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Mutations in C10orf11,
a Melanocyte-Differentiation Gene,
Cause Autosomal-Recessive Albinism

Karen Grønskov,1,5,10,* Christopher M. Dooley,2,10 Elsebet Østergaard,3 Robert N. Kelsh,4 Lars Hansen,5

Mitchell P. Levesque,6 Kaj Vilhelmsen,7 Kjeld Møllgård,5 Derek L. Stemple,2 and Thomas Rosenberg8,9

Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with

albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity

mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2–q22.3) on chromosome 10. The region

contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the

disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands re-

vealed that five out of eight unrelated affected persons had the nonsensemutation inC10orf11. Screening of a cohort of autosomal-reces-

sive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating

from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but

no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpho-

linos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The mor-

phant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-

differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans.
Autosomal-recessive albinism (oculocutaneous albinism

[OCA (MIM 203100)]) is the most common condition

among hypopigmentation disorders.1 The disease is genet-

ically heterogeneous and can be caused by mutations in at

least four genes; however, a substantial fraction of individ-

uals with albinism remain genetically unresolved.2

Melanin-producing cells originate from two lineages of

progenitor cells: the outer neuroepithelium of the optic

cup and the neural crest. Melanocyte development

includes fate specification, migration, and differentiation

in a temporally and spatially tightly controlled process.3,4

Melanogenesis involves a complex, but still only partially

characterized, gene regulatory network.5–11

The four OCA types are distinguished on the basis of clin-

ical and molecular findings. OCA type 1 (MIM 203100 and

606952) andOCA type3 (MIM203290) are directly involved

in melanin synthesis through TYR (MIM 606933)-encoded

tyrosinase and TYRP1 (MIM 115501)-encoded tyrosinase-

related protein 1. OCA type 2 (MIM 203200) is caused by

mutations inOCA2 (MIM611409), encodingamelanosomal

membrane protein, and OCA type 4 (MIM 606574) is due to

mutations inSLC45A2 (MIM606202), encodingamelanoso-

mal membrane-associated transporter protein. Still, un-

known genes are thought to be involved in this disorder.

Fifteen individuals with autosomal-recessive albinism

were examined at the outpatient eye clinic at the National
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Hospital in Tórshavn, Faroe Islands, and six of these were

also examined at least once at the National Eye Clinic

for the Visually Impaired, Denmark. The assessments con-

sisted of a routine ophthalmological examination in-

cluding motility, refraction, best Snellen visual acuity, slit

lamp with transillumination, and ophthalmoscopy. Fur-

thermore, Goldmann visual-field measurements, fundus

photography, electroretinography, visual-evoked poten-

tials (VEPs) withmonocular and binocular flash and check-

erboard stimulation, and bioccipital recording for the

measurement of crossed asymmetry of the visual pathways

were performed on eight affected persons. In one indi-

vidual, ocular coherence tomography (OCT) of themacular

region was performed.

The study followed the guidelines of the Helsinki Decla-

ration and was approved by the local ethics committee and

by the Scientific Ethical Committee of the Faroe Islands,

and it was contracted with the Biobank under the Faroese

Ministry of Health. Affected individuals and healthy rela-

tives were informed of the nature of the study, and written

informed consent was obtained from all participants.

Homozygosity mapping was performed with the

Affymetrix SNP6.0 platform (Affymetrix, Santa Clara, CA,

USA). The analysis was performed by AROS Applied

Biotechnology A/S (Århus, Denmark). CNCHP files were

generated with Genotyping Console (version 4.0) and
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Figure 1. Homozygosity Mapping
(A) Pedigree of family OAR00201. Filled symbols are individuals
affected by OCA, and open symbols are unaffected individuals.
Individual II5 is a second-degree cousin of II4, and individual II9
is a second-degree cousin of II10. Individuals II5 and II9 are
also second-degree cousins. Individuals used for homozygosity
mapping are marked with an asterisk.
(B) Genomic structure of C10orf11. Boxes are exons, and the
numbers above the boxes are amino acid numbers. Dark-blue areas
are leucine-rich repeat (LRR) domains, and light-blue areas are the
LRR C-terminal (LRRCT) domains (numbers in brackets are amino
acid numbers).
analyzed by Chromosome Analysis Suite (version 1.2.2)

