contact area of a much larger size (800
to 3370 Å2 for these benchmark complexes (16)). The use of
a larger interface by IPPD does not completely explain its
better success rate in these predictions, however, because
increasing the patch size to more than a few hundred square
angstroms could lead to compromise of 3D-Garden’s ability
to identify acceptable models (32). In the comparison with
HADDOCK, identical sets of interface and non-interface res-
idues were used, with the former assigned as active residues
and the latter as passive residues per HADDOCK’s instruction
(34). However, in HADDOCK, passive residues are needed to
provide distance data to help bring active residues of the

interacting proteins into close contact, but, unlike in IPPD,
there is not an explicit term in the energy function to penalize
models that place passive residues at the interface. Perhaps
as a result, using all non-interface residues or just those within
6.5 Å of active residues as passive residues produced almost
the same success rate for HADDOCK (see Table II, footnote
e). CFTDOCK2 is essentially a ZDOCK re-ranked by a scoring
function similar to that of HADDOCK that uses a smaller set of
active residues (contact � 4.5 Å, as opposed to the default
6.5 Å used by HADDOCK) (33). Compared to the success rate
(73%) of ZDOCK re-ranked by Equation 1 (Table I), and
adjusting for the use of harder-to-predict test cases as men-
tioned above, the comparatively low success rate of CFT-
DOCK2 again suggests an advantage of explicitly including
the contribution of non-interface residues in the energy func-
tion. The role of non-interface residues in IPPD is discussed
more later.

Performance of IPPD and ZDOCK Re-ranking Using Incom-
plete and Inaccurate Information—Without knowledge of the
complex structure, the contact matrix of Fig. 1 is, at best,
partially known, and the correctness of the “known” informa-
tion is usually uncertain. We therefore carried out a series of
IPPD and ZDOCK re-ranking simulations on unbound struc-
tures to examine the effects of such uncertainties and errors.
The results, presented in Fig. 2, show that, on average, the
top1 success rates of IPPD decreased from 78% (for
IRMSD � 4 Å; Table I) to 40% when 20% of the residues were
incorrectly assigned, providing wrong information for the con-
straints (i.e. interface residues assigned as non-interface res-
idues and vice versa, or, equivalently, 1 assigned as 0 and 0
as 1 in the contact vectors in Fig. 1); these assignment
changes were made randomly and uniformly on both interface
and non-interface residues. The success rates decreased

TABLE II
Number of top-ranked (top1) docking models produced by 3D-Garden, HADDOCK, CFTDOCK2, and IPPD according to CARPI evaluation

criteria

CAPRI criteriaa
45 complexesb 52 complexesc

3D-Gardend HADDOCKe IPPDf CFTDOCK2g IPPDf

High 0 3 7 0 0
Medium 6 14 21 3 12
Acceptable 10 6 8 10 14
Incorrect 29 20 9 39 26
Top1 success rate 16/45 (36%) 23/43 (53%) 36/45 (80%) 13/52 (25%) 26/52 (50%)

a In these criteria, in addition to IRMSD, ligand RMSD (L_rms) and the fraction of the correctly identified residue-residue contacts (fnat) are
considered (20).

b Test cases used in 3D-Garden (32).
c All these are new complexes included in PPD benchmark 4.0 (44). They contain 33 (64%) “rigid body,” 11 (21%) “medium,” and 8 (15%)

“difficult” cases; in comparison, PPD benchmark 3.0 (6) contains 88 (71%) rigid body, 19 (15%) medium, and 17 (14%) difficult cases.
d As reported in Ref. 32.
e The same interface and non-interface residues used in IPPD were respectively assigned as active and passive residues to run HADDOCK

on its server. The server failed to output prediction results for two cases; for those with prediction results, the best structure from the best
cluster of each case was selected as the top1 model. When passive residues were assigned by default (residues within 6.5 Å of active residues),
the top1 success rate was 52% (22/42), because of an additional case without a prediction result.

f Contact vectors of both receptor and ligand (see Fig. 1) were used.
g Based on models kindly provided by Dr. W. Huang, author of CFTDOCK2. The 25% success rate obtained is consistent with those (�16%

to 27%, varying depending on the parameters used) reported in Ref. 33, obtained using only the criterion of IRMSD � 4 Å.
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further to only 3% on average when 40% of the residues were
erroneously assigned (Fig. 2A). In contrast, as shown in Fig.
2B, nearly 60% of the 124 benchmark complexes were suc-
cessfully predicted when these 40% of residues were not
included in the calculation of the effective energy (Equation 1);
that is, they were given a blank (i.e. non-committal), as op-
posed to incorrect, assignment in the contact vectors. Fur-
thermore, a good 20% of top1 success rates could still be
achieved using information for just 20% of the residues if they
were all assigned correctly (or 80% of the residues were given
a blank assignment). The results for ZDOCK re-ranking
showed a similar trend, but the decrease in success rates was
less marked, suggesting that a global search followed by
filtering has a better tolerance for incomplete and inaccurate
information than direct data-driven PPD.

