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Assembly effectors are small molecules that induce inappropriate virus capsid assembly to antiviral effect. To identify attributes
of hepatitis B virus (HBV) assembly effectors, assembly reaction products (normal capsid, noncapsid polymer, intermediates,
and free dimeric core protein) were quantified in the presence of three experimental effectors: HAP12, HAP13, and AT-130. Ef-
fectors bound stoichiometrically to capsid protein polymers, but not free protein. Thermodynamic and kinetic effects, not aber-
rant assembly, correlate with maximal antiviral activity.

Hepatitis B virus (HBV) is a global public health problem. Ac-
cording to World Health Organization estimates, 360 million

people suffer from chronic HBV infection, contributing to ap-
proximately 600,000 deaths every year (1). HBV-specific antiviral
drug development has focused on targeting the viral reverse trans-
criptase (RT). However, RT inhibitors do not usually clear HBV
infection, even after prolonged treatment (2–4). Furthermore,
cessation of RT inhibitors can lead to life-threatening viral flares;
therefore, they are generally a lifelong therapy (5). An alternative
therapeutic target is highly desirable. One attractive target is as-
sembly of HBV’s capsid from core protein.

HBV is a DNA virus composed of a protein-studded lipid en-
velope surrounding an icosahedral nucleoprotein core (6, 7). The
protein shell of the core, the capsid, is a T�4 icosahedral complex
built from 120 copies of core protein homodimer. The core pro-
tein is a 183-amino-acid protein comprised of a 149-residue as-
sembly domain (which includes the dimerization motif) and a
C-terminal 34-residue RNA binding domain which is not re-
quired for assembly (8). The core protein assembly domain has no
human homolog (9). The assembly domain is referred to as
Cp149. In the HBV life cycle, like many icosahedral viruses, the
capsid has critical roles in virus replication, making it an excellent
target for antiviral therapy (10, 11). Cp149 assembly is a function
of protein concentration, ionic strength, and temperature (12). A
molecule that modulates capsid assembly could interfere with the
geometry of core protein interaction, packaging viral nucleic acid,
and the stability of newly assembled virions (13–16). A number of
HBV assembly effectors have been investigated (17–21). Recently,
capsid assembly has also been targeted in other viral systems, in-
cluding HIV and HCV (22–24).

Two classes of HBV assembly effectors have been discovered in
searches for nonnucleoside inhibitors of HBV replication, the
heteroaryldihydropyrimidines (HAPs) and phenylpropenamides
(25–29). On the basis of observations with purified Cp149, HAPs
increase the kinetics of assembly and strengthen dimer-dimer as-
sociation to stabilize capsids, and at high concentrations, they
misdirect assembly (14, 20). On the basis of a crystal structure of
the HAP-HBV complex, a series of HAPs with different properties
were designed; their effects on the thermodynamics and kinetics
of assembly of purified Cp149 were compared with inhibition of
virion production in HepG2.2.15 cells (17, 30). The AT-130 and
AT-61 phenylpropenamides had the unusual antiviral activity of

generating empty cytoplasmic capsids (31). Like HAPs, phenyl-
propenamides were shown to accelerate assembly and stabilize
capsids; however, they do not misdirect assembly (19). HAPs and
AT-130 have antiviral activity in cells, although they have distinct
effects on assembly products with purified protein. Because
searches for assembly effectors are most efficiently based on bio-
chemical screens, here we identify activities of selected HAPs and
phenylpropenamides to define the characteristics that are most
important for antiviral activities.

To compare assembly effectors, we have generated phase dia-
grams of assembly as a function of effector and Cp149 dimer con-
centrations. To obtain a breadth of understanding of different
effectors, we examined HAP12, which substantially strengthens
pairwise protein-protein association energy and accelerates kinet-
ics of capsid assembly, and HAP13, which has weaker effects on
association energy and kinetics (17). To generalize beyond the
HAP family, we included AT-130 in our study (19); structures of
these molecules are shown in Fig. 1. To examine equilibrium as-
sembly, Cp149 dimer (at 2.5 to 15 �M in 50 mM HEPES) was
incubated with assembly effectors (0 �M to 20 �M) for 20 min
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FIG 1 Structures of the assembly effectors studied here. Me, methyl.
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prior to inducing assembly by addition of NaCl to 150 mM and
incubation at 37°C for 24 h. Reaction products were discriminated
using 500-Å pore and 1,000-Å pore Agilent BIO SEC 5 size exclu-
sion columns in series (Fig. 2).

