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Cortical inhibition, pH and cell excitability in epilepsy:
what are optimal targets for antiepileptic interventions?
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Abstract Epilepsy is characterised by the propensity of the brain to generate spontaneous
recurrent bursts of excessive neuronal activity, seizures. GABA-mediated inhibition is critical
for restraining neuronal excitation in the brain, and therefore potentiation of GABAergic neuro-
transmission is commonly used to prevent seizures. However, data obtained in animal models of
epilepsy and from human epileptic tissue suggest that GABA-mediated signalling contributes to
interictal and ictal activity. Prolonged activation of GABAA receptors during epileptiform bursts
may even initiate a shift in GABAergic neurotransmission from inhibitory to excitatory and so
have a proconvulsant action. Direct targeting of the membrane mechanisms that reduce spiking in
glutamatergic neurons may better control neuronal excitability in epileptic tissue. Manipulation
of brain pH may be a promising approach and recent advances in gene therapy and optogenetics
seem likely to provide further routes to effective therapeutic intervention.
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Introduction

Epilepsy is a chronic neurological disorder characterised
by the propensity of the brain to generate spontaneous
recurrent seizures. Classically this aberrant activity has
been attributed to a shift in the balance of excitation and
inhibition towards excitation. Early observations showed
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that antagonists of GABA, the main inhibitory neuro-
transmitter in the brain, have strong ictogenic effects
(Schwartzkroin & Prince, 1977; Gutnick et al. 1982;
Connors, 1984). It is also supported by a large (albeit
not universal) body of experimental evidence that the
number of interneurons is reduced in chronically epileptic
hippocampal and neocortical tissue, leading to a reduction
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in the number of inhibitory synapses in the affected
regions (Maglóczky & Freund, 2005). The observation of
potentiated GABAergic synapses, sprouting of inhibitory
axons, and increased interneuronal excitability in epileptic
tissue may reflect compensatory effects (e.g. Zhang et al.
2009). But are such changes anti-epileptic? Boosting
GABAergic neurotransmission may seem an effective
way to alleviate a predisposition to seizures. However,
an altered GABAergic signalling is known to participate
in the generation of human epileptiform discharges
(Schwartzkroin & Haglund, 1986; Köhling et al. 1998;
Cohen et al. 2002; D’Antuono et al. 2004; Avoli et al. 2005),
and potentiating GABA-mediated signalling is ineffective
in some patients. GABA may also exert paradoxical
pro-epileptic effects in neonates (Perucca et al. 1998).

Although impairing inhibition facilitates epileptiform
activity, seizures can also be readily induced in control
tissue by facilitating neuronal excitability or increasing
network activity (Avoli & de Curtis, 2011). Furthermore,
a profound loss of functional inhibition in the epileptic
network is difficult to reconcile with the episodic nature
of the disease. In humans seizures are typically separated
by long seizure-free periods, often with intact cognitive
and other behaviour. These observations suggest a far
more complex contribution of the GABAergic system to
the regulation of network dynamics. It is not surprising
therefore that the role of GABAergic signalling in the
generation of epileptiform activity is still vigorously
debated. GABAA-mediated neurotransmission is clearly
proconvulsant in one nocturnal epilepsy syndrome
(Klaassen et al. 2006), in human cortical dysplasia
(D’Antuono et al. 2004) and in human temporal lobe
epilepsy with hippocampal sclerosis (Cohen et al. 2002;
Huberfeld et al. 2011).

The uncertainties over the pro- or anti-epileptic roles
of GABAergic signalling in focal cortical epilepsies suggest
that treatments which target mechanisms that control cell
firing and so reduce intrinsic neuronal excitability should
be examined. Such treatments may beneficially restrain
sudden surges in network activity.

Dynamic change in GABAergic signalling during
epileptiform activity

Although epileptiform activity is accompanied by
recurrent excitatory barrages like those observed in
disinhibited tissue, this excitatory drive masks a massive
recruitment of inhibitory neurons. In fact, a recent
study has suggested that almost all perisomatically
targeting interneurons in the hippocampal CA1 area
are recruited during network epileptiform discharges
(Marchionni & Maccaferri, 2009). Furthermore, the
principle that brain areas receiving increased GABAergic
drive extend beyond epileptogenic foci (Prince, 1968)

has found experimental support in clinical research and
animal studies (Goldensohn & Salazar, 1986; Schwartz
& Bonhoeffer, 2001). This ‘inhibitory restraint’ around
hyperexcitable areas may prevent or retard seizure spread
(Trevelyan et al. 2006, 2007). Such an ‘inhibitory veto’
usually suffices to occlude the excitatory drive under-
lying generation of ictal-like events in cortical pyramidal
neurons (Trevelyan et al. 2006).