Using CPORT-predicted Interface Residues—In practical
PPD predictions, interface residues (and thus non-interface
residues) are usually predicted using bioinformatics tools. For
example, the success rates of HADDOCK obtained when
using only the identity of interface residues predicted by
CPORT for 59 of the 124 benchmark complexes have recently

been reported (15). In Fig. 3, we compare the results of IPPD
and ZDOCK re-ranking with those reported for HADDOCK
and for PI-LZerD-2, a method that employs multiple cycles of
structure clustering to guide the sampling of docking solu-
tions (35), using CPORT-predicted interface residues for all
four methods. The results show that all four PPD methods
performed similarly, with ZDOCK re-ranking giving somewhat
worse success rates for models outside the top 100 than
other methods when evaluated by an IRMSD � 4 Å (Fig. 3B),
and PI-LZerD-2 giving somewhat better results than other
methods for models within the top 100, especially when a
more stringent IRMSD (�2.5 Å) was used (Fig. 3A). In com-
parison, ZRANK, which does not incorporate CPORT predic-
tions and, instead, employs a sophisticated physical-chemis-
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FIG. 2. Top1 success rates of IPPD and ZDOCK re-ranking for
the 124 benchmark complexes at a specific percentage of (A)
erroneously assigned or (B) blank-assigned interface and non-
interface residues. The success rate for each complex was the
percentage of 100 independent runs that produced the lowest effec-
tive energy solution within 4.0 Å IRMSD of its experimentally deter-
mined native state. The 100 independent docking/re-ranking runs for
each complex were all subject to the same docking conditions, but
the specific set of designated interface and non-interface residues
differed from one run to another, owing to random and independent
sampling. Dockings were performed on unbound structures. The error
bars are the standard error of the mean.
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FIG. 3. Performance of four docking predictions using CPORT-
predicted residue information (interface or non-interface). Suc-
cess rates are shown for the criteria of (A) IRMSD � 2.5 Å and (B)
IRMSD � 4.0 Å as a function of the number of ranked models used.
The dataset tested contained 59 unbound complexes (mostly en-
zymes), which were taken from PPD benchmark 2.0 (16). To get the
best performance, 87.5% of ambiguous interaction restraints were
omitted in HADDOCK/CPORT (15), and 50% of interface and non-
interface residues were omitted in IPPD/CPORT. No data were omit-
ted in the ZDOCK re-ranking/CPORT results, and the omission of up
to 60% of CPORT’s predictions gave similar results (data not shown).
Data were downloaded from websites or taken from the indicated
reference: CPORT and HADDOCK/CPORT (15), ZRANK (36), and
PI-LZerD/CPORT (see Figs. 10C and 10D of Ref. 35).
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try-based energy function to sample and rank docking
solutions (36), was somewhat better than all four PPD/CPORT
methods, especially when the more stringent IRMSD was
used (Fig. 3A). However, the top1 success rates were very
low (�10%) for all these methods. On average, for the 59
complexes tested, the percentages of incorrectly assigned
interface and non-interface residues were 47% and 18%,
respectively, for the CPORT predictions, so the low top1
success rates are consistent with those for the simulations
using a high percentage of incorrectly assigned residues
presented in Fig. 2.

DISCUSSION

The poor accuracy of current ab initio PPD predictions,
which usually involve a grid-based global search of docking
solutions, means that they usually fail to place an acceptable
model (IRMSD � 4 Å) at the top of the solution list. Data-
guided PPD methods have become popular in attempts to
overcome this problem. Multiple types of experimental and
computational data have been used to predict protein com-
plex structures with success (3, 14, 37). In general, these data
are transformed into spatial restraints to guide docking. The
transformation of some types of the data, such as distances
from cross-linking experiments, is straightforward, whereas
that for other types of data, such as information about inter-
face residues or the shape and symmetry of the complex, is
not, and restraints resulting from the latter types of data are
often referred to as “ambiguous” (13, 37). Ambiguous or not,
they all work to restrict the docking space or reduce the
degree of freedom (DOF) of the system, which is six (three
translational plus three rotational) for docking two rigid bodies
(38). Depending on the uncertainties of their measurements
and on how they might be used as spatial restraints, different
types of data might have different levels of effectiveness in
reducing the DOF, and on different aspects of the DOF, too.
For example, whereas in ideal situations one distance can
reduce the complexity of PPD by one DOF (11), for symmetric
interface, at least one rotational DOF cannot be removed
using only interface information (39), and information about
symmetry can reduce the DOF of a Cn complex from six to
four (40). By integrating diverse data, an approach such as
that of the Integrative Modeling Platform for macromolecular
assembly modeling (41) can resolve much of the ambiguity by
harnessing the complementary complex-determining abilities
conferred by different types of data. In this study, we devised
an effective energy function (Equation 1) to allow information
about interface and non-interface residues to be used to
make PPD predictions; such types of constraints on the state
of information’s “presence” or “absence,” analogous to “1”
and “0” in the contact matrix (Fig. 1), should be extendable to
some other types of data in order for IPPD to include them, as
well as for IPPD to be integrated into other approaches.