The three assembly effectors had distinct effects on capsid as-
sembly. With the strong effector HAP12, the core protein progres-
sively formed large noncapsid polymers, indicated by the decrease
in the dimer peak and the shift of the capsid peak toward the void
volume (Fig. 2Aa). The continuous shift of the capsid peak was
consistent with heterogeneity of assembly products. HAP13, a
weak assembly effector, caused intermediates to accumulate with-
out changing the capsid peak, suggesting stabilization of abortive
assembly products (Fig. 2Ab). AT-130 induced the formation of
more capsid; neither polymer nor intermediate was detected (Fig.
2Ac). Electron micrographs (EM) of the peak center fraction in
size exclusion chromatography (SEC) further confirmed the for-
mation of polymers, intermediates, and capsids in the capsid as-
sembly with HAP12, HAP13, and AT-130, respectively.

Because assembly effectors stabilize Cp149-Cp149 interac-
tions, it was likely that they bind tightly to capsid and noncapsid
polymers but not necessarily to dimers. Analysis of the UV spec-
trum of the elution profile was complicated by overlapping absor-
bance of chromophores and light-scattering artifacts due to large
polymers, such as capsid (32). For example, a chromatogram of
the assembly of 5 �M Cp149 with 10 �M HAP12 (Fig. 2B) in-
cluded absorbance of HAP and protein at 280 nm, HAP at 340 nm,
and light scattering (which increases at shorter wavelengths)
throughout. Analysis of the UV spectra (Fig. 2C) of chromato-
graphic fractions showed that the polymer/capsid had a typical
protein peak with an added shoulder from 300 nm to 400 nm
corresponding to HAP12, whereas the dimer peak had negligible
absorbance in this region. To accurately interpret spectra, we cal-
culated corrections for light scatter and determined the concen-
trations of Cp149 and assembly effector (32). HAP12 saturated the
capsid/polymer complex at a ratio of two HAPs per dimer

FIG 2 Size exclusion chromatograms of equilibrated 5 �M HBV Cp149 assembly
reactions with increasing concentrations of assembly effectors. (A) Cp149 assem-
bly reactions showing assembly behavior as a function of assembly effector,
HAP12 (a), HAP13 (b), and AT-130 (c). For each assembly effector, seven con-
centrations (0, 1.25, 2.5, 5, 10, 15, and 20 �M) were investigated; for clarity, only
three concentrations are shown: 0 �M in black, 5 �M in dark gray, and 15 �M in
gray. Each experiment was performed three to five times, but only one represen-
tative chromatogram is shown. The void volume for the linked 500-Å pore and
1,000-Å pore Agilent BIO SEC 5 size exclusion columns was 1.5 ml. Capsids eluted
at 2.6 ml, dimers eluted at 3.9 ml, and small molecules eluted at the end of the
column at 4.4 ml. Electron micrographs are insets for the polymer/capsid fractions
of assembly reactions with 5 �M Cp149 and 15 �M assembly effector. For a
control, a micrograph of 5 �M Cp149 capsid is shown in panel Ab. Bars, 100 nm.
mAU, milli absorbance units. (B and C) Chromatogram (B) and UV spectra (C)
respective peak fractions of 5 �M Cp149 assembled in the presence of 10 �M
HAP12. The elution profiles at 280 nm (solid line, left-hand y axis) and 340 nm
(dashed line, right-hand y axis) show peaks for polymer/capsid (1), dimer (2), and
HAP 12 (3). (C) UV spectra of peaks 1, 2, and 3 in panel B indicate the presence and
absence of HAP12 in samples. 3* is the absorbance spectrum of peak 3 multiplied
by five to make it easier for the reader to see. (D) The ratio of HAP12 to Cp149
dimer in the polymer fraction as a function of HAP12 concentration appears to
saturate at 2 HAPs per dimer.