The role of GABAergic neurotransmission in ictogenesis
is ambiguous for several reasons. First, interneurons are
highly interconnected by both chemical and electrical
synapses, and their divergent outputs to primary neurons
could synchronize large cell populations (discussed by
Jiruska and co-authors in this issue). Second, depending
on the resting membrane potential and trans-membrane
gradient of Cl−, GABA can either hyperpolarize or
depolarize a postsynaptic neuron (Kaila, 1994; Farrant &
Kaila, 2007). Permeability of GABAA receptor channels
to HCO3

− (Kaila & Voipio, 1987; Kaila et al. 1993)
further contributes to GABA-mediated depolarization in
particular after excessive GABAergic neurotransmission.
In addition, prolonged activity of GABAA receptors
enhances extracellular K+ via cotransporter actions, thus
initiating a prolonged non-synaptic depolarisation (Kaila
et al. 1997; Viitanen et al. 2010).

It should be stressed, however, that GABAA-mediated
postsynaptic ‘depolarization’ does not necessarily mean
‘excitation’ as the shunting effects of GABAA receptor
activation still tend to oppose firing. In some neuro-
nal types, such as dentate granule cells and layer 5
pyramidal cells, the GABAA reversal potential (EGABA)
is positive to the resting membrane potential, even if
still negative to firing threshold (Staley & Mody, 1992;
Gulledge & Stuart, 2003; Sauer et al. 2012). Activation
of GABAA receptors in these neurons may mediate an
effective inhibition due to shunting effects. However, in
these cells depolarizing IPSPs sum with spatially and
temporally separate excitatory inputs (Gulledge & Stuart,
2003; Chiang et al. 2012), so promoting or inhibiting cell
firing depending on the timing and cellular localisation
of the GABAergic event. Although important for neuro-
nal signal integration properties (Pavlov et al. 2011b), it
remains to be determined whether these effects contribute
to seizure generation.

The situation may however be very different when
interneuronal firing increases during epileptiform activity.
Prolonged activity at GABAergic synapses can significantly
load Cl− extrusion mechanisms (Payne et al. 2003; Blaesse
et al. 2009) in postsynaptic neurons leading to intra-
cellular Cl− accumulation and a consequent depolarizing
shift of EGABA. This is aggravated by GABAA-receptor
coupled K+ transients. All these changes can readily
convert the GABAergic drive from inhibitory to excitatory.
Even in control tissue GABA may become excitatory
during repeated stimulation (Staley et al. 1995; Kaila et al.
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1997). Whether in chronically epileptic tissue such a trans-
ition is favoured is not clear. On the one hand, the Cl−

extrusion mechanisms are impaired (Rivera et al. 2002;
Jin et al. 2005; Pathak et al. 2007). On the other hand,
decreased KCC2 expression will tend to decrease excitatory
extracellular K+ transients (Viitanen et al. 2010). Possibly
fast activity-dependent down-regulation of KCC2 (Rivera
et al. 2004; Glykys et al. 2009; Lee et al. 2011; Puskarjov
et al. 2012) is a neuroprotective adaptation rather than a
maladaptive reactive change.

In addition to fast synaptic neurotransmission
high-affinity peri- or extrasynaptic GABAA receptors
mediate a slower, ‘tonic’, form of inhibitory signalling
(for recent reviews, see Brickley & Mody, 2012; Pavlov
& Walker, 2012). These receptors are activated by low
ambient concentrations of GABA (Stell & Mody, 2002).
Tonic GABAA receptor-mediated conductances are pre-
served, maybe even increased, in various animal models
of epilepsy (Scimemi et al. 2005; Zhang et al. 2007; Zhan
& Nadler, 2009; Pavlov et al. 2011a) and are also pre-
sent in tissue resected from patients with temporal lobe
epilepsy (TLE) (Scimemi et al. 2006). Enhanced tonic