software (Affymetrix) with default settings (minimum

ten markers; loss of heterozygosity minimum physical

size of 1 Mb). Five affected members from family

OAR00201 were used for the initial analysis (Fig-

ure 1A). In addition, two unaffected family members

were included for subtraction of nonrelevant homozygous

regions. This revealed one homozygous region on chromo-

some 10 (chr10: 77,233,812–80,685,953; UCSC Genome

Browser hg19). Three additional affected individuals

(two sisters and one isolated case) were found to be homo-

zygous in an overlapping region (Figure S1, available

online).

The region contains five protein-coding RefSeq genes:

C10orf11 (MIM 614537), KCNMA1 (MIM 600150), DLG5

(MIM 604090), POLR3A (MIM 614258), and RPS24

(MIM 602412) (Figure S2). Furthermore, two genes

(LOC100128292 and LOC100132987) encoding noncod-

ing RNA molecules were located in the region. Mutations

in KCNMA1 are a known cause of generalized epilepsy

and paroxysmal dyskinesia (MIM 609446).12 Mice with

knockout of both Dlg5 alleles show renal cysts and hydro-

cephalus.13 POLR3A encodes the largest and catalytic core

component of RNA polymerase III, and mutations in

POLR3A are known to cause leukodystrophy, hypomyeli-

nating, 7, with or without oligodontia and/or hypogona-

dotropic hypogonadism (MIM 607694). Mutations in

RPS24, encoding a ribosomal protein, are known to cause

Diamond-blackfan anemia 3 (MIM 610629). Mutations

in either of these genes seemed unlikely to cause albinism.
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We therefore started out by sequencing C10orf11 (primers

are listed in Table S1). This revealed a homozygous

nonsense mutation, c.580C>T (p.Arg194*) (RefSeq acces-

sion number NM_032024.3), in all five affected individuals

from family OAR00201. Analysis of a further eight unre-

lated affected individuals revealed five with the same

mutation. This means that in nine families with auto-

somal-recessive albinism, probands from six of them

were shown to have the nonsense mutation in C10orf11.

Probands from the nine Faroese families had been

previously analyzed in some or all of TYR, OCA2,

SLC45A2, and TYRP1 (Table S2).The six families with the

nonsense mutation were shown to share a common

ancestor in both the paternal and maternal lines. Analysis

of eight unaffected relatives from four families showed

segregation in accordance with autosomal-recessive inher-

itance. Ninety-two control individuals from the Faroe

Islands were analyzed by high-resolution melting anal-

ysis. In brief, a PCR product of 105 bp was amplified

with primers 50-GAAGTGTCGCTACGTTTACTATGG-30

and 50-TTCATGAAATGGGTGAAGGT-30. Amplification

products were analyzed in a 96-well LightScanner instru-

ment (HR96, Biofire, Salt Lake City, UT, USA), and melting

data were collected in the temperature range of 60�C
–98�C. Data were analyzed with LightScanner software

with Call-IT (version 2.0, Biofire). Three individuals were

carriers of c.580C>T, corresponding to a carrier frequency

of 3.3%.

We next considered whether mutations in C10orf11 are

a cause of autosomal-recessive albinism in other popula-

tions. Forty-eight genetically unexplained individuals

who had autosomal-recessive albinism and who were

residing in Denmark were screened for mutations in

C10orf11. Of these, 42 had previously been screened for

mutations in TYR, OCA2, TYRP1, and SLC45A2 (21 had

no obvious mutations, 13 had one TYR mutation, 7 had

one OCA2 mutation, and 1 had one TYR mutation and

one OCA2 mutation),2 whereas the remaining six persons

had no prior investigation. In one individual, we found

a mutation in C10orf11. This person (individual 76121),

originating from Lithuania, was apparently homozygous

for a 1 bp duplication (c.66dupC [p.Ala23Argfs*39]);

however, a deletion on one allele cannot be ruled out and

neither can a preferential amplification of one allele

because of a sequence variation on the second allele

(although primers were checked by the SNPCheck program

for minimizing this risk). The possibility of a second muta-

tion in linkage disequilibriumwith theC10orf11mutations

contributing to the phenotype also cannot be ruled out.