FIG 3 (A to C) 3D phase diagrams of assembly reactions for Cp149 and assembly effectors: HAP12 (A), HAP13 (B), and AT-130 (C). Capsids are shown in green,
polymers or intermediates are shown in red, and dimers are shown in blue; the concentrations of each species are also indicated by the intensity of the color. (D
to F) 2D contour views of the phase diagrams for HAP12 (D), HAP13 (E), and AT-130 (F). Contours are colored when they represent over 50% of the Cp149
mass. Contour lines (with corresponding percentages) of each product are also shown, colored as in panels A, B, and C. The antiviral activity in terms of the
concentration of assembly effector needed to suppress virus production HepG2.2.15 cells by 50%, EC50, is shown by the black horizontal line (17, 25).

Li et al.

1506 aac.asm.org Antimicrobial Agents and Chemotherapy

http://aac.asm.org


(Fig. 2D). This agreed with our HAP-capsid crystal structure
which identified one HAP site per monomer (though only some
quasiequivalent sites were filled in the context of an HBV capsid
crystal structure) (30).

We determined the concentration of Cp149 in polymer, inter-
mediate, capsid, and dimer peaks. To do this, we assumed that
chromatographic peaks were well described as a sum of Gaussian
peaks and fit them using the Gaussian function implemented in
the program Origin 8.5 (OriginLab). From this quantification, we
generated a three-dimensional (3D) phase diagram for each effec-
tor (Fig. 3A to C). In contrast to standard phase diagrams, no
single “pure” phase exists in the assembly reaction due to the
pseudocritical concentration nature of capsid assembly (33). The
phase diagrams show that all three effectors resulted in a dose-
dependent decrease of free dimer in the assembly reaction, but
different capsid assembly patterns. In the absence of small-mole-
cule effectors, assembly is Cp149 concentration dependent. When
HAP12 was introduced into the assembly reactions, the polymers
aggressively increased coupled with decreases in capsids and
dimers. HAP13 led to intermediates but only at very high concen-
trations. AT-130 only had capsid and dimer phases. All three as-
sembly effectors disturbed normal capsid assembly.

The correlation between the phase diagram and antiviral effect
is most easily demonstrated when the phase diagram is com-
pressed into two dimensions. Since the diagrams have no “pure”
phases, regions were designated as representing the polymer, cap-
sid, or dimer phase when over 50% of the total mass corresponded
to that form of the protein. The concentration of effector needed
to suppress virion production in culture by 50%, EC50, is repre-
sented by a horizontal black line (Fig. 3D and E) (17, 25). This
analysis revealed that antiviral activity was not related to the for-
mation of polymer or intermediate structure: the EC50 was far
below the polymer or intermediate phase. Instead, the antiviral
activity of each effector seemed to follow the same trend as its
energetic effect on capsid assembly (Table 1; 17, 7, 3). Normal
capsid assembly is characterized by slow nucleation rate and weak
pairwise dimer-dimer association energy. Therefore, changing ei-
ther the strength or rate of association will affect the capsid pro-
duction. Previously, we defined a kinetic index (Kindex), which is
the negative log of the rate of appearance of capsids, to character-
ize assembly effectors (17). HAP12 has the strongest antiviral ac-

tivity and also has the greatest kinetic and thermodynamic effects
on capsid assembly; its extremely low EC50 would seem to corre-
late with its kinetic effect (17). Though HAP13 increased the rate
of assembly more than AT-130, its effect on dimer-dimer associ-
ation was weaker. Therefore, our data indicate that both kinetics
and thermodynamics are critical to preventing formation of viri-
ons, but aberrant assembly is not required.

In conclusion, the antiviral activity of the assembly effectors
studied here requires an interplay of the thermodynamics and
kinetics induced by the effector. A good assembly effector must be
able to initiate capsid assembly fast enough to “escape” the normal
capsid assembly path, as well as stabilize intermediates to support
further assembly to deplete available core protein.
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