GABAA conductances would tend to enhance Cl− entry
during ictal events, and enhance the load on neuronal Cl−

extrusion mechanisms.
Therefore, GABAergic neurotransmission can

dynamically change sense during pathological increases in
network activity, and the dual nature of GABA-mediated
signalling may contribute to ictogenesis (Fig. 1). Clearly
measurements of steady-state EGABA levels in quiescent
slices are not as informative as data on the capability of
a neuron to extrude Cl− under conditions of high Cl−

load during the transition to seizure (Khirug et al. 2005;
Farrant & Kaila, 2007; Blaesse et al. 2009). Akin to the
double faced Janus who presides over beginnings and
transitions, GABAergic signalling may switch direction to
promote aberrant firing.

Transition to seizure in temporal lobe epilepsy

Defects in Cl− homeostasis have been linked to
epileptiform activity in the adult brain. In temporal
lobe tissue obtained from operations on patients
with pharmaco-resistant focal epilepsies, the subiculum,

Figure 1. Epilepsy-induced changes in Cl− homeostasis
in a subset of neurons may contribute to the
spontaneous generation of interictal activity often
observed in tissue resected from patients with
intractable epilepsy. Massive recruitment and prolonged
activation of interneurons during epileptiform activity
further increases a load onto neuronal Cl− extrusion
mechanism and could shift EGABA to depolarized
voltages. This may render GABA excitatory,
exacerbating aberrant spiking of glutamatergic cells. In
addition, excessive activation of KCC2 results in a
transient increase of extracellular K+ so providing
additional excitation. Targeting excitability of pyramidal
cells using gene transfection techniques may also
alleviate undesirable effects of excessive activation of
interneurons by reducing their feedback recruitment.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society



768 I. Pavlov and others J Physiol 591.4

downstream from the sclerotic CA1 region, generates a
spontaneous interictal-like activity (Cohen et al. 2002).
Both glutamatergic and GABAergic transmission are
needed for its generation. GABA-mediated synaptic events
reverse at depolarized potentials in ∼20% of subicular
pyramidal cells. This suggests that an altered Cl− homeo-
stasis in a minority of cells contributes to interictal
rhythmogenesis.

Such a depolarized Cl− reversal potential occurs in
reactive responses to ischaemia (Pond et al. 2006; Papp
et al. 2008), axotomy (Nabekura et al. 2002) and nerve
section that induces chronic pain (Coull et al. 2003; Lu
et al. 2008). In human epileptic tissue, expression of two
K+–Cl− cotransporter molecules, NKCC1 and KCC2, may
be altered. Expression of the Na+–K+–2Cl− cotransporter,
NKCC1, which usually imports Cl−, seems to be increased,
while the Cl−-extruding K+–Cl− cotransporter, KCC2
(Payne et al. 2003; Blaesse et al. 2009), seems to be reduced
(Muñoz et al. 2007; Huberfeld et al. 2007; Shimizu-Okabe
et al. 2011). It is worth noting here that NKCC1 is also
expressed in glia, while KCC2 is neuron specific in brain
tissue (Blaesse et al. 2009).

Recent work on juvenile rats has shown that
epileptiform activity down-regulates KCC2 both in
vivo and in vitro through enhanced activation of the
Ca2+-dependent protease calpain (Puskarjov et al. 2012)
and, interestingly, calpain expression is increased in
pharmaco-resistant human cortical TLE tissue (Feng et al.
2011). Since a wide spectrum of molecules involved
in GABAergic signalling are calpain substrates (for
references, see Puskarjov et al. 2012), it is possible that
erosion of inhibition in epileptic tissue (Cohen et al.
2002; Huberfeld et al. 2007) is at least partly mediated
by enhanced constitutive calpain activity.

In patients or animal models of focal epilepsies, inter-
ictal activity is interrupted occasionally by a seizure. Most
of our understanding of this transition has been obtained
from exposure to convulsants in vitro. Seizure-like events
in vitro, in intracranial records from patients (Huberfeld
et al. 2011) and in EEG records from animals (Bragin et al.
2009) are often preceded by distinct population events. In
situ, these events seem to be limited to focal sites of seizure
initiation. In vitro, they generate larger fields than interictal
events that spread faster and further. They are generated
in the subiculum and depend on glutamatergic synapses
between subicular pyramidal cells. However while these
pre-ictal population events, may be generated purely by
recurrent excitation, they induce a strong interneuronal
firing.