Most of the affected individuals had a light Northern

complexion with a tendency to lighter pigmentation

than that of their relatives. Eye symptoms were predomi-

nant: nystagmus and iris transillumination were present

in all subjects. The phenotypic characteristics of nine

affected individuals are shown in Table 1. Extremely sparse

pigmentation of the peripheral ocular fundus was seen

(Figure 2). Visual acuity varied between 6/9 and 3/60.
, 2013



Table 1. Clinical Signs and Symptoms in Nine Individuals with Homozygous C10orf11 Mutations

Individual
ID Mutation

Snellen
Visual Acuity Refraction

Iris
Transillumination

Scalp Hair
Color Misrouting Miscellaneous

PN0224 c.[580C>T];[580C>T] R 6/60
L 6/60

R þ6.50 �2.00 3 0�

L þ6.00 �1.00 3 10�
extensive blond with

reddish tint
ND esotropia 25� in R eye

PN0220 c.[580C>T];[580C>T] R 6/36
L 6/36

R þ6.50 �2.00 3 160�

L þ6.50 �2.00 3 30�
extensive blond þ esotropia 15� in L eye

PN0278 c.[580C>T];[580C>T] R 6/18
L 6/18

R þ1.50 �3.00 3 0�

L þ1.50 �3.00 3 0�
extensive dark brown þ dark brown eyebrows

and lashes,
slow tanning

PN0207 c.[580C>T];[580C>T] R 6/30
L 6/24

R þ3.00 �3.50 3 15�

L þ3.00 �3.00 3 165�
extensive blond þ none

PN0302 c.[580C>T];[580C>T] R 3/60
L 3/60

R þ0.50 �2.00 3 10�

L þ0.50 �2.00 3 10�
only peripheral blond þ cone-rod dystrophy,a

blond eyebrows
and lashes

PN0303 c.[580C>T];[580C>T] R 6/30
L 6/30

L þ5.00 �1.50 3 130�

L þ7.00 �1.50 3 130�
extensive blond þ cone-rod dystrophya

PN0295 c.[580C>T];[(580C>T)] R 3/60
L 3/60

R þ7.50 �3.50 3 20�

L þ7.50 �3.00 3 15�
extensive white þ exotropia in R eye

PN0449 c.[580C>T];[(580C>T)] R 6/36
L 6/36

R þ5.00 �1.00 3 170�

L þ4.50 �1.50 3 20�
extensive dark blond þ none

76121 c.[66dupC];[(66dupC)] R 6/30
L 6/30

R þ2.25 �3.00 3 175�

L þ2.50 �3.00 3 5�
extensive dark blond þ corneal surgery

(Moscow, 1982)

Individuals whose ID number begins with ‘‘PN’’ belong to the population of the Faroe Islands. Individuals PN0224 (III2) and PN0220 (II8) belong to the index
pedigree. Individuals PN0278, PN0207, PN0295, and PN0449 stated to have no affected relatives. Individual 76121 was born in Lithuania by Lithuanian parents.
None of the individuals showed signs of Wardenburg syndrome, i.e., white forelock, premature graying of the hair, dystopia canthorum, hypopigmented or
hyperpigmented areas of skin, craniofacial dysmorphism, or sensineural deafness. The following abbreviations are used: R, right; L, left; and ND, no data.
aPN0302 and PN0303 are sisters and, in addition to the C10orf11 mutation, had a deleterious homozygous PCDH21 mutation causing cone-rod dystrophy.14
VEP recordings showed crossed asymmetry of the

cortical visual response in all tested individuals (n ¼ 8).

Photophobia was not a major problem. Hair color varied

from pale blond to dark brown.