The so-called ambiguous data are usually incomplete and
contain errors, but their effects on PPD predictions have not

been rigorously studied. Although many different types of
ambiguous data can be utilized, in this study, we focused on
a residue’s interface information (i.e. whether or not it is an
interface residue), because it is a type of information that can
be readily obtained from bioinformatics predictions or inferred
from mutagenesis experiments, and it therefore has the po-
tential to be widely used.

As demonstrated above, almost all of the bound complex
structures tested could be reproduced with good quality
(IRMSD � 2.5 Å) if every residue’s interface information was
known, even if their pairing residues on the other protein and
the distances between them were not (Table I). This is at odds
with the PI-LZerD-2 results, in which, with clustering, only
20% of bound complexes could be successfully predicted by
the top1 model, compared with nearly 100% without cluster-
ing (see Fig. 5A of Ref. 35). This suggests that although the
clustering of docking solutions might improve PPD perform-
ance when the quality of the constraints is not good (Fig. 3), it
cannot, for some unknown reason, take full advantage of
accurate information. The 5% to 15% drop in the top1 suc-
cess rates of IPPD when going from bound to unbound struc-
tures, which increases with less information content (Table I),
was primarily due to binding-induced conformational
changes, which are not accounted for by IPPD, an approach
based on rigid-body framework, like most other PPD methods
(11). Nevertheless, using accurate information for only 20% of
all residues, a 20% top1 success rate for producing an ac-
ceptable model (IRMSD � 4 Å) could be achieved by IPPD
(40% by ZDOCK re-ranking) for unbound docking (Fig. 2B),
which is much better than the 8.5% of ZRANK (Fig. 3B), a
sophisticated non-data-guided PPD method (36).

On average, for the benchmark structures tested, 20% of all
residues amount to 5 interface and 43 non-interface residues
per complex. One main difference between our method and
other ambiguous data-guided methods, such as HADDOCK,
is that in our method, all residues, interface or not, are utilized
and treated equally in the effective energy function (Equation
1), and the inclusion of the contributions from non-interface
residues significantly improved the success rates, especially
for IPPD relative to ZDOCK re-ranking (supplemental Fig. S2).
This might have an advantage in that, in general, there are
more non-interface residues than interface residues, and
therefore more information can be utilized, although it still
needs to be correct in order to be helpful.

Our results suggest that the main problem in obtaining a
good top1 model for data-guided PPD is the errors in the
residue information used. Consequently, we cannot yet ex-
pect satisfactory PPD results when using a bioinformatics tool
such as CPORT (or others, as none of them are significantly
better (42)) to predict the interface residues (and thus the
non-interface residues) for use in PPD, because the error
rates of these interface predictions are still high (about 30%
specificity at 50% sensitivity on average (42)). Indeed, for
optimal performance, 87.5% of ambiguous interaction re-
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straints were omitted from the calculations in the HADDOCK/
CPORT study (15), and 50% of the data for interface and
non-interface residues was omitted in our IPPD/CPORT study
(Fig. 3). By not using some of the CPORT predictions, which
is equivalent to converting some of the erroneous assign-
ments to non-committal assignments, the sensitivity of IPPD
to data errors can be mitigated. No explanation for the omis-
sion in the HADDOCK/CPORT study was given, but it could
be for a similar reason. In contrast, using all of the CPORT-
predicted residues did not significantly affect the performance
of ZDOCK re-ranking (Fig. 3), again demonstrating that a
global search/filtering method generally has a higher toler-
ance of data errors. These results suggest that, when in
doubt, a non-committal blank assignment is better than a
guess if confidence in the interface/non-interface assignment
is low. It remains to be determined whether a method for
assigning confidence levels on predicted interface/non-inter-
face residues can be developed, as in secondary structure
predictions (43), and whether this will significantly increase
the success rates of PPD, as suggested by the results of this
study.
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