Mechanisms underlying the transition from pre-ictal
discharges to seizure are not well understood. Possibly
the pre-ictal bursts that precede the transition may
inform on the mechanisms involved or even trigger the
seizure. However while pre-ictal events correspond to
a glutamate-mediated synchrony, both GABAergic and

glutamatergic signalling are active and necessary for
ictal-like events (Huberfeld et al. 2011). Recent work has
emphasized a glial contribution to focal seizures, and glial
control of external levels of both potassium and glutamate
is compromised in an epileptic brain (Coulter & Eid, 2012;
Steinhäuser et al. 2012). Clearly though interneurons are
strongly excited by convulsants and discharges at high
frequency during pre-ictal events.

Two consequences of a strong activation of postsynaptic
GABAA receptors due to repetitive interneuron firing may
help initiate and prolong seizures. First, Cl− extrusion
mechanisms may not suffice to maintain homeostasis. The
resulting Cl− loading will induce a dynamic shift in the
Cl− reversal potential and so in the polarity of inhibitory
events in some pyramidal cells. Secondly, even if over-
whelmed, the cotransporter KCC2, continues to export
not only Cl− but also K+ ions (Viitanen et al. 2010). The
increase in external K+ from this route adds to that due
to strong neuronal firing, increasing neuronal excitability
even further and so prolonging an ictal event. It will also
induce water movement into neurons (Lux et al. 1986), so
reducing extracellular volume with further pro-ictal effects
including enhanced ephaptic interactions (Jefferys, 1995)
and increased external glutamate and K+ concentrations
(Traynelis & Dingledine, 1989).

Role of brain pH in the generation and treatment
of seizures

Evidence dating back several decades has shown that the
excitability of neuronal circuits is strongly modulated by
changes in pH (for references, see Tolner et al. 2011). In
general, an elevation of pH leads to enhanced excitability
while an acidosis has the opposite effect (Chesler & Kaila,
1992), and it is interesting to note that there is much
evidence pointing to a key role for activity-dependent
acidosis as an intrinsic mechanism for self-termination
of seizures (de Curtis et al. 1998).

The relevance of pH in controlling network excitability
and seizure generation seems to be particularly high in
the immature brain. Indeed, seizures (often caused by
local trauma, haemorrhages, or birth asphyxia) occur
more frequently during the neonatal period than at any
other age (Hauser et al. 1993), and spontaneous network
events in neonatal hippocampal slices (the so-called giant
depolarizing potentials, GDPs) are extremely sensitive to
changes in intracellular pH (pHi) (Ruusuvuori et al. 2010).
A decrease of pHi by 0.05 units in CA3 pyramidal neurons,
induced by application of weak membrane-permeant
acids such as L- and D-lactate, propionate or hyper-
carbia (from 5% to 8% CO2 at constant extracellular
pH) led to a transient block of the GDPs. Furthermore,
the recovery of GDPs closely paralleled pHi recovery in
CA3 pyramidal cells (Ruusuvuori et al. 2010) which act
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as conditional pacemakers providing the major excitatory
drive for GDPs (Sipilä et al. 2005). It has been proposed
that the suppressing effect of weak acids on GDPs is due
to altered mitochondrial energy metabolism in neonatal
slices (Holmgren et al. 2010; Bregestovski & Bernard,
2012). However, a quantitatively similar pHi-dependent
suppression of GDP generation occurs in standard physio-
logical solution with 10 mM glucose, whether the weak
acid applied is (L-lactate) or is not (D-lactate, propionate)
an effective substrate of mitochondrial ATP production,
or an end product, such as CO2. Moreover, neuro-
nal mitochondrial membrane potential is unaffected by
weak acids, but depends critically on glucose availability
(Ruusuvuori et al. 2010).

A major clinical problem is that neonatal seizures are
frequently unresponsive to anti-epileptic drugs such as
phenobarbital and benzodiazepines (Rennie & Boylan,
2007; Bonifacio et al. 2011) which enhance the inhibitory
actions mediated by GABAA receptors in adults (Rogawski
& Löscher, 2004). In fact, such pro-GABA drugs can
even potentiate neonatal seizures even in full term
babies because the neuronal damage associated with
epileptiform activity can induce a relatively fast positive
shift in EGABA (see e.g. Nardou et al. 2011). Hence, the
search for novel antiepileptic drugs and other therapeutic
strategies is particularly important for neonatal seizures.
Manipulating neuronal pHi might be a successful way
to control epileptiform activity in neonates and infants
(Schuchmann et al. 2006; Helmy et al. 2011).