C10orf11 encodes a 198 amino acid protein containing

three leucine-rich repeats (LRRs) and one LRR C-terminal

(LRRCT) domain (Figure 1B). LRRs containing proteins

cover a broad spectrum of functions and include cell adhe-

sion and signaling, extracellular-matrix assembly, platelet

aggregation, neuronal development, RNA processing, and

immune response.15

The localization of C10orf11 in human tissue specimens

was investigated in samples of human embryonic and

fetal eye and skin tissues. These were obtained either

from the archives of the Department of Cellular and

Molecular Medicine at the University of Copenhagen or

from legal abortions performed at the Department of

Obstetrics and Gynecology, Frederiksberg Hospital. Oral

and written information was given, and informed consent

was obtained from all contributing women and was

approved by the Regional Committee on Biomedical

Research Ethics of Copenhagen and Frederiksberg

(KF (01) 258206). Samples from the adult human eye

were also included. Late in the human embryonic period,

neural crest cells migrate into the mesenchyme of the

developing dermis, where they differentiate into

C10orf11-positive melanocyte precursors (melanoblasts)

(Figures 3A and 3B). Later, the majority migrate to the

dermoepidermal junction, penetrate the basal membrane,
The Ame
and differentiate into strongly stained melanocytes

in the basal layer of epidermis and in hair follicles

(Figure 3C). All control sections were negative (Fig-

ure S3). Parallel sections that included retinal pigment

epithelium (RPE) in the developing human eye showed

no reactivity to C10orf11 (Figure S4). This localization

pattern is consistent with a gene that is important for

and acts cell autonomously in melanocyte differentiation

and function.

To advance our understanding of the function of

C10orf11, we employed the zebrafish (Danio rerio) as

a model organism. Zebrafish embryos were obtained via

natural spawning essentially as described.16 Replicates of

morpholino experiments were carried out in WIK, TLF,

and SAT zebrafish backgrounds. A single zebrafish

homolog, c10orf11, is known and shows 69% similarity at

both the nucleotide and amino acid levels (Figure 4A).

mRNAexpressionwas investigated by in situ hybridization,

which was essentially carried out as previously stated

(Zebrafish Model Organism Database). Oligonucleotides

(c10orf11 and c10orf11_T7) (Table S3) were designed for

generating a c10orf11 PCR product. Antisense probes were

synthesized from the PCR products with the use of digoxi-

genin-labelednucleotide triphosphates andT7polymerase.

Sense probes were produced in a similar manner and were

used for negative controls. Expression of c10orf11 was

seen in migrating neural crest cells (Figures 4B–4D). This

suggests that c10orf11 might have a conserved role in

pigment cell development in zebrafish. To test whether
rican Journal of Human Genetics 92, 415–421, March 7, 2013 417



Figure 2. Fundus Pictures
(Upper left) Right eye of individual PN0278.
(Upper right) Right eye of individual PN0207.
(Lower left) Right eye of individual 76221. All fundi show indis-
tinct foveal regions and a lack of reflexes and extremely reduced
pigmentation of the choroid in the periphery.
(Lower right) An OCT scan through the foveal region of the right
eye of individual 76221 shows foveal hypoplasia (aplasia) and
complete absence of the foveal depression.