In a recent study, based on a novel model of birth
asphyxia, seizures were found to be triggered by a
brain alkalosis (Helmy et al. 2011). These data suggest
that in human post-asphyxia neonates, the standard
practice of fast restoration of normocapnia leads to a
pathophysiological alkaline overshoot of brain pH which
will promote seizures. Consequently, a novel resuscitation
approach, ‘graded restoration of normocapnia’, was put
forward. This technique abolished the post-asphyxic
alkaline ‘overshoot’ of brain pH and, consequently, seizure
induction was strongly suppressed (Helmy et al. 2011,
2012).

Febrile seizures (FSs) are the most common type
of epileptiform events in humans and the majority of
FSs take place between 6 months and 5 years of age,
peaking at 16–18 months (Shinnar & Glauser, 2002).
Experiments based on direct measurements of cortical
pH in a rat pup model of FS showed that seizures
are triggered by hyperventilation and the consequent
respiratory alkalosis (Schuchmann et al. 2006). Notably,
exposure of the rat pups to 5% ambient CO2 blocked FSs
in the rat pups within 20 s. A possible role for respiratory
alkalosis in FS generation in children was examined in a
large, retrospective study on age-, fever- and sex-matched
children with respiratory tract infections or gastro-
enteritis (Schuchmann et al. 2011). Blood acid–base data

from children hospitalised for FSs, showed a respiratory
alkalosis; and that the low systemic pH caused by gastro-
enteritis seems to prevent FSs. Moreover, a subset of
data showed that FSs did not occur in FS-susceptible
individuals with fever caused by gastroenteritis. Thus,
our study (Schuchmann et al. 2011) indicated that a
respiratory alkalosis is involved in triggering FSs in
children. This raises the intriguing possibility that the
standard therapeutic effect of benzodiazepines on FSs
(McIntyre et al. 2005) is, at least in part, caused by
suppression of breathing by these drugs.

Breathing 5% CO2 inhibits seizures in the adult rat,
macaque and human brain (Tolner et al. 2011). In this
study, the human epilepsy patients were under presurgical
monitoring, and the effect of 5% CO2 could be examined
only after seizure generalization (needed for localizing
the ictogenic area). However, a clear anticonvulsant effect
was observed. Obviously, an earlier time point of CO2

application would have been even more effective. In
addition to acute seizure suppression, the action of CO2

on brain pH is so fast that it might be used in anticipation
of a seizure episode by patients with chronic epilepsy.

Targeting intrinsic properties of excitatory neurons
using gene therapy to prevent seizure generation

Epilepsy-induced changes that facilitate generation
of epileptiform activity include alterations in active
membrane conductances and have been implicated, for
example, in the conversion of regular spiking pyramidal
cells into burst spiking neurons (Beck & Yaari, 2008).
Such a bursting phenotype of glutamatergic neurons
may then initiate synchronous network behaviour (Tryba
et al. 2011). The glutamate-mediated pre-ictal discharges
detected before initiation of an ictal event may also be
promoted by an increased neuronal excitability. Changes
in several ion channels have been reported in experimental
epilepsy models. These include channels underlying
the hyperpolarization-activated conductance (Shah et al.
2004), A-type K+ channels (Castro et al. 2001; Bernard
et al. 2004), and T-type Ca2+ channels (Su et al. 2002).
There is also evidence for an enhancement in persistent
Na+ currents (Chen et al. 2011), which may result from
a change in accessory subunits (Aman et al. 2009) or
splicing (Fletcher et al. 2011). Most of these studies have
concentrated on principal cells, but some evidence exists
that a pathway upstream of Kv1.1 in fast-spiking inter-
neurons is altered in experimental epilepsy (Li et al. 2012).