Figure 3. Localization of C10orf11 in Human Fetal Tissue
Immunocytochemical detection of C10orf11 in skin from the
lower lip of a 14-week-old human fetus. The tissue was fixed in
4% buffered formalin or Bouin’s fixative for at least 18 hr and
subsequently embedded in paraffin. Serial sections, 4 mm thick,
were cut and placed on silanized slides. Immunohistochemistry
was performed by deparaffinized sections in xylene and then rehy-
drated in a series of graded alcohols, treated with a 0.5% solution
of hydrogen peroxide in methanol for 15 min for quenching
endogenous peroxidase, and then rinsed in Tris-buffered saline
(TBS) (5mmTris-HCl, 146mmNaCl, pH 7.6). Nonspecific binding
was inhibited by incubation for 30 min with 2% casein (C-7078,
Sigma, St. Louis, MO, USA) at room temperature. The sections
were then incubated overnight at 4�C first with a polyclonal
goat antibody against C10orf11 (P-18) ([sc-241949] from Santa
Cruz Biotechnology [Santa Cruz, CA, USA]) diluted 1:100 in 2%
casein and then with anti-sheep/goat Ig (biotinylated whole
antibody [from donkey, RPN1025V] [GE Healthcare, Uppsala,
Sweden]) diluted 1:20 in casein for 30 min at room temperature.
Finally, sections were incubated with VECTASTAIN R.T.U. Elite
ABC Reagent (PK-7100 from Vector Laboratories, Burlingame,
CA, USA) for 30 min at room temperature. The sections were
washed with TBS and then incubated for 6 min with DAB chro-
mogen solution, counterstained with Mayers hematoxylin, dehy-
drated in graded alcohols followed by xylene, and coverslipped
with DPX mounting medium (Merck, Darmstadt, Germany).
(A and B) Numerous melanocyte precursors (some indicated by
arrows) show strong reactivity in dermis. A few are in contact
with hair bulbs (red arrowheads) (A). The framed area is shown
in higher magnification in (B), where melanocyte precursors are
in contact with the basal membrane of the dermoepidermal junc-
tion (open arrowheads). The scale bars in (A) and (B) represent
200 mm and 50 mm, respectively.
(C) From the same specimen, amelanocyte precursor hasmigrated
into the basal layer of the epidermis (open arrowhead) and differ-
entiated into a melanocyte. The scale bar represents 50 mm.
the expressing cells included melanoblasts, we examined

c10orf11 expression in mitfa mutant embryos. Mitfa is

required for specification, maintenance, and differentia-

tion of the melanocyte lineage.17 In contrast to wild-

type siblings, mitfaw2 mutants18 showed highly reduced

c10orf11 expression and no detectable expression in

migrating neural crest cells, clearly consistent with expres-

sion in melanoblasts. Residual expression in cells that we

interpret as premigratory neural crest cells (Figures 4E and

4F, arrowheads) indicates that expressionmight be initially

induced by a mitfa-independent mechanism.

These data encouraged us to explore a role for c10orf11 in

melanocyte development by knockdownwithmorpholino

antisense oligonucleotides (MOs) (Figures 4G and 4H).

Three morpholinos were designed to specifically knock-

down zebrafish c10orf11 (ENSDART00000145499): ATG-

MO19 to block any transcript including potential

maternal transcript, Ex-skip MO to block splicing, and

Int_Ret_MO20 to block zygotic transcripts. We also incor-

porated the use of the Tp53 MO and a standard control

morpholino when stated. See Table S3 for sequences of

morpholinos. The Tp53MOwas used to decrease apoptosis

triggered by nonspecific morpholino-induced Tp53 activa-

tion.21 All morpholinos were produced by GeneTools

(Philomath, OR, USA). To control the efficacy of the

splice-blocking Ex-skip MO, we performed RT-PCR on

cDNA (Transcriptor High Fidelity cDNA Synthesis Kit,

Roche, Basel, Switzerland) generated from 24 hpf (hours

postfertilization) morphant embryos by using oligonucleo-

tides ex2F and ex2R (Table S3). It was possible to confirm
418 The American Journal of Human Genetics 92, 415–421, March 7
a splice skipping of exon 2 via RT-PCRband shift (Figure 4I).

We focused on the early pigment cell phenotype because

morphant larvae were observed to go into developmental
, 2013



Figure 4. Zebrafish Developmental
Expression and Morpholino Knockdown
of c10orf11
(A) The transcript structure and length of
c10orf11 is displayed with all seven exons.
The coding sequence is in blue, and the
UTR is in green. The relative positions of
the three characterized morpholinos are
also shown.
(B) In situ expression of c10orf11 at 28 hpf
can be detected in the migrating neural
crest cells of the cranium and trunk (arrow-
head).
(C) Enlargement of dorsal view shows
cranial neural crest migrating around
the eye toward the optic stalk and oral
ectoderm.
(D) Expression of c10orf11 in neural crest
(arrowheads) paths and around the dorsal
aorta (arrow).
(E) In situ expression of c10orf11 at 28 hpf
in mitfa�/� mutant embryos. Some re-
sidual expression is seen (arrowheads).
(F) Enlargement of dorsal view.
(G andH) Amixture of scrambledmorpho-
lino (5 ng) and Tp53 (6 ng) was used in
control morphants (G) and Ex-skip MO
(5 ng) þ Tp53 MO (6 ng) (H) knockdowns.
Morphants were raised under standard
conditions, and their morphology was
observed over the next 72 hr of develop-
ment. In morphants, a strong reduction
in melanocyte number along the dorsal
axis (arrowheads), as well as blistering of
the epidermis (arrow) and a failure ofmela-
nocytes to migrate over the yolk sac, can
be seen.
(I) Partial targeted knockdown of the
c10orf11 transcript with Ex-skip MO is
shown by a 101 bp band shift between
control and morphant cDNA in an
RT-PCR assay. Morphants show both
the normal endogenous transcript (larger
band) and the morpholino missplicing
event causing the skipping of c10orf11
exon 2 (lower band) on a DNA gel.
(J and K) c10orf11 morphants present
a partial reduction of dct expression and
the number of dct-positive melanoblasts
at 26 hpf.
(L) Capped mRNA was transcribed and in-
jected at the 1-cell stage alone or with the
c10orf11 Ex2 splice MO, giving rise to
a range of phenotypes. The colored bars
to the left of the images correspond to
the bars in the charts in (M) and (N). The
magenta-colored bars represent embryos
that failed to develop properly beyond
8 hpf.
(M) Injections of wild-type c10orf11mRNA
and truncated versions p.Lys54* and
p.Arg230* at two concentrations. Overex-

pression of p.Arg230* mRNA led to a consistent axis shortening and a notochord defect that was absent from the wild-type and
p.Lys54* injections.
(N) Only the wild-type mRNA of c10orf11 significantly rescued the morphant phenotype (dark-green bar, two-sample t test, p < 0.010).
C10orf11 Ex-skip tp53 MO- and p.Arg230*-injected embryos also failed to rescue morphant phenotypes, but about a third of total
embryos (light-blue bar) presented with the ectopic phenotype of p.Arg230*. The error bars express the SEM based on three repetitions
of 200 injections.
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arrest at 48–72 hpf. Melanization of the RPE was first seen

at 24 hpf in wild-type animals and was followed by the

melanization of the neural-crest-derived melanocytes

soon after; by 32 hpf, melanocytes migrated away from

the dorsal neural tube and were dispersed throughout

most of the head, anterior trunk, and yolk sac (Figure 4G).

In the morphants, there was a strong reduction in the

apparent number of pigmented melanocytes, and the

remaining cells showed substantially decreased pigmenta-

tion (Figure 4H). Epidermal blistering along ventral and

dorsal fin folds was also prominent among most mor-

phants at this stage (Figure 4H). Similar phenotypic results

were obtainedwith ATG-MO, as well as whenATG-MO and

Ex-skip MO were mixed at half concentrations (data not

shown).