Several clinically useful anti-epileptic drugs are thought
to suppress neuronal excitability via membrane ion
channels. However, the scope for discovery of novel
small molecule anticonvulsants may be limited. Different
cell populations, in many brain structures, often express
similar channels, so even drugs with perfect molecular
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specificity may have side effects. Pharmacotherapy may
also be limited if up-regulation of drug transporters pre-
vents anti-epileptic drugs from reaching their targets
(Schmidt & Löscher, 2005). An alternative approach is
to use gene therapy, which has already had some success
in treating retinal degeneration and inherited immune
deficiency disorders (e.g. Gaspar et al. 2011; Jacobson
et al. 2012). This can in principle be targeted to the
epileptogenic zone in focal epilepsy.

Thus far, experimental anti-epileptic gene therapy
strategies have mainly targeted neurotransmitters and
their receptors. Thus, overexpression of galanin, NPY and
Y2 receptors have all been shown to attenuate seizures
(Haberman et al. 2003; Richichi et al. 2004; Noè et al.
2008; Woldbye et al. 2010). However, these have mainly
been studied in rodent models where the viral vector
has been delivered prior to a chemoconvulsant stimulus.
Hitherto, only one study has shown that gene therapy
delivered after the establishment of an epileptic focus can
attenuate seizures (Noè et al. 2008). The refinement of
adeno-associated virus and lentivirus vectors raises the
prospect for stable long-term overexpression of exogenous
genes, with minimal neuronal toxicity, and the efficiency
of the Camk2a promoter implies that it should be possible
to selectively reduce intrinsic excitability in principal cells
as a therapeutic strategy.

Of the many genes involved in regulating neuronal
excitability, Kcna1, which encodes Kv1.1, is especially
interesting, because overexpression in hippocampal
cultures both raises the threshold for eliciting
action potentials and reduces neurotransmitter release
(Heeroma et al. 2009). This strategy has the potential
advantage that, even if the synaptic excitation of
transduced neurons decreased through a homeostatic
‘synaptic scaling’ mechanism (Turrigiano, 2008), neuro-
transmitter release from their terminals would still be
attenuated.

An alternative approach to reducing neuronal
excitability constitutively is to provide the means to
suppress neuronal firing ‘on demand’, when a seizure
is detected. The light-sensitive prokaryotic Cl− pump
halorhodopsin (NpHR) has been used successfully to
suppress burst firing in organotypic cultures (Tønnesen
et al. 2009), and this strategy could be used in vivo,
although the challenges to detect the seizure onset and
deliver light of the appropriate wavelength and intensity
to the transduced neurons are substantial. A potential
disadvantage of NpHR is that it alters the Cl− reversal
potential, thereby making GABAA receptors depolarizing.
Thus, although the acute effect of photoactivation is to
hyperpolarize neurons, fast GABAA receptor-mediated
inhibition may be compromised (Raimondo et al.
2012). The proton pump Arch, in principle, avoids this
disadvantage because pH shifts are rapidly buffered (Chow
et al. 2010).

Conclusions and further directions

There is a strong need for new drug targets in resistant
TLEs. The lack of mechanistic data on the exact events
that initiate a seizure remains a major obstacle to the
design of efficient antiepileptic therapies. Might pathways
controlling Cl− homeostasis be a useful target? There
has been interest in the diuretic molecule bumetanide
which can block the Cl− importing cotransporter, NKCC1,
without affecting the exporting transporter, KCC2. The
possible antiepileptic actions of bumetanide may also
include an increase in the extracellular volume fraction
and a consequent decrease in ephaptic synchronization
of neuronal spiking (Hochman, 2012). Notably, however,
preclinical trials have not provided conclusive evidence
for antiepileptic actions of bumetanide, in the absence
of drugs which potentiate GABAergic transmission (for
review, see Löscher et al. 2012).

In the neonatal period, when excitability of the brain
is particularly sensitive to changes in pH, strategies that
reduce alkaline shifts may be more efficient than those
that potentiate GABAergic neurotransmission. Another
promising approach that can help to reduce the propensity
of the brain to generate seizures is emerging from
developments in gene therapy. In this case the excitability
of neurons is manipulated by transfecting them with
certain genes using virus injections (Fig. 1). Will this
approach become a routine in treatment of human
epilepsy? Many gene therapy-based clinical trials are
currently underway, and while the answer to this question
is yet uncertain, improvements in safe gene delivery to
target cells give rise for a cautious optimism for the future.
Devising more effective treatment strategies, however, will
still depend on the individual circumstances and a better
understanding of the mechanisms underlying aberrant
neuronal activity.
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