To test whether melanoblasts are present but not

pigmented, we performed in situ hybridization with the

melanoblast-specific marker dopachrome tautomerase

(dct [MIM 191275]) at 26 hpf by using a probe generated

with the primers dct and dct_T7 (Table S3 and Figures 4J

and 4K). This showed a partial reduction in both dct

expression levels and the apparent melanoblast number

in the c10orf11 morphants, indicating that c10orf11 is

important for multiple aspects of melanocyte develop-

ment, including differentiation. However, MO knockdown

of c10orf11 in zebrafish did not completely abolish pig-

mented melanocytes. This is consistent with the pheno-

type observed in the human probands, who showed

some pigmentation in hair and skin. Furthermore, some

residual endogenous expression of c10orf11 was observed

in the embryos (Figure 4I). To complement our knockdown

studies, we then cloned the full-length zebrafish c10orf11

cDNA into the pGEMT cloning vector (Promega, Madison,

WI, USA) by using primers 50-CGTCAGTGGGAGTCTT

CGT-30 and 50-CTCGCGTGTCTATCCACTGA-30 on zebra-

fish cDNA from 24 hpf embryos. The c10orf11 cDNA was

then subcloned by restriction digestion with EcoRI and

then by T4-DNA ligation into the PCS2þ expression

vector. Clones with the correct orientation and no coding

mutations were identified by sequencing. We then created

two truncated versions, p.Lys54* and p.Arg230* (Figure S5),

mimicking the alterations identified in humans. We gener-

ated capped c10orf11 mRNA (SP6 message-machine, Life

Technologies, Paisley, UK) of all three forms and then

carried out a series of injections into zebrafish embryos at

the 1-cell stage. All three c10orf11 mRNAs were injected

at titrated concentrations for the establishment of an

effective concentration (data not shown). When injected

at two different amounts (100 pg and 200 pg per embryo),

wild-type c10orf11 mRNA failed to give obvious ectopic

phenotypes, whereas embryos injected with p.Arg230*

were dwarfed and lacked a notochord in about half the

cases (Figure 4M). The c10orf11 Ex-skip MO was coinjected

with wild-type c10orf11, p.Lys54*, or p.Arg230* for testing

the ability to rescue the morphant phenotype (Figure 4L).

When the same c10orf11 mRNAs were coinjected with Ex-

skip MO, the wild-type mRNA, unlike truncated versions
420 The American Journal of Human Genetics 92, 415–421, March 7
p.Lys54* and p.Arg230*, was able to significantly rescue

the morphant phenotype (p < 0.010) (Figure 4N).

Currently, the likely biological function of C10orf11

remains poorly understood. Studies byWada and collabora-

tors show that an homolog of human C10orf11 is involved

in beta-catenin (MIM 116806) signaling in early Ciona

intestinalis embryos and suggest that C10orf11 functions

upstream of or parallel to beta-catenin.22 The Wnt/beta-

catenin pathway plays an important role in fundamental

biological processes involving cellular adhesion, tissue

morphogenesis, and oncogenesis.23 Beta-catenin has been

shown to be required for melanocyte specification and

has the transcription-factor-encoding Mitfa or MITF (MIM

156845) as a downstream target,24–26 perhaps suggesting

that C10orf11 might function upstream of MITF. However,

our preliminary zebrafish results showing decreased expres-

sion of c10orf11 in mitfa mutants indicate that c10orf11

expression lies downstream of mitfa. MITF plays a critical

role in the development of specific cell types, including

neural-crest-derived melanocytes and optic-cup-derived

RPE cells, and furthermore functions as a master regulator

of melanocyte development, including the regulation of

all core enzymes necessary for melanin biogenesis, such

as tyrosinase, tyrosinase-related protein1, anddopachrome

tautomerase.27 Mutations in MITF cause Waardenburg

syndrome (type 2A [MIM 193510]) and show an auto-

somal-dominant inheritance. Waardenburg syndromes

are auditory-pigmentary disorders characterized by con-

genital sensorineural hearing loss and pigmentary distur-

bances of iris, hair, and skin. We would expect that muta-

tions in a gene functioning upstream of MITF would

cause a more severe phenotype than OCA. More experi-

ments are needed for determining the position of

C10orf11 in the melanogenesis gene regulatory network.

Because the precise relationship between MITF and

C10orf11 in melanocyte development and differentiation

is still an area of ongoing study, the reason that the affected

individuals have an albino phenotype is not completely

clear at this time.

In conclusion, we have identified mutations in a

melanocyte-differentiation gene, C10orf11, in individuals

with autosomal-recessive albinism. Mutational analysis of

C10orf11 in larger cohorts of individuals with albinism is

needed for estimating the contribution of this gene to

these diseases.
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Supplemental Data include five figures and three tables and can be

found with this article online at http://www.cell.com/AJHG.
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